1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
subroutine init_data()
implicit none
include 'mpif.h'
include 'int_gen_parms.h'
include 'hess.h'
include 'machine_types.h'
include 'dbugcom.h'
include 'trace.h'
include 'dropmo.h'
include 'sial_config_params.h'
#ifdef ALTIX
include 'sheap.h'
#endif
integer*8 c_loc64
integer moa, mob
integer ntemp
integer i, j, n, ierr
integer nalpha, npcoef
integer dummy
integer lnp1, lnpo
integer ione
integer nfct(max_centers), nufct(max_centers)
integer naoatm(max_centers)
integer npop(max_centers)
integer ireorder(max_centers)
integer natoms
integer nscfa_fock, nscfb_fock
integer ieom_temprt, ieom_roots, iexcite ! Watson Added
character*4 atmnam(max_centers)
logical cartesian
logical uhf
logical dropit
integer ijunk(500)
logical*8 l8false
double precision dbuf(1)
#ifdef ALTIX
pointer (dptr, dbuf)
#else
common dbuf
#endif
double precision vnn
#ifdef ALTIX
dptr = dshptr ! set dbuf ptr to shared memory.
#endif
c-------------------------------------------------------------------------
c scf_init() initializes the ACES II I/O subsystem so that JOBARC may
c be read.
c-------------------------------------------------------------------------
call scf_init()
c-------------------------------------------------------------------------
c Read original MOL file, create a new one with the subshells split.
c The new MOL file will be named CHSSI.MOL, and we will work from
c CHSSI.MOL from this point on.
c
c This will allow us to perform finer segmentation of the AO indices
c later on.
c-------------------------------------------------------------------------
c call segment_mol(molfile, 'CHSSI.MOL', 12, 13, iErr)
c if (ierr .ne. 0) then
c print *,'Error: Cannot process ',molfile
c print *,'Error code ',ierr
c call abort_job()
c endif
c-------------------------------------------------------------------------
c Inspect the MOL file to determine problem size. Contraction
c coefficients and exponents are not read in at this stage.
c-------------------------------------------------------------------------
CDEBUG call simple_inspect_mol('CHSSI.MOL', max_centers, max_shells,
call simple_inspect_mol('MOL', max_centers, max_shells,
* ncenters, nshells, nspc,
* cartesian, ITFCT, LNP1, LNPO, Nfct,
* nufct, nbasis, naobasis, nCFPS, nPFpS,
* naoatm, ivAngMom, atom, vnn)
if (cartesian) then
ispherical = 0
else
ispherical = 1
endif
do i = 1, ncenters
npop(i) = 1
ireorder(i) = i
enddo
c---------------------------------------------------------------------------
C Compute the gradient of the Nuclear-Nuclear repulsion energy
C---------------------------------------------------------------------------
call mem_alloc(dbuf, 9*ncenters*ncenters, bytes_per_double,
* ix_hess, .true., ierr)
if (ierr .ne. 0) then
print *,'Error attempting to malloc hessian.'
call mpi_abort(mpi_comm_world, 1, ierr)
endif
call mem_alloc(dbuf, 9*ncenters*ncenters, bytes_per_double,
* ix_nnhess, .true., ierr)
if (ierr .ne. 0) then
print *,'Error attempting to malloc nuclear-nuclear hessian.'
call mpi_abort(mpi_comm_world, 1, ierr)
endif
call nuclear_nuclear_gradient(dbuf(ix_hess), dbuf(ix_NNhess),
* ncenters)
c--------------------------------------------------------------------------
c Allocate memory for exponents, coordinates, and basis functions.
c--------------------------------------------------------------------------
nalpha = 0
npcoef = 0
do i = 1, nshells
nalpha = nalpha + npfps(i)
npcoef = npcoef + npfps(i) * ncfps(i)
enddo
nalloc_pkg = 3*nshells + nalpha + npcoef
call mem_alloc(dbuf, nalloc_pkg, bytes_per_double, master_icoord,
* .true., ierr)
if (ierr .ne. 0) then
print *,'Error attempting to malloc basis data.'
call mpi_abort(mpi_comm_world, 1, ierr)
endif
ialpha = master_icoord + 3*nshells
ipcoeff = ialpha + nalpha
c-------------------------------------------------------------------------
c Read orbital values from JOBARC.
c-------------------------------------------------------------------------
ione = 1
if ((.not. if_scf) .and. .not. dryrun) then
call igetrec(1, 'JOBARC', 'OCCUPYA0', 1, nalpha_occupied)
call dgetrec(1, 'JOBARC', 'SCFENEG', ione, scf_energy)
call dgetrec(1, 'JOBARC', 'TOTENERG', ione, totenerg)
else
scf_energy = 0.
totenerg = 0.
endif
noccupied = nalpha_occupied
call igetrec(1,'JOBARC','IFLAGS',100,iJunk)
c------------------------------------------------------------------------
c Retrieve flags parameters.
c------------------------------------------------------------------------
iuhf = ijunk(11)
if (dbg) print *,'IUHF = ',iuhf
damp_init = ijunk(15) * .01
scf_conv = 10.0d0**(-ijunk(5))
cc_conv = 10.0d0**(-ijunk(4))
cc_iter = ijunk(7)
if (cc_iter .eq. 0) then
print *,'WARNING: ACES has defaulted cc_maxcyc to 0, ',
* ' resetting to 100.'
cc_iter = 100
endif
cc_hist = ijunk(12)
if (cc_hist .eq. 0) then
print *,'WARNING: ACES has defaulted cc_exporder to 0,',
* ' resetting to 5.'
cc_hist = 5
endif
cc_beg = 2
scf_iter = ijunk(16)
scf_hist = ijunk(20)
scf_beg = ijunk(40)
vib_freq_calc = .false.
if (ijunk(54) .ne. 0) vib_freq_calc = .true.
vib_exact = .false.
if (ijunk(54) .eq. 1) vib_exact = .true.
C
C Watson Added: For EOM calcs.
C
iexcite = 0
iexcite = ijunk(87)
if (iexcite .gt. 0) then
excite = DBLE(iexcite)
eom_tol = 10.0d0**(-ijunk(98))
call igetrec(-1, 'JOBARC', 'EESYMINF', 1, ieom_roots)
write(*,*) ' ieom_roots: ', ieom_roots
if (ieom_roots .eq. 0) then
print *,'WARNING: ACES has defaulted ESTATE_SYM to 0, ',
* ' resetting to 4.'
ieom_roots = 4
endif
eom_roots = DBLE(ieom_roots)
ieom_temprt = ieom_roots
endif
if (iexcite .eq. 0) ieom_temprt = 0
C
C Watson
C
c-------------------------------------------------------------------------
c Read IFLAGS2 off JOBARC.
c-------------------------------------------------------------------------
call igetrec(1,'JOBARC','IFLAGS2',500,iJunk)
geom_opt = .false.
if (ijunk(5) .ne. 0) geom_opt = .true.
c------------------------------------------------------------------------
c Allocate memory for the scf coefficient arrays, and read them in from
c the ACES II JOBARC file.
c------------------------------------------------------------------------
if ((.not. if_scf) .and. .not. dryrun) then
call dgetrec(0,'JOBARC', 'SCFEVCA0', nscfa, dummy) ! get reclen
if (nscfa .lt. 0) then
print *,'Error: ACES JOBARC file does not contain ',
* 'SCFEVCA0 data'
call abort_job()
endif
if (dbg) write(6,*) ' IUHF in init :', iuhf
if (iuhf .eq. 2) then ! ROHF
call dgetrec(0,'JOBARC', 'FOCKA', nscfa_fock, dummy)
if (nscfa_fock .lt. 0) then
print *,'Error: ACES JOBARC file does not contain ',
* 'FOCKA data'
call abort_job()
endif
if (nscfa_fock .ne. nscfa) then
print *,'Error: FOCKA has ',nscfa_fock,' elements, ',
* 'should match SCFEVCA0 ',nscfa
call abort_job()
endif
endif ! ROHF
else
nscfa = nbasis * nbasis
endif
c---------------------------------------------------------------------------
c If the gradient has been previously calculated (partially), read it
c from the JOBARC.
c---------------------------------------------------------------------------
call dgetrec(0,'JOBARC', 'GRADIENT', n, dummy)
if (n .gt. 0) then
call dgetrec(1,'JOBARC', 'GRADIENT', n, gradient_data)
else
do i = 1, 3*ncenters
gradient_data(i) = 0.
enddo
endif
call mem_alloc(dbuf, nscfa, bytes_per_double, iscfa,
* .true., ierr)
if (ierr .ne. 0) then
print *,'mem_alloc for eigenvectors failed: nscfa = ',
* nscfa
call abort_job()
endif
if ((.not. if_scf) .and. .not. dryrun) then
call dgetrec(1, 'JOBARC', 'SCFEVCA0', nscfa, dbuf(iscfa))
c-------------------------------------------------------------------------
c For ROHF, read in the FOCKA array.
c-------------------------------------------------------------------------
if (iuhf .eq. 2) then ! ROHF
call mem_alloc(dbuf, nscfa, bytes_per_double,
* ifockrohfa, .true., ierr)
call dgetrec(1,'JOBARC','FOCKA', nscfa, dbuf(ifockrohfa))
endif ! ROHF
endif
if ((.not. if_scf) .and. .not. dryrun) then
call dgetrec(0, 'JOBARC', 'SCFEVLA0', nepsa, dummy)
if (nepsa .lt. 0) then
print *,'Error: ACES JOBARC file does not contain ',
* 'SCFEVLA0 data.'
call abort_job()
endif
else
nepsa = nbasis
endif
call mem_alloc(dbuf, nepsa, bytes_per_double, iepsa,
* .true., ierr)
if (ierr .ne. 0) then
print *,'mem_alloc for eigenvalues failed: nscfa = ',nscfa
call abort_job()
endif
if ((.not. if_scf) .and. .not. dryrun) then
call dgetrec(1, 'JOBARC', 'SCFEVLA0', nepsa, dbuf(iepsa))
endif
c---------------------------------------------------------------------------
c Look for beta spin data.
c---------------------------------------------------------------------------
if (iuhf .eq. 0) then
nscfb = -1
else
if ((.not. if_scf) .and. .not. dryrun) then
call dgetrec(0,'JOBARC', 'SCFEVCB0', nscfb, dummy) ! get reclen
if (iuhf .eq. 2) then ! ROHF
call dgetrec(0,'JOBARC', 'FOCKB', nscfb_fock, dummy)
if (nscfb_fock .le. 0) then
print *,'Error: FOCKB data is not on JOBARC'
call abort_job()
endif
if (nscfb_fock .ne. nscfb) then
print *,'Error: FOCKB has ',nscfb_fock,' elements,',
* ' should match SCFEVCB0 ',nscfb
call abort_job()
endif
endif ! ROHF
else
nscfb = nbasis * nbasis
endif
endif
if (nscfb .lt. 0) then
c-----------------------------------------------------------------------------
c If ACES is telling us this is RHF, we must run a true RHF version of
c the SCF SIAL code, then copy over the alpha-spin eigenvalue data into the
c beta-spin eigenvalues.
c-----------------------------------------------------------------------------
uhf = .false.
nbeta_occupied = nalpha_occupied
nscfb = nscfa
print *,'*** WARNING: ACES has specified a RHF run. ',
* ' Either use REF=UHF in ACES or run a true RHF SIAL code.',
* '***'
else
uhf = .true.
endif
call mem_alloc(dbuf, nscfb, bytes_per_double, iscfb,
* .true., ierr)
if (ierr .ne. 0) then
print *,'mem_alloc for beta eigenvectors fialed: nscfb ',
* nscfb
call abort_job()
endif
if (iuhf .eq. 2)
* call mem_alloc(dbuf, nscfb, bytes_per_double,
* ifockrohfb, .true., ierr)
if ((.not. if_scf) .and. uhf .and. .not. dryrun) then
c--------------------------------------------------------------------------
c Read beta eigenvectors from JOBARC.
c--------------------------------------------------------------------------
call dgetrec(1, 'JOBARC', 'SCFEVCB0', nscfb, dbuf(iscfb))
if (iuhf .eq. 2) then ! ROHF
call dgetrec(1,'JOBARC','FOCKB', nscfb, dbuf(ifockrohfb))
endif ! ROHF
else
c--------------------------------------------------------------------------
c Copy alpha eigenvectors into the beta eigenvectors.
c--------------------------------------------------------------------------
do i = 1, nscfa
dbuf(iscfb+i-1) = dbuf(iscfa+i-1)
enddo
endif
if ((.not. if_scf) .and. uhf .and. .not. dryrun) then
c---------------------------------------------------------------------------
c Read number of beta eigenvalues from JOBARC.
c---------------------------------------------------------------------------
call dgetrec(0, 'JOBARC', 'SCFEVLB0', nepsb, dummy)
if (nepsb .lt. 0) then
print *,'Error: ACES JOBARC file does not contain ',
* 'SCFEVLB0 data.'
call abort_job()
endif
else
nepsb = nbasis
endif
call mem_alloc(dbuf, nepsb, bytes_per_double, iepsb,
* .true., ierr)
if (ierr .ne. 0) then
print *,'mem_alloc for beta eigenvalues failed: nscfb ',nscfb
call abort_job()
endif
if ((.not. if_scf) .and. uhf .and. .not. dryrun) then
c---------------------------------------------------------------------------
c Read actual beta-spin eigenvalues from JOBARC.
c---------------------------------------------------------------------------
call dgetrec(1, 'JOBARC', 'SCFEVLB0', nepsb, dbuf(iepsb))
else
c--------------------------------------------------------------------------
c Copy alpha-spin eigenvalues into beta-spin eigenvalues.
c--------------------------------------------------------------------------
do i = 1, nepsb
dbuf(iepsb+i-1) = dbuf(iepsa+i-1)
enddo
endif
if ((.not. if_scf) .and. uhf .and. .not. dryrun) then
call igetrec(1, 'JOBARC', 'OCCUPYB0', 1, nbeta_occupied)
endif
CDEBUG call read_basis_info('CHSSI.MOL', ncenters, ncenters, npop,
call read_basis_info('MOL', ncenters, ncenters, npop,
* ireorder, cartesian, itfct, lnp1, lnpo, nfct,
* nbasis, dbuf(ialpha), ixalpha,
* dbuf(ipcoeff), ixpcoef, atmnam,
* dbuf(master_icoord), naoatm)
c-------------------------------------------------------------------------
c If the SCF has already been performed check if MOs are to be dropped.
c-------------------------------------------------------------------------
nalpha_virtual = nbasis - nalpha_occupied
nbeta_virtual = nbasis - nbeta_occupied
if (.not. ignore_dropmo) then
C--------------------------------------------------------------------------
c Check if any MO's are to be dropped.
C--------------------------------------------------------------------------
CALL IGETREC(20,'JOBARC','NUMDROPA',1,NDROPMO_A)
if (ndropmo_a .gt. 0)
* CALL IGETREC(20,'JOBARC','MODROPA',NDROPMO_A,MODROP_A)
if (ndropmo_a .gt. 0) then
c----------------------------------------------------------------------------
c Check to see if NUMDROPB is defined. For RHF jobs, joda does not set it,
c so we must copy over the alpha dropmo's in that case.
c----------------------------------------------------------------------------
CALL IGETREC(0,'JOBARC','NUMDROPB',dummy, ndropmo_b)
if (dummy .gt. 0) then ! NUMDROPB is set.
CALL IGETREC(20,'JOBARC','NUMDROPB',1,NDROPMO_B)
if (ndropmo_b .gt. 0)
* CALL IGETREC(20,'JOBARC','MODROPB',NDROPMO_B,MODROP_B)
else ! NUMDROPB is not set.
c-----------------------------------------------------------------------------
c Copy over the alpha DROPMO values.
c-----------------------------------------------------------------------------
ndropmo_b = ndropmo_a
do i = 1, ndropmo_b
modrop_b(i) = modrop_a(i)
enddo
endif
endif
if ((ndropmo_a .gt. 0 .or. ndropmo_b .gt. 0) .and.
* .not. ignore_dropmo) then
C--------------------------------------------------------------------------
c Reset the alpha eigenvectors if DROPMO.
C--------------------------------------------------------------------------
do j = 1, nbasis
moamap(j) = 0
mobmap(j) = 0
enddo
moa = 0
do j = 1, nbasis
dropit = .false.
do i = 1, ndropmo_a
if (modrop_a(i) .eq. j) then
dropit = .true.
go to 11
endif
enddo
moa = moa +1
11 continue
c------------------------------------------------------------------------
c Move data for eigenvalue/eigenvector "j" to "moa".
c------------------------------------------------------------------------
if (j .ne. moa .and. .not. dropit) then
dbuf(iepsa+moa-1) = dbuf(iepsa+j-1)
moamap(moa) = j
do i = 1, nbasis
dbuf(iscfa+nbasis*(moa-1)+i-1) =
* dbuf(iscfa+(j-1)*nbasis+i-1)
enddo
endif
enddo
C--------------------------------------------------------------------------
c Reset the beta eigenvectors if DROPMO.
C--------------------------------------------------------------------------
if (ndropmo_b .gt. 0) then
mob = 0
do j = 1, nbasis
dropit = .false.
do i = 1, ndropmo_b
if (modrop_b(i) .eq. j) then
dropit = .true.
go to 10
endif
enddo
mob = mob +1
10 continue
c------------------------------------------------------------------------
c Move data for eigenvalue/eigenvector "j" to "mob".
c------------------------------------------------------------------------
if (j .ne. mob .and. .not. dropit) then
dbuf(iepsb+mob-1) = dbuf(iepsb+j-1)
mobmap(mob) = j
do i = 1, nbasis
dbuf(iscfb+nbasis*(mob-1)+i-1) =
* dbuf(iscfb+(j-1)*nbasis+i-1)
enddo
endif
enddo
endif
C--------------------------------------------------------------------------
c Reset the number of virtual orbitals if they were dropped.
C--------------------------------------------------------------------------
c
nalpha_virtual = nbasis - nalpha_occupied
enalpha_virtual = nalpha_virtual
do i = 1, ndropmo_a
if (modrop_a(i) .gt. nalpha_occupied)
* nalpha_virtual = nalpha_virtual - 1
enddo
c
nbeta_virtual = nbasis - nbeta_occupied
enbeta_virtual = nbeta_virtual
do i = 1, ndropmo_b
if (modrop_b(i) .gt. nbeta_occupied)
* nbeta_virtual = nbeta_virtual - 1
enddo
c
C--------------------------------------------------------------------------
c Reset the number of occupied orbitals if they were dropped.
C--------------------------------------------------------------------------
c
enalpha_occupied = nalpha_occupied
ntemp = nalpha_occupied
do i = 1, ndropmo_a
if (modrop_a(i) .le. nalpha_occupied) ntemp = ntemp - 1
enddo
nalpha_occupied = ntemp
nepsa = nbasis - ndropmo_a
c
enbeta_occupied = nbeta_occupied
ntemp = nbeta_occupied
do i = 1, ndropmo_b
if (modrop_b(i) .le. nbeta_occupied) ntemp = ntemp - 1
enddo
nbeta_occupied = ntemp
nepsb = nbasis - ndropmo_b
write(6,*) ' Number of alpha virtuals = ', nalpha_virtual
write(6,*) ' Number of beta virtuals = ', nbeta_virtual
write(6,*) ' Number of alpha occupied = ',nalpha_occupied
write(6,*) ' Number of beta occupied = ',nbeta_occupied
c
endif ! ndropmo > 0
c
endif ! ((.not. ignore_dropmo then
c-------------------------------------------------------------------------
c If we are running a SCF job, reset the energy variables and gradient
c accumulation to 0. The assumption is that this is the beginning of
c a new gradient accumulation cycle.
c-------------------------------------------------------------------------
if (if_scf .or. init_scf) then
scf_energy = 0.
totenerg = 0.
do i = 1, 3*ncenters
gradient_data(i) = 0.
enddo
endif
if (scf_energy .eq. 0.d0) then
scf_energy = vnn
print *,'SCF ENERGY IS INITIALIZED FROM ',
* 'NUCLEAR-NUCLEAR REPULSION ENERGY: ',scf_energy
endif
print *,'--------- Required data from MOL file -----------'
print *,'Number of centers.....................',nCenters
print *,'Number of shells......................',nShells
print *,'Cartesian flag........................',cartesian
print *,'Total number of basis functions.......',nbasis
print *,'Total number of primitive functions...',nalpha
print *,'Initial SCF energy....................',scf_energy
print *,'SCF damping factor....................',damp_init
print *,'SCF convergence tolerance.............',scf_conv
print *,'Number of SCF iterations..............',scf_iter
print *,'Number of SCF histories for DIIS......',scf_hist
print *,'Beginning iteration for SCF DIIS......',scf_beg
print *,'CCSD convergence tolerance............',cc_conv
print *,'Number of CCSD iterations.............',cc_iter
print *,'Number of CCSD histories for DIIS.....',cc_hist
print *,'Beginning iteration for CCSD DIIS.....',cc_beg
print *,'Excited state computation.............',iexcite .gt. 0
print *,'EOM-CCSD converged tolerance..........',eom_tol ! Watson added
print *,'Number of EOM-CCSD roots to find......',ieom_temprt
print *,'Geometry optimization calc............',geom_opt
print *,'Vibrational frequency calc............',
* vib_freq_calc
print *,' Shell Contracted fns. Primitive Fns. '
print *,' ----- --------------- --------------'
do i = 1, nshells
print 200,i, nCFpS(i),nPFpS(i),
* (dbuf(master_icoord+(i-1)*3+j-1) ,j=1,3)
enddo
return
100 format (1x,a4,3(2x,d14.6))
200 format(2x,i4,12x,i3,15x,i3,3(1x,d20.12))
c end subroutine init_data
end
|