1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
SUBROUTINE OED__KIN_CSGTO
+
+ ( IMAX,ZMAX,
+ NALPHA,NCOEFF,NCSUM,
+ NCGTO1,NCGTO2,
+ NPGTO1,NPGTO2,
+ SHELL1,SHELL2,
+ X1,Y1,Z1,X2,Y2,Z2,
+ ALPHA,CC,CCBEG,CCEND,
+ L1CACHE,TILE,NCTROW,
+ SPHERIC,SCREEN,
+ ICORE,
+
+ NBATCH,
+ NFIRST,
+ ZCORE )
+
C------------------------------------------------------------------------
C OPERATION : OED__KIN_CSGTO
C MODULE : ONE ELECTRON INTEGRALS DIRECT
C MODULE-ID : OED
C SUBROUTINES : OED__KIN_SET_AB
C OED__KIN_SET_IJ_PAIRS
C OED__KIN_AB_DEF_BLOCKS
C OED__KIN_PREPARE_CTR
C OED__KIN_AB_PCGTO_BLOCK
C OED__CTR_2INDEX_BLOCK
C OED__CTR_RS_EXPAND
C OED__CTR_2INDEX_REORDER
C OED__TRANSPOSE_BATCH
C OED__XYZ_TO_RY_AB
C OED__CARTESIAN_NORMS
C OED__SPHERICAL_TRANSFORM
C OED__NORMALIZE_CARTESIAN
C OED__MOVE_RY
C DESCRIPTION : This operation calculates a batch of contracted
C kinetic integrals on up to two different centers
C between spherical or cartesian gaussian type shells.
C
C
C Input (x = 1 and 2):
C
C IMAX,ZMAX = maximum integer,flp memory
C NALPHA = total # of exponents
C NCOEFF = total # of contraction coeffs
C NCSUM = total # of contractions
C NCGTOx = # of contractions for csh x
C NPGTOx = # of primitives per contraction
C for csh x
C SHELLx = the shell type for csh x
C Xy,Yy,Zy = the x,y,z-coordinates for centers
C y = 1 and 2
C ALPHA = primitive exponents for csh
C 1 and 2 in that order
C CC = full set (including zeros) of
C contraction coefficients for csh
C 1 and 2 in that order, for each
C csh individually such that an
C (I,J) element corresponds to the
C I-th primitive and J-th contraction.
C CC(BEG)END = (lowest)highest nonzero primitive
C index for contractions for csh
C 1 and 2 in that order. They are
C different from (1)NPGTOx only for
C segmented contractions
C L1CACHE = Size of level 1 cache in units of
C 8 Byte
C TILE = Number of rows and columns in
C units of 8 Byte of level 1 cache
C square tile array used for
C performing optimum matrix
C transpositions
C NCTROW = minimum # of rows that are
C accepted for blocked contractions
C SPHERIC = is true, if spherical integrals
C are wanted, false if cartesian
C ones are wanted
C SCREEN = is true, if screening will be
C done at primitive integral level
C ICORE = integer scratch space
C ZCORE (part) = flp scratch space
C
C Output:
C
C NBATCH = # of integrals in batch
C NFIRST = first address location inside the
C ZCORE array containing the first
C integral
C ZCORE = full batch of contracted (1|2)
C kinetic integrals over cartesian
C or spherical gaussians starting
C at ZCORE (NFIRST)
C
C
C
C --- NOTES ABOUT THE OVERALL KINETIC INTEGRAL PREFACTOR ---
C
C The overal kinetic integral prefactor is defined here
C as follows. Consider the normalization factors for a
C primitive cartesian GTO and for a spherical GTO
C belonging to the angular momentum L = l+m+n:
C
C
C lmn l m n 2
C GTO (x,y,z) = N (l,m,n,a) * x y z * exp (-ar )
C a
C
C
C LM L LM 2
C GTO (r,t,p) = N (L,a) * r * Y (t,p) * exp (-ar )
C a
C
C
C where a = alpha exponent, t = theta and p = phi and
C N (l,m,n,a) and N (L,a) denote the respective
C cartesian and spherical normalization factors such
C that:
C
C
C lmn lmn
C integral {GTO (x,y,z) * GTO (x,y,z) dx dy dz} = 1
C a a
C
C
C LM LM
C integral {GTO (r,t,p) * GTO (r,t,p) dr dt dp} = 1
C a a
C
C
C The normalization constants have then the following
C values, assuming the spherical harmonics are
C normalized:
C
C _____________________________________
C / 2^(2L+1+1/2) * a^((2L+3)/2)
C N (l,m,n,a) = / ----------------------------------------
C \/ (2l-1)!!(2m-1)!!(2n-1)!! * pi * sqrt (pi)
C
C
C ____________________________
C / 2^(2L+3+1/2) * a^((2L+3)/2)
C N (L,a) = / -----------------------------
C \/ (2L+1)!! * sqrt (pi)
C
C
C Note, that the extra pi under the square root in
C N (l,m,n,a) belongs to the normalization of the
C spherical harmonic functions and therefore does not
C appear in the expression for N (L,a). The common
C L-,l-,m-,n- and a-independent part of the cartesian
C norm is a scalar quantity needed for all integrals
C no matter what L-,l-,m-,n- and a-values they have:
C
C _____________
C / 2^(1+1/2)
C N (0,0,0,0) = / --------------
C \/ pi * sqrt (pi)
C
C
C Also every kinetic integral has a factor of pi**(3/2)
C associated with it, hence the overall common factor
C for all kinetic integrals will be N(0,0,0,0)**2 times
C pi**(3/2), which is equal to:
C
C ___
C PREFACT = \/ 8
C
C
C and is set as a parameter inside the present routine.
C The alpha exponent dependent part of the norms:
C
C ______________
C \/ a^((2L+3)/2)
C
C will be calculated separately (see below) and their
C inclusion in evaluating the primitive cartesian
C kinetic [A|B] integrals will be essential for numerical
C stability during contraction.
C
C
C AUTHOR : Norbert Flocke
C------------------------------------------------------------------------
C
C
C ...include files and declare variables.
C
C
IMPLICIT NONE
LOGICAL ATOMIC
LOGICAL BLOCKED
LOGICAL EMPTY
LOGICAL EQUALAB
LOGICAL MEMORY
LOGICAL REORDER
LOGICAL SCREEN
LOGICAL SPHERIC
LOGICAL SWAP12,SWAPRS
INTEGER IMAX,ZMAX
INTEGER IN,OUT
INTEGER INDEXA,INDEXB
INTEGER INDEXR,INDEXS
INTEGER IPRIMA,IPRIMB
INTEGER IPUSED,IPSAVE,IPPAIR
INTEGER ISNROWA,ISNROWB
INTEGER ISROWA,ISROWB
INTEGER IUSED,ZUSED
INTEGER L1CACHE,TILE,NCTROW
INTEGER LCC1,LCC2
INTEGER LCCA,LCCB
INTEGER LCCSEGA,LCCSEGB
INTEGER LEXP1,LEXP2
INTEGER LEXPA,LEXPB
INTEGER MXPRIM,MNPRIM
INTEGER MXSHELL
INTEGER MIJ
INTEGER MOVE,NOTMOVE
INTEGER NALPHA,NCOEFF,NCSUM
INTEGER NBATCH,NFIRST
INTEGER NCGTO1,NCGTO2
INTEGER NCGTOA,NCGTOB,NCGTOAB
INTEGER NCGTOR,NCGTOS
INTEGER NCTR
INTEGER NIJ,NIJBLK,NIJBEG,NIJEND
INTEGER NKIN1D,NOVL1D
INTEGER NPGTO1,NPGTO2
INTEGER NPGTOA,NPGTOB,NPGTOAB
INTEGER NPSIZE,NCSIZE,NWSIZE
INTEGER NROTA,NROTB
INTEGER NROWA,NROWB
INTEGER NRYA,NRYB
INTEGER NXYZA,NXYZB,NXYZT
INTEGER SHELL1,SHELL2
INTEGER SHELLA,SHELLB,SHELLP
INTEGER TEMP
INTEGER ZCBATCH,ZPBATCH,ZWORK,
+ ZNORMA,ZNORMB,
+ ZBASE,ZCNORM,
+ ZRHOAB,
+ ZEA,ZEB,ZE2AB,ZPAX,ZPAY,ZPAZ,ZPINVHF,ZSCALE,
+ ZKIN1DX,ZKIN1DY,ZKIN1DZ,
+ ZOVL1DX,ZOVL1DY,ZOVL1DZ,
+ ZSROTA,ZSROTB
INTEGER CCBEG (1:NCSUM)
INTEGER CCEND (1:NCSUM)
INTEGER ICORE (1:IMAX)
INTEGER IXOFF (1:2)
DOUBLE PRECISION ABX,ABY,ABZ
DOUBLE PRECISION PREFACT
DOUBLE PRECISION RNABSQ
DOUBLE PRECISION SPNORM
DOUBLE PRECISION X1,Y1,Z1,X2,Y2,Z2
DOUBLE PRECISION XA,YA,ZA,XB,YB,ZB
DOUBLE PRECISION ALPHA (1:NALPHA)
DOUBLE PRECISION CC (1:NCOEFF)
DOUBLE PRECISION ZCORE (1:ZMAX)
PARAMETER (PREFACT = 2.828427124746190D0)
C
C
C------------------------------------------------------------------------
C
C
C ...fix the A,B labels from the 1,2 ones. Calculate
C the relevant data for the A,B batch of kinetic
C integrals.
C
C
LEXP1 = 1
LEXP2 = LEXP1 + NPGTO1
LCC1 = 1
LCC2 = LCC1 + NPGTO1 * NCGTO1
CALL OED__KIN_SET_AB
+
+ ( NCGTO1,NCGTO2,
+ NPGTO1,NPGTO2,
+ SHELL1,SHELL2,
+ X1,Y1,Z1,X2,Y2,Z2,
+ ALPHA (LEXP1),ALPHA (LEXP2),
+ CC (LCC1),CC (LCC2),
+ SPHERIC,
+
+ NCGTOA,NCGTOB,
+ NPGTOA,NPGTOB,
+ SHELLA,SHELLB,SHELLP,
+ MXSHELL,
+ XA,YA,ZA,XB,YB,ZB,
+ ATOMIC,EQUALAB,
+ ABX,ABY,ABZ,RNABSQ,
+ SPNORM,
+ NXYZA,NXYZB,NXYZT,
+ NRYA,NRYB,
+ INDEXA,INDEXB,
+ SWAP12,SWAPRS,
+ LEXPA,LEXPB,
+ LCCA,LCCB,
+ LCCSEGA,LCCSEGB,
+ EMPTY )
+
+
C WRITE (*,*) ' Finished set ab '
C WRITE (*,*) ' Index A,B = ',INDEXA,INDEXB
IF (EMPTY) THEN
NBATCH = 0
RETURN
END IF
C
C
C ...enter the cartesian contracted (a|b) kinetic batch
C generation. Set the i and j primitive exponent
C sets and the corresponding exponential prefactors.
C
C
IF (EQUALAB) THEN
NPGTOAB = (NPGTOA*(NPGTOA+1))/2
NCGTOAB = (NCGTOA*(NCGTOA+1))/2
ELSE
NPGTOAB = NPGTOA * NPGTOB
NCGTOAB = NCGTOA * NCGTOB
END IF
IPRIMA = 1
IPRIMB = IPRIMA + NPGTOAB
CALL OED__KIN_SET_IJ_PAIRS
+
+ ( NPGTOA,NPGTOB,NPGTOAB,
+ ATOMIC,EQUALAB,
+ SWAPRS,
+ RNABSQ,
+ PREFACT,
+ ALPHA (LEXPA),ALPHA (LEXPB),
+ SCREEN,
+
+ EMPTY,
+ NIJ,
+ ICORE (IPRIMA),ICORE (IPRIMB),
+ ZCORE (1) )
+
+
IF (EMPTY) THEN
NBATCH = 0
RETURN
END IF
C
C
C ...decide on the primitive [a|b] block size and
C return array sizes and pointers for the primitive
C [a|b] generation. Perform also some preparation
C steps for contraction.
C
C
MEMORY = .FALSE.
CALL OED__KIN_AB_DEF_BLOCKS
+
+ ( ZMAX,
+ NPGTOA,NPGTOB,
+ SHELLA,SHELLB,SHELLP,
+ NIJ,NCGTOAB,
+ NXYZT,
+ L1CACHE,NCTROW,
+ MEMORY,
+
+ NIJBLK,
+ NPSIZE,NCSIZE,NWSIZE,
+ NKIN1D,NOVL1D,
+ MXPRIM,MNPRIM,
+ ZCBATCH,ZPBATCH,ZWORK,
+ ZNORMA,ZNORMB,
+ ZRHOAB,
+ ZEA,ZEB,ZE2AB,
+ ZPAX,ZPAY,ZPAZ,ZPINVHF,ZSCALE,
+ ZKIN1DX,ZKIN1DY,ZKIN1DZ,
+ ZOVL1DX,ZOVL1DY,ZOVL1DZ )
+
+
BLOCKED = NIJBLK .LT. NIJ
CALL OED__KIN_PREPARE_CTR
+
+ ( NCSIZE,
+ NIJ,
+ NPGTOA,NPGTOB,
+ SHELLA,SHELLB,
+ ALPHA (LEXPA),ALPHA (LEXPB),
+ PREFACT,SPNORM,
+ EQUALAB,
+ BLOCKED,
+ ZCORE (1),
+
+ ZCORE (ZNORMA),ZCORE (ZNORMB),
+ ZCORE (ZRHOAB),
+ ZCORE (ZCBATCH) )
+
+
IPUSED = IPRIMB + NPGTOAB
IPSAVE = IPUSED + MNPRIM
IPPAIR = IPSAVE + MXPRIM
C
C
C ...evaluate unnormalized rescaled [a|b] kinetic integrals
C in blocks over ij pairs and add to final contracted
C (a|b) overlap integrals. The keyword REORDER indicates,
C if the primitive [a|b] overlap integrals need to be
C transposed before being contracted.
C
C
REORDER = .TRUE.
DO 1000 NIJBEG = 1,NIJ,NIJBLK
NIJEND = MIN0 (NIJBEG+NIJBLK-1,NIJ)
MIJ = NIJEND - NIJBEG + 1
CALL OED__KIN_AB_PCGTO_BLOCK
+
+ ( NPSIZE,NKIN1D,NOVL1D,
+ ATOMIC,
+ MIJ,NIJ,NIJBEG,NIJEND,
+ NPGTOA,NPGTOB,
+ NXYZA,NXYZB,
+ SHELLA,SHELLB,SHELLP,
+ XA,YA,ZA,XB,YB,ZB,
+ ABX,ABY,ABZ,
+ ALPHA (LEXPA),ALPHA (LEXPB),
+ ICORE (IPRIMA+NIJBEG-1),
+ ICORE (IPRIMB+NIJBEG-1),
+ ZCORE (ZNORMA),ZCORE (ZNORMB),
+ ZCORE (ZRHOAB),
+ ZCORE (ZEA),ZCORE (ZEB),ZCORE (ZE2AB),
+ ZCORE (ZPAX),ZCORE (ZPAY),ZCORE (ZPAZ),
+ ZCORE (ZPINVHF),ZCORE (ZSCALE),
+ ZCORE (ZKIN1DX),ZCORE (ZKIN1DY),ZCORE (ZKIN1DZ),
+ ZCORE (ZOVL1DX),ZCORE (ZOVL1DY),ZCORE (ZOVL1DZ),
+
+ ZCORE (ZPBATCH) )
+
+
C WRITE (*,*) ' Finished ab kinetic pcgto block '
CALL OED__CTR_2INDEX_BLOCK
+
+ ( NPSIZE,NCSIZE,NWSIZE,
+ NXYZT,
+ MIJ,NCGTOAB,
+ NPGTOA,NPGTOB,
+ NCGTOA,NCGTOB,
+ MXPRIM,MNPRIM,
+ CC (LCCA),CC (LCCB),
+ CCBEG (LCCSEGA),CCBEG (LCCSEGB),
+ CCEND (LCCSEGA),CCEND (LCCSEGB),
+ ICORE (IPRIMA+NIJBEG-1),
+ ICORE (IPRIMB+NIJBEG-1),
+ L1CACHE,TILE,NCTROW,
+ EQUALAB,
+ SWAPRS,
+ REORDER,
+ BLOCKED,
+ ICORE (IPUSED),
+ ICORE (IPSAVE),
+ ICORE (IPPAIR),
+ ZCORE (ZPBATCH),
+ ZCORE (ZWORK),
+
+ ZCORE (ZCBATCH) )
+
+
C WRITE (*,*) ' Finished 2 index ctr block '
1000 CONTINUE
C
C
C ...the unnormalized cartesian (a|b) contracted kinetic
C batch is ready. Expand the contraction indices
C (if necessary):
C
C batch (nxyzt,r>=s) --> batch (nxyzt,r,s)
C
C and reorder the contraction index part (if necessary):
C
C batch (nxyzt,r,s) --> batch (nxyzt,1,2)
C
C The array IXOFF (x) indicates the total # of indices
C to the left of x without including the nxyzt-part.
C For the left most IXOFF value it is convenient to
C set it equal to 1 instead of 0. Note, that the IXOFF
C array indicates the true # of indices to the left
C after! the batch has been transposed (see below) and
C can be used as initial values when moving the
C ry-components later during the cartesian -> spherical
C transformation procedure.
C
C Efficient application of the cartesian -> spherical
C transformation requires the batch elements to be
C ordered as:
C
C batch (1,2,nxyzt)
C
C hence we transpose the batch after the reordering.
C
C The space partitioning of the flp array for all of
C these steps will be as follows:
C
C
C | Zone 1 | Zone 2 |
C
C in which Zone 1 and 2 are 2 batches of cartesian
C (a|b) size.
C
C
IXOFF (1) = 1
IXOFF (2) = NCGTO1
NCTR = NCGTO1 * NCGTO2
NBATCH = NCTR * NXYZT
IN = ZCBATCH
OUT = IN + NBATCH
IF (EQUALAB .AND. NCGTOAB.GT.1) THEN
CALL OED__CTR_RS_EXPAND
+
+ ( NXYZT,NCGTOAB,
+ NCGTOA,NCGTOB,
+ ZCORE (IN),
+
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished ctr rs expansion '
TEMP = IN
IN = OUT
OUT = TEMP
END IF
REORDER = SWAP12 .NEQV. SWAPRS
IF (REORDER .AND. NCTR.GT.1) THEN
IF (SWAPRS) THEN
INDEXR = INDEXB
INDEXS = INDEXA
NCGTOR = NCGTOB
NCGTOS = NCGTOA
ELSE
INDEXR = INDEXA
INDEXS = INDEXB
NCGTOR = NCGTOA
NCGTOS = NCGTOB
END IF
CALL OED__CTR_2INDEX_REORDER
+
+ ( NXYZT,NCTR,
+ NCGTOR,NCGTOS,
+ IXOFF (INDEXR),IXOFF (INDEXS),
+ ZCORE (IN),
+
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished ctr reorder '
TEMP = IN
IN = OUT
OUT = TEMP
END IF
IF (NXYZT.GT.1 .AND. NCTR.GT.1) THEN
CALL OED__TRANSPOSE_BATCH
+
+ ( NXYZT,NCTR,
+ TILE,
+ ZCORE (IN),
+
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished transpose batch '
TEMP = IN
IN = OUT
OUT = TEMP
END IF
C
C
C ...enter the cartesian -> spherical transformation or
C cartesian normalization section. After one shell
C is transformed it is moved to its final position.
C This leads to the sequence of events (where ' means
C spherical or cartesian normalization and [] means the
C indices are in positional correspondence):
C
C batch (ij,a,b) --> batch (ij,a,b')
C batch (ij,a,b') --> batch (ij[b'],a)
C batch (ij[b'],a) --> batch (ij[b'],a')
C batch (ij[b'],a') --> batch (ij[a'b'])
C
C
C The space partitioning of the flp array will be
C as follows:
C
C
C | Zone 1 | Zone 2 | Zone 3 |
C
C
C Zone 1 and 2: 2 batches of cartesian (a|b) size
C (set previously)
C
C Zone 3: cart -> spher transformation data
C or
C cartesian normalization factors
C
C
C Determine the memory allocation offsets for the
C cartesian -> spherical transformations or cartesian
C normalizations and generate the transformation
C matrices + associated data for those shells > p-shell.
C The offsets are as follows (x=A,B):
C
C IN = offset for input cartesian (a|b) batch
C OUT = offset for output cartesian (a|b) batch
C
C ZSROTx = offset for x-part transformation matrix
C ISNROWx = offset for # of non-zero XYZ contribution row
C labels for x-part transformation matrix
C ISROWx = offset for non-zero XYZ contribution row
C labels for x-part transformation matrix
C
C
C In case of s- or p-shells no transformation matrix is
C generated, hence if we have s- and/or p-shells, then
C no call to the cartesian -> spherical transformation
C or cartesian normalization routines needs to be done.
C Instead all integrals have to be multiplied by a factor
C SPNORM, which has the following value for each s- and
C p-shell:
C
C For s-type shell = 1
C
C For p-type shell = 2 * norm for s-type
C
C This factor was introduced together with the overall
C prefactor during evaluation of the primitive integrals
C in order to save multiplications.
C
C
ZBASE = MAX (IN,OUT) + NBATCH
IF (SPHERIC) THEN
IF (MXSHELL.GT.1) THEN
CALL OED__XYZ_TO_RY_AB
+
+ ( NXYZA,NXYZB,
+ NRYA,NRYB,
+ SHELLA,SHELLB,
+ 1,ZBASE,
+
+ NROWA,NROWB,
+ NROTA,NROTB,
+ ZSROTA,ZSROTB,
+ ISNROWA,ISNROWB,
+ ISROWA,ISROWB,
+ IUSED,ZUSED,
+ ICORE,ZCORE )
+
+
C WRITE (*,*) ' Finished xyz to ry ab '
ELSE
IUSED = 0
ZUSED = 0
END IF
ELSE
IF (MXSHELL.GT.1) THEN
ZCNORM = ZBASE
CALL OED__CARTESIAN_NORMS
+
+ ( MXSHELL,
+
+ ZCORE (ZCNORM))
+
+
C WRITE (*,*) ' Finished cartesian partial norms '
IUSED = 0
ZUSED = MXSHELL + 1
ELSE
IUSED = 0
ZUSED = 0
END IF
END IF
C
C
C ...do cart -> spher transformation / cart normalization
C (if b > 1):
C
C (ij,a,b) --> (ij,a,b')
C
C
IF (SHELLB.GT.1) THEN
IF (SPHERIC) THEN
CALL OED__SPHERICAL_TRANSFORM
+
+ ( NCTR*NXYZA,
+ NROWB,NXYZB,NRYB,
+ ICORE (ISNROWB),
+ ICORE (ISROWB),
+ ZCORE (ZSROTB),
+ ZCORE (IN),
+
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished sph quart b '
TEMP = IN
IN = OUT
OUT = TEMP
ELSE
CALL OED__NORMALIZE_CARTESIAN
+
+ ( NCTR*NXYZA,
+ NXYZB,
+ SHELLB,
+ ZCORE (ZCNORM),
+
+ ZCORE (IN) )
+
+
C WRITE (*,*) ' Finished normalized cart b '
END IF
END IF
C
C
C ...move transformed b shell (if size > 1):
C
C (ij,a,b') --> (ij[b'],a)
C
C
IF (NRYB.GT.1) THEN
NBATCH = NCTR * NXYZA * NRYB
NOTMOVE = IXOFF (INDEXB)
MOVE = NBATCH / (NOTMOVE * NRYB)
IF (MOVE.GT.1) THEN
CALL OED__MOVE_RY
+
+ ( NBATCH,2,
+ NOTMOVE,MOVE,NRYB,
+ INDEXB,
+ TILE,
+ ZCORE (IN),
+
+ IXOFF,
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished move ry b '
TEMP = IN
IN = OUT
OUT = TEMP
END IF
END IF
C
C
C ...do cart -> spher / cart normalization (if a > 1):
C
C (ij[b'],a) --> (ij[b'],a')
C
C
IF (SHELLA.GT.1) THEN
IF (SPHERIC) THEN
CALL OED__SPHERICAL_TRANSFORM
+
+ ( NCTR*NRYB,
+ NROWA,NXYZA,NRYA,
+ ICORE (ISNROWA),
+ ICORE (ISROWA),
+ ZCORE (ZSROTA),
+ ZCORE (IN),
+
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished sph quart a '
TEMP = IN
IN = OUT
OUT = TEMP
ELSE
CALL OED__NORMALIZE_CARTESIAN
+
+ ( NCTR*NRYB,
+ NXYZA,
+ SHELLA,
+ ZCORE (ZCNORM),
+
+ ZCORE (IN) )
+
+
C WRITE (*,*) ' Finished normalized cart a '
END IF
END IF
C
C
C ...move transformed a shell (if size > 1):
C
C (ij[b'],a') --> (ij[a'b'])
C
C
NBATCH = NCTR * NRYB * NRYA
IF (NRYA.GT.1) THEN
NOTMOVE = IXOFF (INDEXA)
MOVE = NBATCH / (NOTMOVE * NRYA)
IF (MOVE.GT.1) THEN
CALL OED__MOVE_RY
+
+ ( NBATCH,2,
+ NOTMOVE,MOVE,NRYA,
+ INDEXA,
+ TILE,
+ ZCORE (IN),
+
+ IXOFF,
+ ZCORE (OUT) )
+
+
C WRITE (*,*) ' Finished move ry a '
TEMP = IN
IN = OUT
OUT = TEMP
END IF
END IF
C
C
C ...set final pointer to integrals in ZCORE array.
C
C
NFIRST = IN
C
C
C ...ready!
C
C
RETURN
END
|