File: eomccsd_density_uhf.sial.tjw

package info (click to toggle)
aces3 3.0.6-7
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 82,460 kB
  • sloc: fortran: 225,647; ansic: 20,413; cpp: 4,349; makefile: 953; sh: 137
file content (3676 lines) | stat: -rw-r--r-- 83,214 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
#  Copyright (c) 2003-2010 University of Florida
#
#  This program is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  The GNU General Public License is included in this distribution
#  in the file COPYRIGHT.
                  SIAL EOMCCSD_DENSITY_UHF
#
#
#-------------------------------------------------------------------------
#
#
#          ...Declare variables...
#
#
      AOINDEX  mu     = 1, norb
      AOINDEX  nu     = 1, norb
      AOINDEX  lambda = 1, norb
      AOINDEX  sigma  = 1, norb

      MOAINDEX  i = baocc, eaocc
      MOAINDEX  i1= baocc, eaocc
      MOAINDEX  i2= baocc, eaocc

      MOAINDEX  a = bavirt, eavirt
      MOAINDEX  a1= bavirt, eavirt
      MOAINDEX  a2= bavirt, eavirt

      MOBINDEX  j = bbocc, ebocc
      MOBINDEX  j1= bbocc, ebocc
      MOBINDEX  j2= bbocc, ebocc

      MOBINDEX  b = bbvirt, ebvirt
      MOBINDEX  b1= bbvirt, ebvirt
      MOBINDEX  b2= bbvirt, ebvirt

      MOAINDEX  p = baocc, eavirt
      MOAINDEX  p1= baocc, eavirt

      MOBINDEX  q = bbocc, ebvirt
      MOBINDEX  q1= bbocc, ebvirt

      INDEX  jatom    = 1, natoms
      INDEX  kindex26 = 1, 26
      INDEX  kindex12 = 1, 12
      INDEX  indone   = 1, 1

      INDEX  kroot    = 1, 12
      INDEX  indstate = 1, 12
      INDEX  moment   = 1, 3
      INDEX  secmom   = 1, 6
      INDEX  octmom   = 1, 10

      LOCAL  GRDSECM (secmom,indone)
      LOCAL  EXCSECM (secmom,indone)
      LOCAL  GRDQUAD (secmom,indone)
      LOCAL  EXCQUAD (secmom,indone)
      LOCAL  GRDOCTM (octmom,indone)
      LOCAL  EXCOCTM (octmom,indone)

      SERVED  R2AA_VECS (a,i,a1,i1,kroot)
      SERVED  R2BB_VECS (b,j,b1,j1,kroot)
      SERVED  R2AB_VECS (a,i,b ,j ,kroot)

      SERVED  L2AA_VECS (i,a,i1,a1,kroot)
      SERVED  L2BB_VECS (j,b,j1,b1,kroot)
      SERVED  L2AB_VECS (i,a,j ,b ,kroot)

      SERVED  R2AA (a,i,a1,i1)
      SERVED  R2BB (b,j,b1,j1)
      SERVED  R2AB (a,i,b,j)

      SERVED  L2AA (i,a,i1,a1)
      SERVED  L2BB (j,b,j1,b1)
      SERVED  L2AB (i,a,j,b)

      SERVED  A2AA (i,a,i1,a1)
      SERVED  A2BB (j,b,j1,b1)
      SERVED  A2AB (i,a,j,b)

      DISTRIBUTED  R1A_VECS (a,i,kroot)
      DISTRIBUTED  R1B_VECS (b,j,kroot)
      DISTRIBUTED  L1A_VECS (i,a,kroot)
      DISTRIBUTED  L1B_VECS (j,b,kroot)

      DISTRIBUTED  R1A (a,i)
      DISTRIBUTED  R1B (b,j)

      DISTRIBUTED  L1A (i,a)
      DISTRIBUTED  L1B (j,b)

      DISTRIBUTED  A1A (i,a)
      DISTRIBUTED  A1B (j,b)

      DISTRIBUTED  T1A (a,i)
      DISTRIBUTED  T1B (b,j)

      DISTRIBUTED  REE (kindex12,indone)
      DISTRIBUTED  LEE (kindex12,indone)
      TEMP         TEE (kindex12,indone)

      TEMP  TMOM_DATA (kindex26,kindex26)

      SERVED  T2AA (a,i,a1,i1)
      SERVED  T2AB (a,i,b,j)
      SERVED  T2BB (b,j,b1,j1)

      TEMP  tiaia (i,a,i1,a1)
      TEMP  tjbjb (j,b,j1,b1)
      TEMP  tiajb (i,a,j ,b )
      TEMP  taibj (a,i,b ,j )
      TEMP  tjbia (j,b,i ,a )
      TEMP  taiai (a,i,a1,i1)
      TEMP  tbjbj (b,j,b1,j1)

      TEMP  tia  (i,a)
      TEMP  tia2 (i,a)
      TEMP  tia3 (i,a)
      TEMP  tai  (a,i)
      TEMP  tai2 (a,i)
      TEMP  tjb  (j,b)
      TEMP  tjb2 (j,b)
      TEMP  tjb3 (j,b)
      TEMP  tbj  (b,j)
      TEMP  tbj2 (b,j)
      TEMP  tbj3 (b,j)
      TEMP  tii  (i1,i)
      TEMP  tjj  (j1,j)
      TEMP  taa  (a,a1)
      TEMP  taa2 (a,a1)
      TEMP  tbb  (b,b1)
      TEMP  tbb2 (b,b1)

      TEMP  tii1 (i,i1)
      TEMP  tii2 (i,i1)
      TEMP  tjj1 (j,j1)
      TEMP  tjj2 (j,j1)
      TEMP  taa1 (a,a1)
      TEMP  tbb1 (b,b1)

      LOCAL  lai (a,i)
      LOCAL  lbj (b,j)
      LOCAL  lia (i,a)
      LOCAL  ljb (j,b)
      LOCAL  laa (a,a1)
      LOCAL  lbb (b,b1)
      LOCAL  lii (i,i1)
      LOCAL  ljj (j,j1)
      LOCAL  lxx (mu,nu)

      TEMP  txx  (mu,nu)
      TEMP  txx2 (mu,nu)
      TEMP  txx3 (mu,nu)
      TEMP  txi  (mu,i)
      TEMP  txj  (mu,j)
      TEMP  txa  (mu,a)
      TEMP  txb  (mu,b)

      DISTRIBUTED  HBAR_ia (i,a)
      DISTRIBUTED  HBAR_jb (j,b)

      SERVED  VSaiai (p,i,p1,i1)
      SERVED  VSbjbj (q,j,q1,j1)
      SERVED  Vaibj  (p,i,q,j)

      DISTRIBUTED  DENS_VV_A (a,a1)
      DISTRIBUTED  DENS_VV_B (b,b1)
      DISTRIBUTED  DENS_OO_A (i,i1)
      DISTRIBUTED  DENS_OO_B (j,j1)
      DISTRIBUTED  DENS_OV_A (i,a)
      DISTRIBUTED  DENS_OV_B (j,b)
      DISTRIBUTED  DENS_VO_A (a,i)
      DISTRIBUTED  DENS_VO_B (b,j)

      DISTRIBUTED  DENS_INT_OV_A (i,a)
      DISTRIBUTED  DENS_INT_OV_B (j,b)

      DISTRIBUTED  T1L1_OO_A (i,i1)
      DISTRIBUTED  T1L1_OO_B (j,j1)

      DISTRIBUTED  T2L2_OO_A (i,i1)
      DISTRIBUTED  T2L2_OO_B (j,j1)

      DISTRIBUTED  T2L2_VV_A (a,a1)
      DISTRIBUTED  T2L2_VV_B (b,b1)

      DISTRIBUTED  R2L2_OO_A (i,i1)
      DISTRIBUTED  R2L2_OO_B (j,j1)

      DISTRIBUTED  R2L2_VV_A (a,a1)
      DISTRIBUTED  R2L2_VV_B (b,b1)

      DISTRIBUTED  AO_DENS (mu,nu)
      DISTRIBUTED  DHF (mu,nu)

      LOCAL  liaia  (i,a,i1,a1)
      LOCAL  laiai  (a,i,a1,i1)
      LOCAL  laibj  (a,i,b, j )
      LOCAL  liajb  (i,a,j, b )
      LOCAL  laiai2 (a,i,a1,i2)
      LOCAL  laibj2 (a,i1,b,j )
      LOCAL  laiai3 (a,i,a1,i2)
      LOCAL  laibj3 (a,i1,b, j)

      LOCAL  lbjbj  (b,j,b1,j1)
      LOCAL  lbjbj2 (b,j,b1,j2)
      LOCAL  lbjbj3 (b,j,b1,j2)

      SCALAR  ZERO
      SCALAR  ONE
      SCALAR  TWO
      SCALAR  THREE
      SCALAR  ONEHALF
      SCALAR  tmpnuc
      SCALAR  dipnuc
      SCALAR  dipnucx
      SCALAR  dipnucy
      SCALAR  dipnucz
      SCALAR  AMPLTHRESH
      SCALAR  OMEGA
      SCALAR  OMEGA2
      SCALAR  L_OMEGA
      SCALAR  OLD_R0
      SCALAR  R0
      SCALAR  L0
      SCALAR  R0_THRESH
      SCALAR  LOGRIGHT
      SCALAR  GROUNDSTATE
      SCALAR  EXCITESTATE
      SCALAR  LRNORM
      SCALAR  root_thresh
      SCALAR  iroot
      SCALAR  imomcount
      SCALAR  rootcount
      SCALAR  ncount
      SCALAR  norm_thresh
      SCALAR  etemp
      SCALAR  etemp1
      SCALAR  etemp2
      SCALAR  etemp3
      SCALAR  etemp4
      SCALAR  etemp5
      SCALAR  etemp6
      SCALAR  esum
      SCALAR  sum1
      SCALAR  sum2
      SCALAR  sum3
      SCALAR  sum4
      SCALAR  sum5
      SCALAR  sum6
      SCALAR  OSC_STREN
      SCALAR  OSC_STREN1
      SCALAR  OSC_STREN2
      SCALAR  OSC_STREN3
      SCALAR  OSC_STREN_X
      SCALAR  OSC_STREN_Y
      SCALAR  OSC_STREN_Z
      SCALAR  DIP_SCF_X
      SCALAR  DIP_SCF_Y
      SCALAR  DIP_SCF_Z
      SCALAR  DIP_EXC_X
      SCALAR  DIP_EXC_Y
      SCALAR  DIP_EXC_Z
      SCALAR  DIP_GRD_X
      SCALAR  DIP_GRD_Y
      SCALAR  DIP_GRD_Z
      SCALAR  DIP_MOM_X
      SCALAR  DIP_MOM_Y
      SCALAR  DIP_MOM_Z
      SCALAR  DIP_MOM_X_L
      SCALAR  DIP_MOM_Y_L
      SCALAR  DIP_MOM_Z_L
      SCALAR  DIP_MOM_X_R
      SCALAR  DIP_MOM_Y_R
      SCALAR  DIP_MOM_Z_R
      SCALAR  DIPXY
      SCALAR  DIPXZ
      SCALAR  DIPYZ
      SCALAR  POLXX
      SCALAR  POLYY
      SCALAR  POLZZ
      SCALAR  POLXY
      SCALAR  POLXZ
      SCALAR  POLYZ
      SCALAR  POLTOTXX
      SCALAR  POLTOTYY
      SCALAR  POLTOTZZ
      SCALAR  POLTOTXY
      SCALAR  POLTOTXZ
      SCALAR  POLTOTYZ
      SCALAR  SECONDMOM
#
#
#-------------------------------------------------------------------------


#------------------------------------------------------------------------- 
#
#    ------------
      PROC  READ
#    ------------
#
#          ...Create necessary arrays...
#
      CREATE  REE
      CREATE  LEE
      CREATE  HBAR_ia
      CREATE  HBAR_jb

      CREATE  T1A
      CREATE  T1B
      CREATE  R1A_VECS
      CREATE  R1B_VECS
      CREATE  L1A_VECS
      CREATE  L1B_VECS
      CREATE  A1A
      CREATE  A1B

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER

      EXECUTE  LIST_TO_BLOCKS  REE

      EXECUTE  LIST_TO_BLOCKS  R1A_VECS
      EXECUTE  LIST_TO_BLOCKS  R1B_VECS
      EXECUTE  LIST_TO_BLOCKS  R2AA_VECS
      EXECUTE  LIST_TO_BLOCKS  R2BB_VECS
      EXECUTE  LIST_TO_BLOCKS  R2AB_VECS

      EXECUTE  LIST_TO_BLOCKS  HBAR_ia
      EXECUTE  LIST_TO_BLOCKS  HBAR_jb

      EXECUTE  LIST_TO_BLOCKS  T1A
      EXECUTE  LIST_TO_BLOCKS  T1B
      EXECUTE  LIST_TO_BLOCKS  T2AA
      EXECUTE  LIST_TO_BLOCKS  T2AB
      EXECUTE  LIST_TO_BLOCKS  T2BB

      EXECUTE  LIST_TO_BLOCKS  A1A
      EXECUTE  LIST_TO_BLOCKS  A1B
      EXECUTE  LIST_TO_BLOCKS  A2AA
      EXECUTE  LIST_TO_BLOCKS  A2AB
      EXECUTE  LIST_TO_BLOCKS  A2BB

      EXECUTE  LIST_TO_BLOCKS  VSaiai(p,i,p1,i1)
      EXECUTE  LIST_TO_BLOCKS  VSbjbj(q,j,q1,j1)
      EXECUTE  LIST_TO_BLOCKS  Vaibj(p,i,q,j)

     #EXECUTE  LIST_TO_BLOCKS  LEE
     #EXECUTE  LIST_TO_BLOCKS  L1A_VECS
     #EXECUTE  LIST_TO_BLOCKS  L1B_VECS
     #EXECUTE  LIST_TO_BLOCKS  L2AA_VECS
     #EXECUTE  LIST_TO_BLOCKS  L2BB_VECS
     #EXECUTE  LIST_TO_BLOCKS  L2AB_VECS

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER

      EXECUTE READ_LIST_TO_BLOCKS


      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER
#
#
#          ...ready!
#
#
      ENDPROC  READ
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    ---------------------
      PROC  CREATE_ARRAYS
#    ---------------------
#
#
      CREATE  R1A
      CREATE  R1B

      CREATE  L1A
      CREATE  L1B

      CREATE  DENS_VV_A
      CREATE  DENS_VV_B

      CREATE  DENS_OO_A
      CREATE  DENS_OO_B

      CREATE  T1L1_OO_A
      CREATE  T1L1_OO_B

      CREATE  T2L2_OO_A
      CREATE  T2L2_OO_B

      CREATE  T2L2_VV_A
      CREATE  T2L2_VV_B

      CREATE  R2L2_OO_A
      CREATE  R2L2_OO_B

      CREATE  R2L2_VV_A
      CREATE  R2L2_VV_B

      CREATE  DENS_OV_A
      CREATE  DENS_OV_B

      CREATE  DENS_VO_A
      CREATE  DENS_VO_B

      CREATE  DENS_INT_OV_A
      CREATE  DENS_INT_OV_B

      CREATE  AO_DENS
      CREATE  DHF


      EXECUTE  SIP_BARRIER
#
#
#          ...ready!
#
#
      ENDPROC  CREATE_ARRAYS
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    ------------------
      PROC  HF_DENSITY
#    ------------------
#
#
      PARDO  mu, nu
         txx (mu,nu) = 0.0
         PUT  DHF (mu,nu) = txx (mu,nu)
      ENDPARDO  mu, nu
      EXECUTE  SIP_BARRIER

      PARDO mu, nu, i

            txi (nu,i )       = CA (nu,i)
            txx (mu,nu)       = CA (mu,i) * txi (nu,i)

            PUT  DHF (mu,nu) += txx (mu,nu)

      ENDPARDO mu, nu, i

      PARDO mu, nu, j

            txj (nu,j)        = CB (nu,j)
            txx (mu,nu)       = CB (mu,j) * txj (nu,j)

            PUT  DHF (mu,nu) += txx (mu,nu)

      ENDPARDO mu, nu, j

      EXECUTE  SIP_BARRIER
#
#
#          ...ready!
#
#
      ENDPROC  HF_DENSITY
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    ---------------------
      PROC  ZERO_Rk_ARRAY
#    ---------------------
#
#
      PARDO  i, a

         tai (a,i) = 0.0
         PUT  R1A (a,i) = tai (a,i)

      ENDPARDO  i, a

      PARDO  j, b

         tbj (b,j) = 0.0
         PUT  R1B (b,j) = tbj (b,j)

      ENDPARDO  j, b

      PARDO  a, i, a1, i1

         taiai (a,i,a1,i1) = 0.0
         PREPARE  R2AA (a,i,a1,i1) = taiai (a,i,a1,i1)

      ENDPARDO  a, i, a1, i1

      PARDO  b, j, b1, j1

         tbjbj (b,j,b1,j1) = 0.0
         PREPARE  R2BB (b,j,b1,j1) = tbjbj (b,j,b1,j1)

      ENDPARDO  b, j, b1, j1

      PARDO  a, i, b, j

         taibj (a,i,b,j) = 0.0
         PREPARE  R2AB (a,i,b,j) = taibj (a,i,b,j)

      ENDPARDO  a, i, b, j

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER
#
#
#          ...ready!
#
#
      ENDPROC  ZERO_Rk_ARRAY
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    --------------------
      PROC  GET_Rk_ARRAY
#    --------------------
#
#
#          ...Grab an R  array...
#                      k
#
#
      PARDO  a, i
         rootcount = 0
         DO kroot
            GET  R1A_VECS (a,i,kroot)
            rootcount += 1
            IF  rootcount == iroot
                tai (a,i) = R1A_VECS (a,i,kroot)
                PUT  R1A (a,i) = tai (a,i)
            ENDIF
         ENDDO kroot
      ENDPARDO  a, i 

      PARDO  b, j
         rootcount = 0
         DO kroot
            GET  R1B_VECS (b,j,kroot)
            rootcount += 1
            IF  rootcount == iroot
                tbj (b,j) = R1B_VECS (b,j,kroot)
                PUT  R1B (b,j) = tbj (b,j)
            ENDIF
         ENDDO kroot
      ENDPARDO  b, j

      PARDO  a, i, a1, i1
         rootcount = 0
         DO kroot
            REQUEST  R2AA_VECS (a,i,a1,i1,kroot) kroot
            rootcount += 1
            IF  rootcount == iroot
                taiai (a,i,a1,i1) = R2AA_VECS (a,i,a1,i1,kroot)
                PREPARE  R2AA (a,i,a1,i1) = taiai (a,i,a1,i1)
            ENDIF
         ENDDO kroot
      ENDPARDO  a, i, a1, i1

      PARDO  b, j, b1, j1
         rootcount = 0
         DO kroot
            REQUEST  R2BB_VECS (b,j,b1,j1,kroot) kroot
            rootcount += 1
            IF  rootcount == iroot
                tbjbj (b,j,b1,j1) = R2BB_VECS (b,j,b1,j1,kroot)
                PREPARE  R2BB (b,j,b1,j1) = tbjbj (b,j,b1,j1)
            ENDIF
         ENDDO kroot
      ENDPARDO  b, j, b1, j1

      PARDO  a, i, b, j
         rootcount = 0
         DO kroot
            REQUEST  R2AB_VECS (a,i,b,j,kroot) kroot
            rootcount += 1
            IF  rootcount == iroot
                taibj (a,i,b,j) = R2AB_VECS (a,i,b,j,kroot)
                PREPARE  R2AB (a,i,b,j) = taibj (a,i,b,j)
            ENDIF
         ENDDO kroot
      ENDPARDO  a, i, b, j
#
#
#          ...Grab an excitation energy (omega)...
#
#
      rootcount = 0

      DO indone
      DO kindex12

         GET  REE (kindex12,indone)
         tee (kindex12,indone) = REE (kindex12,indone)

         rootcount += 1
         IF rootcount == iroot
            EXECUTE  RETURN_SVAL  tee  OMEGA
         ENDIF

      ENDDO kindex12
      ENDDO indone

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER

      EXECUTE  PRINT_SCALAR  OMEGA
#
#
#          ...ready!
#
#
      ENDPROC  GET_Rk_ARRAY
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#    --------------------
      PROC  COMP_LR_NORM
#    --------------------
#
#     
      LRNORM = 0.0
      esum   = 0.0
      
      PARDO  i, a
         
         GET         R1A (a,i)
         GET         L1A (i,a)
         tai (a,i) = R1A (a,i)
         tia (i,a) = L1A (i,a)
         etemp  = tai (a,i) * tia (i,a)
         esum  += etemp
      
      ENDPARDO  i, a

      PARDO  j, b

         GET         R1B (b,j)
         GET         L1B (j,b)
         tbj (b,j) = R1B (b,j)
         tjb (j,b) = L1B (j,b)
         etemp  = tbj (b,j) * tjb (j,b)
         esum  += etemp

      ENDPARDO  j, b
      
      PARDO  i, a, i1, a1

         REQUEST             R2AA (a,i,a1,i1) i1
         REQUEST             L2AA (i1,a1,i,a) a1
         taiai (a,i,a1,i1) = R2AA (a,i,a1,i1)
         tiaia (i1,a1,i,a) = L2AA (i1,a1,i,a)
         etemp  = taiai (a,i,a1,i1) * tiaia (i1,a1,i,a)
         etemp  = etemp/4.0
         esum  += etemp

      ENDPARDO  i, a, i1, a1

      PARDO  j, b, j1, b1

         REQUEST             R2BB (b,j,b1,j1) j1
         REQUEST             L2BB (j1,b1,j,b) b
         tbjbj (b,j,b1,j1) = R2BB (b,j,b1,j1)
         tjbjb (j1,b1,j,b) = L2BB (j1,b1,j,b)
         etemp  = tbjbj (b,j,b1,j1) * tjbjb (j1,b1,j,b)
         etemp  = etemp / 4.0
         esum  += etemp

      ENDPARDO  j, b, j1, b1

      PARDO  i, a, j, b

         REQUEST           R2AB (a,i,b,j) j
         REQUEST           L2AB (i,a,j,b) b
         taibj (a,i,b,j) = R2AB (a,i,b,j)
         tjbia (j,b,i,a) = L2AB (i,a,j,b)
         etemp  = taibj (a,i,b,j) * tjbia (j,b,i,a)
         esum  += etemp

      ENDPARDO  i, a, j, b

      EXECUTE  SIP_BARRIER   
      EXECUTE  SERVER_BARRIER
         
      COLLECTIVE  LRNORM += esum
         
      EXECUTE SIP_BARRIER
         
      EXECUTE  PRINT_SCALAR  LRNORM
      etemp = LRNORM - norm_thresh
      IF etemp < 0.0
         etemp *= -1.0
      ENDIF
      IF etemp > norm_thresh
         LRNORM  = 1.0 / LRNORM
      ENDIF
      IF etemp < norm_thresh
         LRNORM = 0.0
      ENDIF
      EXECUTE  PRINT_SCALAR  LRNORM
#     
#
#          ...ready!
#
#        
      ENDPROC  COMP_LR_NORM
#-------------------------------------------------------------------------
         

#-------------------------------------------------------------------------
#
#   ------------------
     PROC  AMPL_PRINT
#   ------------------

      AMPLTHRESH = 0.01
      ALLOCATE  lia (*,*)
      ALLOCATE  ljb (*,*)

      EXECUTE  PRINT_SCALAR  ZERO

      PARDO a, i
         GET R1A(a,i)
         lia(i,a)=R1A(a,i)
         EXECUTE c1_print lia AMPLTHRESH
      ENDPARDO a, i

      EXECUTE  PRINT_SCALAR  ZERO

      PARDO b, j
         GET R1B(b,j)
         ljb(j,b)=R1B(b,j)
         EXECUTE c1b_print ljb AMPLTHRESH
      ENDPARDO b, j

      EXECUTE  PRINT_SCALAR  ZERO

      PARDO a, i, a1, i1
         REQUEST R2AA(a,i,a1,i1) i1
         tiaia(i,a,i1,a1)=R2AA(a,i,a1,i1)
         EXECUTE c2aa_print tiaia AMPLTHRESH
      ENDPARDO a, i, a1, i1

      EXECUTE  PRINT_SCALAR  ZERO

      PARDO b, j, b1, j1
         REQUEST R2BB(b,j,b1,j1) j1
         tjbjb(j,b,j1,b1)=R2BB(b,j,b1,j1)
         EXECUTE c2bb_print tjbjb AMPLTHRESH
      ENDPARDO b, j, b1, j1

      EXECUTE  PRINT_SCALAR  ZERO

      PARDO a, i, b, j
         REQUEST R2AB(a,i,b,j) j
         tiajb(i,a,j,b)=R2AB(a,i,b,j)
         EXECUTE c2ab_print tiajb AMPLTHRESH
      ENDPARDO a, i, b, j

      EXECUTE  PRINT_SCALAR  ZERO
#
#
#          ...Print out the LAMBDA arrays for debugging.
#
#
      EXECUTE  PRINT_SCALAR  ZERO

      PARDO a, i
         GET A1A(i,a)
         lia(i,a)=A1A(i,a)
         EXECUTE c1_print lia AMPLTHRESH
      ENDPARDO a, i
      EXECUTE  SIP_BARRIER

      PARDO b, j
         GET A1B(j,b)
         ljb(j,b)=A1B(j,b)
         EXECUTE c1b_print ljb AMPLTHRESH
      ENDPARDO b, j
      EXECUTE  SIP_BARRIER

      PARDO a, i, a1, i1
         REQUEST A2AA(i,a,i1,a1) a1
         tiaia(i,a,i1,a1)=A2AA(i,a,i1,a1)
         EXECUTE c2aa_print tiaia AMPLTHRESH
      ENDPARDO a, i, a1, i1
      EXECUTE  SERVER_BARRIER

      PARDO b, j, b1, j1
         REQUEST A2BB(j,b,j1,b1) b1
         tjbjb(j,b,j1,b1)=A2BB(j,b,j1,b1)
         EXECUTE c2bb_print tjbjb AMPLTHRESH
      ENDPARDO b, j, b1, j1
      EXECUTE  SERVER_BARRIER

      PARDO a, i, b, j
         REQUEST A2AB(i,a,j,b) b
         tiajb(i,a,j,b)=A2AB(i,a,j,b)
         EXECUTE c2ab_print tiajb AMPLTHRESH
      ENDPARDO a, i, b, j
      EXECUTE  SERVER_BARRIER

      DEALLOCATE lia(*,*)
      DEALLOCATE ljb(*,*)
#
#
#          ...ready!
#
#
      ENDPROC  AMPL_PRINT
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#   -----------------
     PROC  PUT_IN_Lk
#   -----------------
#
#
#          ...LAMBDA case first...
#
#
      IF  LOGRIGHT == ONE

         PARDO  a, i
            GET              A1A (i,a)
                 tia (i,a) = A1A (i,a)
            PUT  L1A (i,a) = tia (i,a)
         ENDPARDO  a, i

         PARDO b, j
            GET              A1B (j,b)
                 tjb (j,b) = A1B (j,b)
            PUT  L1B (j,b) = tjb (j,b)
         ENDPARDO b, j

         PARDO a, i, a1, i1
            REQUEST                      A2AA  (i,a,i1,a1) a1
                     tiaia (i,a,i1,a1) = A2AA  (i,a,i1,a1)
            PREPARE  L2AA  (i,a,i1,a1) = tiaia (i,a,i1,a1)
         ENDPARDO a, i, a1, i1

         PARDO b, j, b1, j1
            REQUEST                      A2BB  (j,b,j1,b1) b1
                     tjbjb (j,b,j1,b1) = A2BB  (j,b,j1,b1)
            PREPARE  L2BB  (j,b,j1,b1) = tjbjb (j,b,j1,b1)
         ENDPARDO b, j, b1, j1

         PARDO a, i, b, j
            REQUEST                    A2AB  (i,a,j,b) b
                     tiajb (i,a,j,b) = A2AB  (i,a,j,b)
            PREPARE  L2AB  (i,a,j,b) = tiajb (i,a,j,b)
         ENDPARDO a, i, b, j

         EXECUTE  SIP_BARRIER
         EXECUTE  SERVER_BARRIER

      ENDIF  # LOGRIGHT == ONE #
#
#
#          ...Left eigenvector case second...
#
#
      IF  LOGRIGHT == ZERO
 
#           
#                    
#          Try to find a matching excitation energy!
#        
#
         ncount    = 0
         rootcount = 0                 
         DO indone   
         DO kroot
         
            GET                  LEE (kroot,indone)
            tee (kroot,indone) = LEE (kroot,indone)
            EXECUTE  RETURN_SVAL  tee  L_OMEGA
            etemp = L_OMEGA - OMEGA
            IF etemp < 0.0
               etemp *= -1.0
            ENDIF

            rootcount += 1
            IF etemp < root_thresh
               ncount = rootcount
               EXIT
            ENDIF

         ENDDO kroot
         ENDDO indone

         EXECUTE  SIP_BARRIER

         EXECUTE  PRINT_SCALAR  L_OMEGA
         EXECUTE  PRINT_SCALAR  ncount
#
#
#          We found a matching excitation energy, so grab
#          the corresponding root!
#
# 
         IF ncount > ZERO

            PARDO  a, i
               rootcount = 0
               DO kroot
                  GET  L1A_VECS (i,a,kroot)
                  rootcount += 1
                  IF  rootcount == ncount
                      tia (i,a) = L1A_VECS (i,a,kroot)
                      PUT  L1A (i,a) = tia (i,a)
                      EXIT
                  ENDIF
               ENDDO kroot
            ENDPARDO  a, i

            PARDO  b, j
               rootcount = 0
               DO kroot
                  GET  L1B_VECS (j,b,kroot)
                  rootcount += 1
                  IF  rootcount == ncount
                     tjb (j,b) = L1B_VECS (j,b,kroot)
                     PUT  L1B (j,b) = tjb (j,b)
                     EXIT
                  ENDIF
               ENDDO kroot
            ENDPARDO  b, j
         
            PARDO  a, i, a1, i1
               rootcount = 0
               DO kroot
                  REQUEST  L2AA_VECS (i,a,i1,a1,kroot) kroot
                  rootcount += 1
                  IF  rootcount == ncount
                      tiaia (i,a,i1,a1) = L2AA_VECS (i,a,i1,a1,kroot)
                      PREPARE  L2AA (i,a,i1,a1) = tiaia (i,a,i1,a1)
                      EXIT
                  ENDIF
               ENDDO kroot
            ENDPARDO  a, i, a1, i1

            PARDO  b, j, b1, j1
               rootcount = 0
               DO kroot
                  REQUEST  L2BB_VECS (j,b,j1,b1,kroot) kroot
                  rootcount += 1
                  IF  rootcount == ncount
                     tjbjb (j,b,j1,b1) = L2BB_VECS (j,b,j1,b1,kroot)
                     PREPARE  L2BB (j,b,j1,b1) = tjbjb (j,b,j1,b1)
                     EXIT
                  ENDIF
               ENDDO kroot
            ENDPARDO  b, j, b1, j1

            PARDO  a, i, b, j
               rootcount = 0
               DO kroot
                  REQUEST  L2AB_VECS (i,a,j,b,kroot) kroot
                  rootcount += 1
                  IF  rootcount == ncount
                      tiajb (i,a,j,b) = L2AB_VECS (i,a,j,b,kroot)
                      PREPARE  L2AB (i,a,j,b) = tiajb (i,a,j,b)
                  ENDIF
               ENDDO kroot
            ENDPARDO  a, i, b, j

         ENDIF # ncount > 0
#
#
#          In the event that none of the L excitation energies
#          match the the current R excitation energy, we need
#          to put in R^t as L.
#           
#
         IF ncount == ZERO
            
            EXECUTE  PRINT_SCALAR  ZERO
            EXECUTE  PRINT_SCALAR  ZERO
            EXECUTE  PRINT_SCALAR  ZERO
            EXECUTE  PRINT_SCALAR  ZERO
            EXECUTE  PRINT_SCALAR  ZERO

            PARDO a, i
               GET              R1A (a,i)
                    tia (i,a) = R1A (a,i)
               PUT  L1A (i,a) = tia (i,a)
            ENDPARDO a, i

            PARDO b, j
               GET              R1B (b,j)
                    tjb (j,b) = R1B (b,j)
               PUT  L1B (j,b) = tjb (j,b)
            ENDPARDO  b, j

            PARDO a, i, a1, i1
               REQUEST                      R2AA  (a,i,a1,i1) i1
                        tiaia (i,a,i1,a1) = R2AA  (a,i,a1,i1)
               PREPARE  L2AA  (i,a,i1,a1) = tiaia (i,a,i1,a1)
            ENDPARDO a, i, a1, i1

            PARDO  b, j, b1, j1
               REQUEST                      R2BB  (b,j,b1,j1) j1
                        tjbjb (j,b,j1,b1) = R2BB  (b,j,b1,j1)
               PREPARE  L2BB  (j,b,j1,b1) = tjbjb (j,b,j1,b1)
            ENDPARDO  b, j, b1, j1

            PARDO a, i, b, j
               REQUEST                    R2AB  (a,i,b,j) j
                        tiajb (i,a,j,b) = R2AB  (a,i,b,j)
               PREPARE  L2AB  (i,a,j,b) = tiajb (i,a,j,b)
            ENDPARDO a, i, b, j

         ENDIF # ncount == 0

         EXECUTE  SIP_BARRIER
         EXECUTE  SERVER_BARRIER

      ENDIF  # LOGRIGHT == ZERO #
#
#
#          ...ready!
#
#
      ENDPROC  PUT_IN_Lk
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#    ------------------
      PROC  R0_COMPUTE
#    ------------------
#
#
#    Compute R  due to the formula
#             0
#                 _               -1
#        R  = <0|(H R) |0> * omega
#         0           c
#
#-------------------------------------------------------------------------
#
#
#          ...Compute the contributions...
#
#
      R0 = 0.0

      etemp1 = 0.0
      etemp2 = 0.0
      etemp3 = 0.0
      etemp4 = 0.0
      etemp5 = 0.0
      sum1 = 0.0
      sum2 = 0.0
      sum3 = 0.0
      sum4 = 0.0
      sum5 = 0.0

      PARDO  a, i

         GET  HBAR_ia (i,a)
         GET  R1A     (a,i)
         tai (a,i) = R1A (a,i)
         etemp = HBAR_ia (i,a) * R1A (a,i)
         sum1 += etemp

      ENDPARDO  a, i

      PARDO  b, j

         GET  HBAR_jb (j,b)
         GET  R1B     (b,j)
         etemp = HBAR_jb (j,b) * R1B (b,j)
         sum2 += etemp

      ENDPARDO  b, j

      PARDO  a, a1, i, i1

         REQUEST  R2AA   (a,i,a1,i1) i1
         REQUEST  VSaiai (a,i,a1,i1) i1
         etemp = R2AA (a,i,a1,i1) * VSaiai (a,i,a1,i1)
         sum3 += etemp

      ENDPARDO  a, a1, i, i1

      PARDO  b, b1, j, j1

         REQUEST  R2BB   (b,j,b1,j1) j1
         REQUEST  VSbjbj (b,j,b1,j1) j1
         etemp = R2BB (b,j,b1,j1) * VSbjbj (b,j,b1,j1)
         sum4 += etemp

      ENDPARDO  b, b1, j, j1

      PARDO  a, i, b, j

         REQUEST  R2AB  (a,i,b,j) j
         REQUEST  Vaibj (a,i,b,j) j
         etemp = R2AB (a,i,b,j) * Vaibj (a,i,b,j)
         sum5 += etemp

      ENDPARDO  a, i, b, j

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER

      collective  etemp1 += sum1
      collective  etemp2 += sum2
      collective  etemp3 += sum3
      collective  etemp4 += sum4
      collective  etemp5 += sum5

      etemp3 *= 0.25
      etemp4 *= 0.25

      R0 += etemp1
      R0 += etemp2
      R0 += etemp3
      R0 += etemp4
      R0 += etemp5

      EXECUTE  SIP_BARRIER

      R0      = R0 / OMEGA
      OMEGA2  = TWO / THREE
      OMEGA2 *= OMEGA

      EXECUTE  PRINT_SCALAR  R0
#
#
#          ...ready!
#
#
      ENDPROC  R0_COMPUTE
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#    -----------------------
      PROC  COMPUTE_DENSITY
#    -----------------------
#
#     
#                          -------------------
#                          -                 -
#                          -  ALPHA DENSITY  -
#                          -                 -
#                          -------------------
#
#
#    ===========================================================
#       COMPUTE  OCCUPIED - OCCUPIED  PIECE  TO  THE  DENSITY
#    ===========================================================
#    ALPHA                                                 ALPHA
#    -----                                                 -----
#
#
      PARDO  i, i1

         DO a

            GET  T1A (a,i)
            GET  L1A (i1,a)

            tii (i,i1)  = T1A (a,i) * L1A (i1,a)
            tii (i,i1) *= -1.0
            PUT  T1L1_OO_A (i,i1) = tii (i,i1)

            tii (i,i1) *= R0
            PUT  DENS_OO_A (i,i1) = tii (i,i1)

         ENDDO a

         tii (i,i1) = 0.0
#
#
#          ...Initialize intermediates...
#
#
         PUT  T2L2_OO_A (i,i1) = tii (i,i1)
         PUT  R2L2_OO_A (i,i1) = tii (i,i1)

      ENDPARDO  i, i1

      EXECUTE  SIP_BARRIER
#
#
#          ...L  * T  ...
#              2    2
#
#
      PARDO  a, a1, i2

         DO i
 
            REQUEST  T2AA (a,i,a1,i2) i
 
            DO i1

               REQUEST  L2AA (i1,a,i2,a1) i1

               tii (i,i1)  = L2AA (i1,a,i2,a1) * T2AA (a,i,a1,i2)
               tii (i,i1) *= -0.5
               PUT  T2L2_OO_A (i,i1) += tii (i,i1)

               tii (i,i1) *= R0
               PUT  DENS_OO_A (i,i1) += tii (i,i1)


            ENDDO i1

         ENDDO i

      ENDPARDO  a, a1, i2
#
#
#         ...ALPHA-BETA summation...
#
#
      PARDO  a, b, j

         DO i

            REQUEST  T2AB (a,i,b,j) i

            DO i1

               REQUEST  L2AB (i1,a,j,b) i1

               tii (i,i1)  = L2AB (i1,a,j,b) * T2AB (a,i,b,j)
               tii (i,i1) *= -1.0
               PUT  T2L2_OO_A (i,i1) += tii (i,i1)

               tii (i,i1) *= R0
               PUT  DENS_OO_A   (i,i1) += tii (i,i1)

            ENDDO i1

         ENDDO i

      ENDPARDO  a, b, j
#
#
#           ...The other piece to the right moment density...
#
#                 R1 * A1  +  R2 * A2  +  T1 * R1 * A2
#
      IF  LOGRIGHT == ONE

         PARDO  i, i1

            DO a

               GET  R1A (a,i)
               GET  L1A (i1,a)

               tii  (i,i1)  = R1A (a,i) * L1A (i1,a)
               tii  (i,i1) *= -1.0

               PUT  DENS_OO_A (i,i1) += tii  (i,i1)
               PUT  R2L2_OO_A (i,i1) += tii  (i,i1)

            ENDDO a

         ENDPARDO  i, i1
#
#
#
#
#
         PARDO  a, a1, i2

            ALLOCATE  laiai2 (a,*,a1,i2)
            ALLOCATE  laiai3 (a,*,a1,i2)

            DO i

               REQUEST  R2AA (a,i,a1,i2) i
               laiai3 (a,i,a1,i2)  = R2AA (a,i,a1,i2)
               laiai3 (a,i,a1,i2) *= 0.5
           
               GET  T1A (a,i)
               GET  R1A (a1,i2)
               laiai2 (a,i,a1,i2)  = laiai3 (a,i,a1,i2)
               taiai  (a,i,a1,i2)  = T1A (a,i) ^ R1A (a1,i2)
               laiai2 (a,i,a1,i2) += taiai (a,i,a1,i2)

            ENDDO i

            DO i1

               REQUEST  L2AA (i1,a,i2,a1) i1

               DO i

                  tii (i,i1)  = L2AA (i1,a,i2,a1) * laiai2 (a,i,a1,i2)
                  tii (i,i1) *= -1.0
                  PUT  DENS_OO_A (i,i1) += tii (i,i1)

                  tii (i,i1)  = L2AA (i1,a,i2,a1) * laiai3 (a,i,a1,i2)
                  tii (i,i1) *= -1.0
                  PUT  R2L2_OO_A (i,i1) += tii (i,i1)

               ENDDO i

            ENDDO i1

            DEALLOCATE  laiai2 (a,*,a1,i2)
            DEALLOCATE  laiai3 (a,*,a1,i2)

         ENDPARDO  a, a1, i2
#
#
#          ...ALPHA-BETA summation...
#
#
         PARDO  a, b, j

            ALLOCATE  laibj2 (a,*,b,j)
            ALLOCATE  laibj3 (a,*,b,j)

            DO i
 
               REQUEST  R2AB (a,i,b,j) i
               laibj3 (a,i,b,j) = R2AB(a,i,b,j)

               GET  T1A (a,i)  
               GET  R1B (b,j)
               laibj2 (a,i,b,j)  = laibj3 (a,i,b,j)
               taibj  (a,i,b,j)  = T1A (a,i) ^ R1B (b,j)
               laibj2 (a,i,b,j) += taibj (a,i,b,j)

            ENDDO i

            DO i1

               REQUEST  L2AB (i1,a,j,b) i1

               DO i

                  tii (i,i1)  = L2AB (i1,a,j,b) * laibj2 (a,i,b,j)
                  tii (i,i1) *= -1.0
                  PUT  DENS_OO_A (i,i1) += tii (i,i1)

                  tii (i,i1)  = L2AB (i1,a,j,b) * laibj3 (a,i,b,j)
                  tii (i,i1) *= -1.0
                  PUT  R2L2_OO_A (i,i1) += tii (i,i1)

               ENDDO i

            ENDDO i1

            DEALLOCATE  laibj3 (a,*,b,j)
            DEALLOCATE  laibj2 (a,*,b,j)

         ENDPARDO  a, b, j

      ENDIF  # LOGRIGHT == ONE #
#
#
#
#    ===========================================================
#       COMPUTE  VIRTUAL - VIRTUAL  PIECE  TO  THE  DENSITY
#    ===========================================================
#    ALPHA                                                 ALPHA
#    -----                                                 -----
#
#
#
#
#    ...The following is the T1 * L1 piece...
#
#
      PARDO  a, a1

         DO i

            GET  T1A (a,i)
            GET  L1A (i,a1)

            taa (a,a1)  = T1A (a,i) * L1A (i,a1)
            taa (a,a1) *= R0

            PUT  DENS_VV_A (a,a1) = taa (a,a1)

         ENDDO i
#
#
#          ...Initialize intermediates...
#
#
         taa (a,a1) = 0.0
         PUT  T2L2_VV_A (a,a1) = taa (a,a1)
         PUT  R2L2_VV_A (a,a1) = taa (a,a1)
 
      ENDPARDO  a, a1
         
      EXECUTE  SIP_BARRIER
#
#
#          ...This is the T2 * A2 piece
#
#
      PARDO  a1, i, i1

         DO a

            REQUEST  T2AA (a,i,a1,i1) a

            DO a2

               REQUEST  L2AA (i,a2,i1,a1) a2

               taa (a,a2)  = L2AA (i,a2,i1,a1) * T2AA (a,i,a1,i1)
               taa (a,a2) *= -0.50
               PUT  T2L2_VV_A (a,a2) += taa (a,a2)

               taa (a,a2) *= R0
               taa (a,a2) *= -1.0
               PUT  DENS_VV_A (a,a2) += taa (a,a2)

            ENDDO a2

         ENDDO a

      ENDPARDO  a1, i, i1
#
#
#          ...ALPHA-BETA summation...
#
#
      PARDO  b, j, i

         DO a

            REQUEST  T2AB (a,i,b,j) a

            DO a2

               REQUEST  L2AB (i,a2,j,b) a2

               taa (a,a2)  = L2AB (i,a2,j,b) * T2AB (a,i,b,j)
               taa (a,a2) *= -1.0
               PUT  T2L2_VV_A (a,a2) += taa (a,a2)

               taa (a,a2) *= R0
               taa (a,a2) *= -1.0
               PUT  DENS_VV_A (a,a2) += taa (a,a2)

            ENDDO a2

         ENDDO a

         DEALLOCATE  laibj (*,i,b,j)

      ENDPARDO  b, j, i
#
#
#           ...The other piece to the right moment density...
#
#                 R1 * A1  +  R2 * A2  +  T1 * R1 * A2
#
      IF  LOGRIGHT == ONE

         PARDO  a, a1

            taa (a,a1) = 0.0

            DO i

               GET  R1A (a,i)
               GET  L1A (i,a1)

               taa (a,a1)  = R1A (a,i) * L1A (i,a1)
               PUT  DENS_VV_A (a,a1) += taa (a,a1)

               taa (a,a1) *= -1.0
               PUT  R2L2_VV_A (a,a1) += taa (a,a1)

            ENDDO i

         ENDPARDO  a, a1
#
#
#
#
#
         PARDO  a1, i, i1

            ALLOCATE  laiai  (*,i,a1,i1)
            ALLOCATE  laiai2 (*,i,a1,i1)

            GET  R1A (a1,i1)

            DO a

               GET  T1A (a,i)
               REQUEST  R2AA (a,i,a1,i1) a

               taiai  (a,i,a1,i1)  = T1A (a,i) ^ R1A (a1,i1)
               laiai  (a,i,a1,i1)  = R2AA (a,i,a1,i1)
               laiai  (a,i,a1,i1) *= 0.5
               laiai2 (a,i,a1,i1)  = laiai (a,i,a1,i1)
               laiai  (a,i,a1,i1) += taiai (a,i,a1,i1)

            ENDDO a

            DO a2

               REQUEST  L2AA (i,a2,i1,a1) a2

               DO a

                  taa  (a,a2) = L2AA (i,a2,i1,a1) * laiai  (a,i,a1,i1)
                  PUT  DENS_VV_A (a,a2) += taa  (a,a2)

                  taa2 (a,a2)  = L2AA (i,a2,i1,a1) * laiai2 (a,i,a1,i1)
                  taa2 (a,a2) *= -1.0
                  PUT  R2L2_VV_A (a,a2) += taa2 (a,a2)

               ENDDO a

            ENDDO a2

            DEALLOCATE  laiai  (*,i,a1,i1)
            DEALLOCATE  laiai2 (*,i,a1,i1)

         ENDPARDO  a1, i, i1
#
#
#          ...ALPHA-BETA summation...
#
#
         PARDO  b, j, i

            ALLOCATE  laibj  (*,i,b,j)
            ALLOCATE  laibj2 (*,i,b,j)

            GET  R1B (b,j)

            DO a

               REQUEST  R2AB (a,i,b,j) a
               laibj2 (a,i,b,j) = R2AB (a,i,b,j)

               GET  T1A (a,i)

               laibj (a,i,b,j)  = laibj2 (a,i,b,j)
               taibj (a,i,b,j)  = T1A (a,i) ^ R1B (b,j)
               laibj (a,i,b,j) += taibj (a,i,b,j)

            ENDDO a

            DO a2

               REQUEST  L2AB (i,a2,j,b) a2

               DO a

                  taa  (a,a2) = L2AB (i,a2,j,b) * laibj  (a,i,b,j)
                  PUT  DENS_VV_A (a,a2) += taa  (a,a2)

                  taa2 (a,a2)  = L2AB (i,a2,j,b) * laibj2 (a,i,b,j)
                  taa2 (a,a2) *= -1.0
                  PUT  R2L2_VV_A (a,a2) += taa2 (a,a2)

               ENDDO a

            ENDDO a2

            DEALLOCATE  laibj  (*,i,b,j)
            DEALLOCATE  laibj2 (*,i,b,j)

         ENDPARDO  b, j, i

      ENDIF  # LOGRIGHT == ONE #
#
#
#
#          ------------------------------------------------
#                          !!! IMPORTANT !!!
#          ------------------------------------------------
#
#           The following Occupied - Virtual code computes
#           both the alpha and beta pieces since one needs
#           both to compute the Virtual - Occupied piece.
#
#          ------------------------------------------------
#          ------------------------------------------------
#
#
#    ===========================================================
#       COMPUTE  OCCUPIED - VIRTUAL  PIECE  TO  THE  DENSITY
#    ===========================================================
#    ALPHA                                                 ALPHA
#    -----                                                 -----
#
#
      PARDO  i, a

         GET  L1A (i,a)

         tia  (i,a)  = L1A (i,a)
         tia  (i,a) *= R0
         tia2 (i,a)  = 0.0

         PUT  DENS_OV_A     (i,a) = tia (i,a)
         PUT  DENS_INT_OV_A (i,a) = tia2 (i,a)


      ENDPARDO  i, a

      EXECUTE  SIP_BARRIER
#
#
#
#
#
      IF  LOGRIGHT == ONE

         PARDO  i, a, a1, i1

            GET      R1A  (a1,i1)
            REQUEST  L2AA (i,a,i1,a1) i1
            tia (i,a) = L2AA (i,a,i1,a1) * R1A (a1,i1)
            PUT  DENS_OV_A     (i,a) += tia (i,a)
            PUT  DENS_INT_OV_A (i,a) += tia (i,a)
    
         ENDPARDO  i, a, a1, i1

         PARDO  i, a, b, j

            GET      R1B  (b,j)
            REQUEST  L2AB (i,a,j,b) j
            tia (i,a)  = L2AB (i,a,j,b) * R1B (b,j)
            PUT  DENS_OV_A     (i,a) += tia (i,a)
            PUT  DENS_INT_OV_A (i,a) += tia (i,a)

         ENDPARDO i, a, b, j

      ENDIF  # LOGRIGHT == ONE #
#
#
#
#    ===========================================================
#       COMPUTE  OCCUPIED - VIRTUAL  PIECE  TO  THE  DENSITY
#    ===========================================================
#    BETA                                                   BETA
#    ----                                                   ----
#
#
      PARDO  j, b
            
         GET  L1B (j,b) 

         tjb  (j,b)  = L1B (j,b)
         tjb  (j,b) *= R0 
         tjb2 (j,b)  = 0.0

         PUT  DENS_OV_B     (j,b) = tjb  (j,b)
         PUT  DENS_INT_OV_B (j,b) = tjb2 (j,b)

      ENDPARDO  j, b

      EXECUTE  SIP_BARRIER


      IF  LOGRIGHT == ONE

         PARDO  j, b

            DO b1
               DO j1

                  GET  R1B (b1,j1)
                  REQUEST  L2BB (j,b,j1,b1) j1
                  tjb (j,b) = L2BB (j,b,j1,b1) * R1B (b1,j1)
                  PUT  DENS_OV_B     (j,b) += tjb (j,b)
                  PUT  DENS_INT_OV_B (j,b) += tjb (j,b)

               ENDDO j1
            ENDDO b1

         ENDPARDO  j, b

         PARDO  j, b

            DO a
               DO i

                  GET  R1A (a,i)
                  REQUEST  L2AB (i,a,j,b) i
                  tjb (j,b) = L2AB (i,a,j,b) * R1A (a,i)
                  PUT  DENS_OV_B     (j,b) += tjb (j,b)
                  PUT  DENS_INT_OV_B (j,b) += tjb (j,b)

               ENDDO i
            ENDDO a

         ENDPARDO  j, b

      ENDIF  # LOGRIGHT == ONE #

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER
#
#
#
#    ===========================================================
#       COMPUTE  VIRTUAL - OCCUPIED  PIECE  TO  THE  DENSITY
#    ===========================================================
#    ALPHA                                                 ALPHA
#    -----                                                 -----
#
#
#          ...Evaluate the R0 contribution...
#
#
      PARDO  a, i, i1

            GET  T1A (a,i1)
            GET  T1L1_OO_A (i,i1)
            GET  T2L2_OO_A (i,i1)

            tii (i,i1)  = T1L1_OO_A (i,i1)
            tii (i,i1) += T2L2_OO_A (i,i1)

            tai (a,i)   = T1A (a,i1) * tii (i,i1)

            IF GROUNDSTATE == ONE
               GET  T1A (a,i)
               tai (a,i)  += T1A (a,i)
            ENDIF

            tai (a,i)  *= R0

            PUT  DENS_VO_A (a,i) = tai (a,i)

      ENDPARDO  a, i, i1

      EXECUTE  SIP_BARRIER
#
#
#
#
#
      PARDO  a, a1, i

            GET  T1A (a1,i)
            GET  T2L2_VV_A (a,a1)

            tai (a,i)  = T2L2_VV_A (a,a1) * T1A (a1,i)
            tai (a,i) *= R0

            PUT  DENS_VO_A (a,i) += tai (a,i)

      ENDPARDO  a, a1, i
#
#
#
#
#
      PARDO  a1, i1

         GET  L1A (i1,a1)

         DO a
            DO i
               REQUEST  T2AA (a,i,a1,i1) i
               tai  (a,i)  = T2AA (a,i,a1,i1) * L1A (i1,a1)
               tai  (a,i) *= R0
               PUT  DENS_VO_A (a,i) += tai (a,i)
            ENDDO i
         ENDDO a

      ENDPARDO  a1, i1

      PARDO  b, j

         GET  L1B (j,b)

         DO a
            DO i
               REQUEST  T2AB (a,i,b,j) i
               tai  (a,i)  = T2AB (a,i,b,j) * L1B (j,b)
               tai  (a,i) *= R0
               PUT  DENS_VO_A (a,i) += tai (a,i)
            ENDDO i
         ENDDO a

      ENDPARDO  b, j
#
#
#
#
#
      IF LOGRIGHT == ONE

       PARDO  a1, i1

            GET  DENS_INT_OV_A (i1,a1)
            tia (i1,a1) = DENS_INT_OV_A (i1,a1)

            DO a
               DO i
                  REQUEST  T2AA (a,i,a1,i1) i
                  tai (a,i) = T2AA (a,i,a1,i1) * tia (i1,a1)
                  PUT  DENS_VO_A (a,i) += tai (a,i)
               ENDDO i
            ENDDO a

         ENDPARDO  a1, i1

         PARDO  b, j
      
            GET  DENS_INT_OV_B (j,b)
            tjb (j,b) = DENS_INT_OV_B (j,b)
   
            DO a
               DO i
                  REQUEST  T2AB (a,i,b,j) i
                  tai (a,i)    = T2AB (a,i,b,j) * tjb (j,b)
                  PUT  DENS_VO_A (a,i) += tai (a,i)
               ENDDO i
            ENDDO a
            
         ENDPARDO  b, j
#
#
#
#
#
         PARDO  a1, i1

            GET  DENS_INT_OV_A (i1,a1)
            tia (i1,a1) = DENS_INT_OV_A (i1,a1)

            DO i
               GET  T1A (a1,i)
               tii (i,i1) = T1A (a1,i) * tia (i1,a1)
               DO a
                  GET  T1A (a,i1)
                  tai (a,i)  = T1A (a,i1) * tii (i,i1)
                  tai (a,i) *= -1.0
                  PUT  DENS_VO_A (a,i) += tai (a,i)
               ENDDO a
            ENDDO i

         ENDPARDO  a1, i1
#
#
#
#
#
         PARDO  a1, i1

            GET  L1A (i1,a1)

            DO a
               DO i
                  REQUEST  R2AA (a,i,a1,i1) i
                  tai (a,i) = R2AA (a,i,a1,i1) * L1A (i1,a1)
                  PUT  DENS_VO_A (a,i) += tai (a,i)
               ENDDO i
            ENDDO a

         ENDPARDO  a1, i1

         PARDO  b, j

            GET  L1B (j,b)

            DO a
               DO i
                  REQUEST  R2AB (a,i,b,j) i
                  tai (a,i) = R2AB (a,i,b,j) * L1B (j,b)
                  PUT  DENS_VO_A (a,i) += tai (a,i)
               ENDDO i
            ENDDO a

         ENDPARDO  b, j
# 
#
#
#
#
         PARDO  a, i

            DO a1

               GET  R1A (a1,i)
               GET  T1A (a1,i)
               GET  R2L2_VV_A (a,a1)
               GET  T2L2_VV_A (a,a1)
               tai  (a,i)  = R2L2_VV_A (a,a1) * T1A (a1,i)
               tai2 (a,i)  = T2L2_VV_A (a,a1) * R1A (a1,i)
               tai  (a,i) += tai2 (a,i)
               PUT  DENS_VO_A (a,i) += tai (a,i)

            ENDDO a1

         ENDPARDO  a, i
#
#
#
#
#
         PARDO  a, i

            DO i1

               GET  R1A (a,i1)
               GET  T1A (a,i1)
               GET  R2L2_OO_A (i,i1)
               GET  T2L2_OO_A (i,i1)
               tai  (a,i)  = T1A (a,i1) * R2L2_OO_A (i,i1)
               tai2 (a,i)  = R1A (a,i1) * T2L2_OO_A (i,i1)
               tai  (a,i) += tai2 (a,i)
               PUT  DENS_VO_A (a,i) += tai (a,i)

            ENDDO i1

         ENDPARDO  a, i
#
#
#
#
#
         IF EXCITESTATE == ZERO
            PARDO  a, i
               GET  R1A (a,i)
               tai (a,i) = R1A (a,i)
               PUT  DENS_VO_A (a,i) += tai (a,i)
            ENDPARDO  a, i
         ENDIF

         IF EXCITESTATE == ONE
            PARDO  a, i
               GET  T1A (a,i)
               tai (a,i) = T1A (a,i)
               PUT  DENS_VO_A (a,i) += tai (a,i)
            ENDPARDO  a, i
         ENDIF


      ENDIF  # LOGRIGHT = ONE #

      EXECUTE  SIP_BARRIER
#
#
#     
#                          ------------------
#                          -                -
#                          -  BETA DENSITY  -
#                          -                -
#                          ------------------
#     
#
#
#
#    ===========================================================
#       COMPUTE  OCCUPIED - OCCUPIED  PIECE  TO  THE  DENSITY
#    ===========================================================
#    BETA                                                   BETA
#    ----                                                   ----
#
#
      PARDO  j, j1

         DO b

            GET  T1B (b,j)
            GET  L1B (j1,b)

            tjj (j,j1)  = T1B (b,j) * L1B (j1,b)
            tjj (j,j1) *= -1.0
            PUT  T1L1_OO_B (j,j1) = tjj (j,j1)

            tjj (j,j1) *= R0
            PUT  DENS_OO_B (j,j1) = tjj (j,j1)

         ENDDO b
#
#
#          ...Initialize the intermediates...
#
#
         tjj (j,j1) = 0.0
         PUT  T2L2_OO_B (j,j1) = tjj (j,j1)
         PUT  R2L2_OO_B (j,j1) = tjj (j,j1)

      ENDPARDO  j, j1

      EXECUTE  SIP_BARRIER
#
#
#
#
#
      PARDO  b, b1, j2

         DO j
 
            REQUEST  T2BB (b,j,b1,j2) j
 
            DO j1

               REQUEST  L2BB (j1,b,j2,b1) j1

               tjj (j,j1)  = L2BB (j1,b,j2,b1) * T2BB (b,j,b1,j2)
               tjj (j,j1) *= -0.5
               PUT  T2L2_OO_B (j,j1) += tjj (j,j1)

               tjj (j,j1) *= R0
               PUT  DENS_OO_B (j,j1) += tjj (j,j1)

            ENDDO j1

         ENDDO j

      ENDPARDO  b, b1, j2
#
#
#          ...ALPHA-BETA summation...
#
#
      PARDO  a, b, i

         DO j

            REQUEST  T2AB (a,i,b,j) j

            DO j1

               REQUEST  L2AB (i,a,j1,b) j1

               tjj (j,j1)  = L2AB (i,a,j1,b) * T2AB (a,i,b,j)
               tjj (j,j1) *= -1.0
               PUT  T2L2_OO_B (j,j1) += tjj (j,j1)

               tjj (j,j1) *= R0
               PUT  DENS_OO_B (j,j1) += tjj (j,j1)

            ENDDO j1

         ENDDO j

      ENDPARDO  a, b, i
#
#
#           ...The other piece to the right moment density...
#
#                 R1 * A1  +  R2 * A2  +  T1 * R1 * A2
#
      IF  LOGRIGHT == ONE

         PARDO  j, j1

            tjj (j,j1) = 0.0

            DO b

               GET  R1B (b,j)
               GET  L1B (j1,b)

               tjj (j,j1)  = R1B (b,j) * L1B (j1,b)
               tjj (j,j1) *= -1.0

               PUT  DENS_OO_B (j,j1) += tjj (j,j1)
               PUT  R2L2_OO_B (j,j1) += tjj (j,j1)

            ENDDO b
   
         ENDPARDO  j, j1
#
#
#
#
#
         PARDO  b, b1, j2

            ALLOCATE  lbjbj2 (b,*,b1,j2)
            ALLOCATE  lbjbj3 (b,*,b1,j2)

            DO j

               REQUEST  R2BB (b,j,b1,j2) j
               lbjbj3 (b,j,b1,j2)  = R2BB (b,j,b1,j2)
               lbjbj3 (b,j,b1,j2) *= 0.5
           
               GET  T1B (b,j)
               GET  R1B (b1,j2)
               lbjbj2 (b,j,b1,j2)  = lbjbj3 (b,j,b1,j2)
               tbjbj  (b,j,b1,j2)  = T1B (b,j) ^ R1B (b1,j2)
               lbjbj2 (b,j,b1,j2) += tbjbj (b,j,b1,j2)

            ENDDO j

            DO j1

               REQUEST  L2BB (j1,b,j2,b1) j1

               DO j

                  tjj (j,j1)  = L2BB (j1,b,j2,b1) * lbjbj2 (b,j,b1,j2)
                  tjj (j,j1) *= -1.0
                  PUT  DENS_OO_B (j,j1) += tjj (j,j1)

                  tjj (j,j1) = L2BB (j1,b,j2,b1) * lbjbj3 (b,j,b1,j2)
                  tjj (j,j1) *= -1.0
                  PUT  R2L2_OO_B (j,j1) += tjj (j,j1)

               ENDDO j

            ENDDO j1

            DEALLOCATE  lbjbj2 (b,*,b1,j2)
            DEALLOCATE  lbjbj3 (b,*,b1,j2)

         ENDPARDO  b, b1, j2
#
#
#          ...ALPHA-BETA summation...
#
#
         PARDO  a, b, i

            ALLOCATE  laibj2 (a,i,b,*)
            ALLOCATE  laibj3 (a,i,b,*)

            DO j
 
               REQUEST  R2AB (a,i,b,j) j
               laibj3 (a,i,b,j) = R2AB(a,i,b,j)

               GET  T1B (b,j)  
               GET  R1A (a,i)
               laibj2 (a,i,b,j)  = laibj3 (a,i,b,j)
               taibj  (a,i,b,j)  = T1B (b,j) ^ R1A (a,i)
               laibj2 (a,i,b,j) += taibj (a,i,b,j)

            ENDDO j

            DO j1

               REQUEST  L2AB (i,a,j1,b) j1

               DO j

                  tjj (j,j1)  = L2AB (i,a,j1,b) * laibj2 (a,i,b,j)
                  tjj (j,j1) *= -1.0
                  PUT  DENS_OO_B (j,j1) += tjj (j,j1)

                  tjj (j,j1)  = L2AB (i,a,j1,b) * laibj3 (a,i,b,j)
                  tjj (j,j1) *= -1.0
                  PUT  R2L2_OO_B (j,j1) += tjj (j,j1)

               ENDDO j

            ENDDO j1

            DEALLOCATE  laibj3 (a,i,b,*)
            DEALLOCATE  laibj2 (a,i,b,*)

         ENDPARDO  a, b, i

      ENDIF  # LOGRIGHT == ONE #
#
#
#
#    ===========================================================
#       COMPUTE  VIRTUAL - VIRTUAL  PIECE  TO  THE  DENSITY
#    ===========================================================
#    BETA                                                   BETA
#    ----                                                   ----
#
#
      PARDO  b, b1

         DO j

            GET  T1B (b,j)
            GET  L1B (j,b1)

            tbb (b,b1)  = T1B (b,j) * L1B (j,b1)
            tbb (b,b1) *= R0

            PUT  DENS_VV_B (b,b1) = tbb (b,b1)

         ENDDO j
#
#
#          ...Initialize the intermediates...
#
#
         tbb (b,b1) = 0.0
         PUT  T2L2_VV_B (b,b1) = tbb (b,b1)
         PUT  R2L2_VV_B (b,b1) = tbb (b,b1)

      ENDPARDO  b, b1

      EXECUTE  SIP_BARRIER
#
#
#
#
#
      PARDO  b2, j, j1

         DO b

            REQUEST  T2BB (b,j,b2,j1) b

            DO b1

               REQUEST  L2BB (j,b1,j1,b2) b1

               tbb (b,b1)  = L2BB (j,b1,j1,b2) * T2BB (b,j,b2,j1)
               tbb (b,b1) *= -0.50
               PUT  T2L2_VV_B (b,b1) += tbb (b,b1)

               tbb (b,b1) *= R0
               tbb (b,b1) *= -1.0
               PUT  DENS_VV_B (b,b1) += tbb (b,b1)

            ENDDO b1

         ENDDO b

      ENDPARDO  b2, j, j1
#
#
#          ...ALPHA-BETA summation...
#
#
      PARDO  a, j, i

         DO b

            REQUEST  T2AB (a,i,b,j) b

            DO b1

               REQUEST  L2AB (i,a,j,b1) b1

               tbb (b,b1)  = L2AB (i,a,j,b1) * T2AB (a,i,b,j)
               tbb (b,b1) *= -1.0
               PUT  T2L2_VV_B (b,b1) += tbb (b,b1)

               tbb (b,b1) *= R0
               tbb (b,b1) *= -1.0
               PUT  DENS_VV_B (b,b1) += tbb (b,b1)

            ENDDO b1

         ENDDO b

      ENDPARDO  a, j, i
#
#
#           ...The other piece to the right moment density...
#
#                 R1 * A1  +  R2 * A2  +  T1 * R1 * A2
#
      IF  LOGRIGHT == ONE

         PARDO  b, b1

            tbb (b,b1) = 0.0

            DO j

               GET  R1B (b,j)
               GET  L1B (j,b1)

               tbb (b,b1)  = R1B (b,j) * L1B (j,b1)
               PUT  DENS_VV_B (b,b1) += tbb (b,b1)

               tbb (b,b1) *= -1.0
               PUT  R2L2_VV_B (b,b1) += tbb (b,b1)

            ENDDO j

         ENDPARDO  b, b1
#
#
#
#
#
         PARDO  b1, j, j1

            ALLOCATE  lbjbj  (*,j,b1,j1)
            ALLOCATE  lbjbj2 (*,j,b1,j1)

            GET  R1B (b1,j1)

            DO b

               GET  T1B (b,j)
               REQUEST  R2BB (b,j,b1,j1) b

               tbjbj  (b,j,b1,j1)  = T1B (b,j) ^ R1B (b1,j1)
               lbjbj  (b,j,b1,j1)  = R2BB (b,j,b1,j1)
               lbjbj  (b,j,b1,j1) *= 0.5
               lbjbj2 (b,j,b1,j1)  = lbjbj (b,j,b1,j1)
               lbjbj  (b,j,b1,j1) += tbjbj (b,j,b1,j1)

            ENDDO b

            DO b2

               REQUEST  L2BB (j,b2,j1,b1) b2

               DO b

                  tbb  (b,b2) = L2BB (j,b2,j1,b1) * lbjbj  (b,j,b1,j1)
                  PUT  DENS_VV_B (b,b2) += tbb (b,b2)

                  tbb2 (b,b2)  = L2BB (j,b2,j1,b1) * lbjbj2 (b,j,b1,j1)
                  tbb2 (b,b2) *= -1.0
                  PUT  R2L2_VV_B (b,b2) += tbb (b,b2)

               ENDDO b

            ENDDO b2

            DEALLOCATE  lbjbj  (*,j,b1,j1)
            DEALLOCATE  lbjbj2 (*,j,b1,j1)

         ENDPARDO  b1, j, j1
#
#
#          ...ALPHA-BETA summation...
#
#
         PARDO  a, j, i

            ALLOCATE  laibj  (a,i,*,j)
            ALLOCATE  laibj2 (a,i,*,j)

            GET  R1A (a,i)

            DO b

               GET  T1B (b,j)
               REQUEST  R2AB (a,i,b,j) b
               laibj2 (a,i,b,j) = R2AB (a,i,b,j)

               laibj (a,i,b,j)  = R2AB (a,i,b,j)
               taibj (a,i,b,j)  = R1A (a,i) ^ T1B (b,j)
               laibj (a,i,b,j) += taibj (a,i,b,j)

            ENDDO b

            DO b2

               REQUEST  L2AB (i,a,j,b2) b2

               DO b

                  tbb  (b,b2) = L2AB (i,a,j,b2) * laibj  (a,i,b,j)
                  PUT  DENS_VV_B (b,b2) += tbb  (b,b2)

                  tbb2 (b,b2)  = L2AB (i,a,j,b2) * laibj2 (a,i,b,j)
                  tbb2 (b,b2) *= -1.0
                  PUT  R2L2_VV_B (b,b2) += tbb2 (b,b2)

               ENDDO b

            ENDDO b2

            DEALLOCATE  laibj  (a,i,*,j)
            DEALLOCATE  laibj2 (a,i,*,j)

         ENDPARDO  a, j, i

      ENDIF  # LOGRIGHT = ONE #

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER
#
#
#    ===========================================================
#       COMPUTE  OCCUPIED - VIRTUAL  PIECE  TO  THE  DENSITY
#    ===========================================================
#    BETA                                                   BETA
#    ----                                                   ----
#
#                Remember, this was already computed
#                during the alpha part above.
#    -----------------------------------------------------------
#
#
#
#    ===========================================================
#       COMPUTE  VIRTUAL - OCCUPIED  PIECE  TO  THE  DENSITY
#    ===========================================================
#    BETA                                                   BETA
#    ----                                                   ----
#
#
#          ...Evaluate the R0 contribution...
#
#
      PARDO  b, j, j1

            GET  T1B (b,j1)
            GET  T1L1_OO_B (j,j1)
            GET  T2L2_OO_B (j,j1)

            tjj (j,j1)  = T1L1_OO_B (j,j1)
            tjj (j,j1) += T2L2_OO_B (j,j1)

            tbj (b,j)   = T1B (b,j1) * tjj (j,j1)

            IF GROUNDSTATE == ONE
               GET  T1B (b,j)
               tbj (b,j)  += T1B (b,j)
            ENDIF

            tbj (b,j)  *= R0

            PUT  DENS_VO_B (b,j) = tbj (b,j)

      ENDPARDO  b, j, j1

      EXECUTE  SIP_BARRIER
#
#
#
#
#
      PARDO  b, b1, j

            GET  T1B (b1,j)
            GET  T2L2_VV_B (b,b1)

            tbj (b,j)  = T2L2_VV_B (b,b1) * T1B (b1,j)
            tbj (b,j) *= R0

            PUT  DENS_VO_B (b,j) += tbj (b,j)

      ENDPARDO  b, b1, j
#
#
#
#
#
      PARDO  b1, j1

         GET  L1B (j1,b1)

         DO b
            DO j
               REQUEST  T2BB (b,j,b1,j1) j
               tbj  (b,j)  = T2BB (b,j,b1,j1) * L1B (j1,b1)
               tbj  (b,j) *= R0
               PUT  DENS_VO_B (b,j) += tbj (b,j)
            ENDDO j
         ENDDO b

      ENDPARDO  b1, j1

      PARDO  i, a

         GET  L1A (i,a)

         DO b
            DO j
               REQUEST  T2AB (a,i,b,j) j
               tbj  (b,j)  = T2AB (a,i,b,j) * L1A (i,a)
               tbj  (b,j) *= R0
               PUT  DENS_VO_B (b,j) += tbj (b,j)
            ENDDO j
         ENDDO b

      ENDPARDO  i, a
#
#
#
#
#
      IF LOGRIGHT == ONE

         PARDO  b1, j1

            GET            DENS_INT_OV_B (j1,b1)
            tjb  (j1,b1) = DENS_INT_OV_B (j1,b1)
   
            DO b
               DO j
                  REQUEST  T2BB (b,j,b1,j1) j
                  tbj (b,j) = T2BB (b,j,b1,j1) * tjb (j1,b1)
                  PUT  DENS_VO_B (b,j) += tbj (b,j)
               ENDDO j
            ENDDO b

         ENDPARDO  b1, j1

         PARDO  a, i

            GET          DENS_INT_OV_A (i,a)
            tia  (i,a) = DENS_INT_OV_A (i,a)

            DO b
               DO j
                  REQUEST  T2AB (a,i,b,j) j
                  tbj (b,j)    = T2AB (a,i,b,j) * tia (i,a)
                  PUT  DENS_VO_B (b,j) += tbj (b,j)
               ENDDO j
            ENDDO b

         ENDPARDO  a, i
#
#
#
#
#
         PARDO  b1, j1

            GET            DENS_INT_OV_B (j1,b1)
            tjb  (j1,b1) = DENS_INT_OV_B (j1,b1)

            DO j
               GET  T1B (b1,j)
               tjj (j,j1) = T1B (b1,j) * tjb (j1,b1)
               DO b
                  GET  T1B (b,j1)
                  tbj (b,j)  = T1B (b,j1) * tjj (j,j1)
                  tbj (b,j) *= -1.0
                  PUT  DENS_VO_B (b,j) += tbj (b,j)
               ENDDO b
            ENDDO j

         ENDPARDO  b1, j1
#
#
#
#
#
         PARDO  b1, j1

            GET  L1B (j1,b1)

            DO b
               DO j
                  REQUEST  R2BB (b,j,b1,j1) j
                  tbj (b,j) = R2BB (b,j,b1,j1) * L1B (j1,b1)
                  PUT  DENS_VO_B (b,j) += tbj (b,j)
               ENDDO j
            ENDDO b

         ENDPARDO  b1, j1
#
#
#
#
#
         PARDO  i, a

            GET  L1A (i,a)

            DO b
               DO j
                  REQUEST  R2AB (a,i,b,j) j
                  tbj (b,j) = R2AB (a,i,b,j) * L1A (i,a)
                  PUT  DENS_VO_B (b,j) += tbj (b,j)
               ENDDO j
            ENDDO b

         ENDPARDO  i, a
#
#
#
#
#
         PARDO  b, j

            DO b1
   
               GET  R1B (b1,j)
               GET  T1B (b1,j)
               GET  R2L2_VV_B (b,b1)
               GET  T2L2_VV_B (b,b1)
               tbj  (b,j)  = R2L2_VV_B (b,b1) * T1B (b1,j)
               tbj2 (b,j)  = T2L2_VV_B (b,b1) * R1B (b1,j)
               tbj  (b,j) += tbj2 (b,j)
               PUT  DENS_VO_B (b,j) += tbj (b,j)

            ENDDO b1

         ENDPARDO  b, j
#
#
#
#
#
         PARDO  b, j

            DO j1

               GET  R1B (b,j1)
               GET  T1B (b,j1)
               GET  R2L2_OO_B (j,j1)
               GET  T2L2_OO_B (j,j1)
               tbj  (b,j)  = T1B (b,j1) * R2L2_OO_B (j,j1)
               tbj2 (b,j)  = R1B (b,j1) * T2L2_OO_B (j,j1)
               tbj  (b,j) += tbj2 (b,j)
               PUT  DENS_VO_B (b,j) += tbj (b,j)

            ENDDO j1
   
         ENDPARDO  b, j
#
#
#
#
#
         IF EXCITESTATE == ZERO
            PARDO  b, j
               GET  R1B (b,j)
               tbj (b,j) = R1B (b,j)
               PUT  DENS_VO_B (b,j) += tbj (b,j)
            ENDPARDO  b, j
         ENDIF

         IF EXCITESTATE == ONE
            PARDO  b, j
               GET  T1B (b,j)
               tbj (b,j) = T1B (b,j)
               PUT  DENS_VO_B (b,j) += tbj (b,j)
            ENDPARDO  b, j
         ENDIF

      ENDIF  # LOGRIGHT == ONE #

      EXECUTE  SIP_BARRIER
      EXECUTE  SERVER_BARRIER
#
#
#
#          ...ready!
#
#
      ENDPROC  COMPUTE_DENSITY
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    ---------------------------
      PROC  BACK_TRANS_COMP_DIP
#    ---------------------------
#
#
#          ...Zero out the necessary arrays...
#
#
      PARDO mu, nu
         txx (mu,nu) = 0.0
         PUT  AO_DENS (mu,nu) = txx (mu,nu)
      ENDPARDO  mu, nu

      EXECUTE  SIP_BARRIER
#
#
#          ...Do the transformation...
#
#
#      ...Occupied-occupied alpha...
#
#
      PARDO  i, i1

         GET  DENS_OO_A (i,i1)

         DO mu

            txi  (mu,i1) = DENS_OO_A (i,i1) * CA (mu,i)

            DO nu

               txx  (mu,nu) = txi (mu,i1) * CA (nu,i1)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  i, i1
#
#
#      ...Occupied-occupied beta...
#
#
      PARDO  j, j1

         GET  DENS_OO_B   (j,j1)

         DO mu

            txj  (mu,j1) = DENS_OO_B (j,j1) * CB (mu,j)

            DO nu

               txx  (mu,nu) = txj (mu,j1) * CB (nu,j1)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)
         
            ENDDO nu

         ENDDO mu

      ENDPARDO  j, j1
#
#
#      ...Virtual-Virtual alpha...
#
#
      PARDO  a, a1

         GET  DENS_VV_A (a,a1)

         DO mu

            txa  (mu,a1) = DENS_VV_A (a,a1) * CA (mu,a)

            DO nu

               txx  (mu,nu) = txa (mu,a1) * CA (nu,a1)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  a, a1
#
#
#      ...Virtual-virtual beta...
#
#
      PARDO  b, b1

         GET  DENS_VV_B   (b,b1)

         DO mu

            txb  (mu,b1) = DENS_VV_B (b,b1) * CB (mu,b)

            DO nu

               txx  (mu,nu) = txb (mu,b1) * CB (nu,b1)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  b, b1
#
#
#      ...Virtual-occupied alpha...
#
#
      PARDO  a, i

         GET  DENS_VO_A (a,i)

         DO mu

            txi (mu,i) = DENS_VO_A (a,i) * CA (mu,a)

            DO nu

               txx  (mu,nu) = txi (mu,i) * CA (nu,i)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  a, i
#
#
#      ...Virtual-occupied beta...
#
#
      PARDO  b, j

         GET  DENS_VO_B (b,j)

         DO mu

            txj (mu,j) = DENS_VO_B (b,j) * CB (mu,b)

            DO nu

               txx  (mu,nu) = txj (mu,j) * CB (nu,j)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  b, j
#
#
#      ...Occupied-virtual alpha...
#
#
      PARDO  i, a

         GET  DENS_OV_A   (i,a)

         DO mu

            txa (mu,a) = DENS_OV_A (i,a) * CA (mu,i)

            DO nu

               txx  (mu,nu) = txa (mu,a) * CA (nu,a)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  i, a
#
#
#      ...Occupied-virtual beta...
#
#
      PARDO  j, b

         GET  DENS_OV_B   (j,b)

         DO mu

            txb (mu,b) = DENS_OV_B (j,b) * CB (mu,j)

            DO nu

               txx  (mu,nu) = txb (mu,b) * CB (nu,b)
               PUT  AO_DENS (mu,nu) += txx  (mu,nu)

            ENDDO nu

         ENDDO mu

      ENDPARDO  j, b

      IF GROUNDSTATE == ONE                        # Grab HF Density

         PARDO  mu, nu

            GET                     DHF (mu,nu)
            txx (mu,nu)           = DHF (mu,nu)
            PUT  AO_DENS (mu,nu) += txx (mu,nu)

         ENDPARDO  mu, nu

      ENDIF   #  GROUNDSTATE == ONE  #

      EXECUTE  SIP_BARRIER
#
#
#          ...Contract with X, Y, and Z integrals...
#
#
      etemp1 = 0.0
      etemp2 = 0.0
      etemp3 = 0.0

      sum1 = 0.0
      sum2 = 0.0
      sum3 = 0.0

      PARDO  mu, nu

         GET  AO_DENS (mu,nu)

         txx  (mu,nu) = 0.0
         txx2 (mu,nu) = 0.0
         txx3 (mu,nu) = 0.0

         EXECUTE  RETURN_1ST_MOM  txx   ONE
         EXECUTE  RETURN_1ST_MOM  txx2  TWO
         EXECUTE  RETURN_1ST_MOM  txx3  THREE

         etemp = AO_DENS (mu,nu) * txx  (mu,nu)
         sum1 += etemp

         etemp = AO_DENS (mu,nu) * txx2 (mu,nu)
         sum2 += etemp

         etemp = AO_DENS (mu,nu) * txx3 (mu,nu)
         sum3 += etemp

      ENDPARDO  mu, nu

      EXECUTE  SIP_BARRIER

      COLLECTIVE  etemp1 += sum1
      COLLECTIVE  etemp2 += sum2
      COLLECTIVE  etemp3 += sum3

      EXECUTE  SIP_BARRIER

      etemp1 *= -1.0
      etemp2 *= -1.0
      etemp3 *= -1.0

      DIP_MOM_X = etemp1
      DIP_MOM_Y = etemp2
      DIP_MOM_Z = etemp3

      EXECUTE  SIP_BARRIER
#     
#     
#          ...ready!
#
#
      ENDPROC  BACK_TRANS_COMP_DIP
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#    ------------------------
      PROC  PRINT_OUT_PIECES
#    ------------------------
#
#
#          ...Print the relevant data...
#
#
#
#          ...Alpha Occupied-Occupied...
#
      EXECUTE  PRINT_SCALAR  ZERO

      ALLOCATE  lii (*,*)

      PARDO  i, i1
         GET  DENS_OO_A   (i,i1)
         lii (i,i1) = DENS_OO_A (i,i1)
         EXECUTE  c1_print  lii  AMPLTHRESH
      ENDPARDO  i, i1

      DEALLOCATE  lii (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Beta Occupied-Occupied...
#
      ALLOCATE    ljj (*,*)

      PARDO  j, j1
         GET  DENS_OO_B   (j,j1)
         ljj (j,j1) = DENS_OO_B (j,j1)
         EXECUTE  c1b_print  ljj  AMPLTHRESH
      ENDPARDO  j, j1

      DEALLOCATE  ljj (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Alpha Virtual-Virtual...
#
      ALLOCATE  laa (*,*)

      PARDO  a, a1
         GET  DENS_VV_A   (a,a1)
         laa (a,a1) = DENS_VV_A (a,a1)
         EXECUTE  c1_print  laa  AMPLTHRESH
      ENDPARDO  a, a1

      DEALLOCATE  laa (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Beta Virtual-Virtual...
#
      ALLOCATE  lbb (*,*)

      PARDO  b, b1
         GET  DENS_VV_B   (b,b1)
         lbb (b,b1) = DENS_VV_B (b,b1)
         EXECUTE  c1b_print  lbb  AMPLTHRESH
      ENDPARDO  b, b1

      DEALLOCATE  lbb (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Alpha Occupied-Virtual...
#
      ALLOCATE  lia (*,*)

      PARDO  i, a
         GET  DENS_OV_A   (i,a)
         lia (i,a) = DENS_OV_A (i,a)
         EXECUTE  c1_print  lia  AMPLTHRESH
      ENDPARDO  i, a

      DEALLOCATE  lia (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Beta Occupied-Virtual...
#
      ALLOCATE  ljb (*,*)

      PARDO  j, b
         GET  DENS_OV_B   (j,b)
         ljb (j,b) = DENS_OV_B (j,b)
         EXECUTE  c1b_print  ljb  AMPLTHRESH
      ENDPARDO  j, b

      DEALLOCATE  ljb (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Alpha Virtual-Occupied...
#
      ALLOCATE  lai (*,*)

      PARDO  a, i
         GET  DENS_VO_A   (a,i)
         lai (a,i) = DENS_VO_A (a,i)
         EXECUTE  c1_print  lai  AMPLTHRESH
      ENDPARDO  a, i

      DEALLOCATE  lai (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#
#          ...Beta Virtual-Occupied...
#
      ALLOCATE  lbj (*,*)

      PARDO  b, j
         GET  DENS_VO_B   (b,j)
         lbj (b,j) = DENS_VO_B (b,j)
         EXECUTE  c1b_print  lbj  AMPLTHRESH
      ENDPARDO  b, j

      DEALLOCATE  lbj (*,*)

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  SIP_BARRIER
#     
#     
#          ...ready!
#
#
      ENDPROC  PRINT_OUT_PIECES
#-------------------------------------------------------------------------


#-------------------------------------------------------------------------
#
#    ----------------------
      PROC  PRINT_EOM_DATA
#    ----------------------
#
#
#          ...Print the relevant data...
#
#
      DO kindex26

         IF kindex26 == 1
            etemp = 1.0
            TMOM_DATA (kindex26,kindex26) = OMEGA
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 2
            etemp = 2.0
            TMOM_DATA (kindex26,kindex26) = OSC_STREN
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 3
            etemp = 3.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_X_R
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 4
            etemp = 4.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_X_L
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 5
            etemp = 5.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_X
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 6
            etemp = 6.0
            TMOM_DATA (kindex26,kindex26) = OSC_STREN_X
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 7
            etemp = 7.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Y_R
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 8
            etemp = 8.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Y_L
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 9
            etemp = 9.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Y
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 10
            etemp = 10.0
            TMOM_DATA (kindex26,kindex26) = OSC_STREN_Y
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 11
            etemp = 11.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Z_R
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 12
            etemp = 12.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Z_L
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 13
            etemp = 13.0
            TMOM_DATA (kindex26,kindex26) = DIP_MOM_Z
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 14
            etemp = 14.0
            TMOM_DATA (kindex26,kindex26) = OSC_STREN_Z
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 15
            etemp = 15.0
            TMOM_DATA (kindex26,kindex26) = POLXX
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 16
            etemp = 16.0
            TMOM_DATA (kindex26,kindex26) = POLTOTXX
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 17
            etemp = 17.0
            TMOM_DATA (kindex26,kindex26) = POLYY
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 18
            etemp = 18.0
            TMOM_DATA (kindex26,kindex26) = POLTOTYY
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 19
            etemp = 19.0
            TMOM_DATA (kindex26,kindex26) = POLZZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 20
            etemp = 20.0
            TMOM_DATA (kindex26,kindex26) = POLTOTZZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 21
            etemp = 21.0
            TMOM_DATA (kindex26,kindex26) = POLXY
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 22
            etemp = 22.0
            TMOM_DATA (kindex26,kindex26) = POLTOTXY
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 23
            etemp = 23.0
            TMOM_DATA (kindex26,kindex26) = POLXZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 24
            etemp = 24.0
            TMOM_DATA (kindex26,kindex26) = POLTOTXZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 25
            etemp = 25.0
            TMOM_DATA (kindex26,kindex26) = POLYZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

         IF kindex26 == 26
            etemp = 26.0
            TMOM_DATA (kindex26,kindex26) = POLTOTYZ
            EXECUTE PRINT_EOM_DENS_INFO  TMOM_DATA  etemp
         ENDIF

      ENDDO kindex26
#
#
#          ...ready!
#
#
      ENDPROC  PRINT_EOM_DATA
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    ----------------------
      PROC  PRINT_MOM_DATA
#    ----------------------
#
#
#             Print the relevant data
#
#

#
#
#          ...ready!
#
#
      ENDPROC  PRINT_MOM_DATA
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#
#    -----------------------
      PROC  COMPUTE_MOMENTS
#    -----------------------
#
#
#             Compute the moments!
#
#
      EXECUTE  PRINT_SCALAR  ZERO
      imomcount = 0
      DO indone
      DO secmom
         imomcount += 1

         sum1      = 0.0
         SECONDMOM = 0.0
         PARDO  mu, nu

            txx (mu,nu) = 0.0
            GET  AO_DENS (mu,nu)
            EXECUTE  RETURN_2ND_MOM  txx  imomcount
            etemp  = AO_DENS (mu,nu) * txx (mu,nu)
            sum1  += etemp

         ENDPARDO  mu, nu

         EXECUTE  SIP_BARRIER
         COLLECTIVE  SECONDMOM += sum1
         EXECUTE  SIP_BARRIER

         EXECUTE  PRINT_SCALAR  SECONDMOM
         IF GROUNDSTATE == ONE
            GRDSECM (secmom,indone) = SECONDMOM
         ENDIF

         IF EXCITESTATE == ONE
            EXCSECM (secmom,indone) = SECONDMOM
         ENDIF

      ENDDO secmom
      ENDDO indone
#
#
#          ...ready!
#
#
      ENDPROC  COMPUTE_MOMENTS
#-------------------------------------------------------------------------



#-------------------------------------------------------------------------
#                                                                        #
#                      \--------------------------/                      #
#                      |    BEGIN MAIN PROGRAM    |                      #
#                      /--------------------------\                      #
#                                                                        #
#-------------------------------------------------------------------------
#                                                                        #
#                                                                        #
      ZERO      = 0.0
      ONE       = 1.0
      TWO       = 2.0
      THREE     = 3.0
      ONEHALF   = 0.5
      R0_THRESH = 0.0000001
      root_thresh  = eom_tol
      root_thresh *= 10.0
      norm_thresh  = 0.000001

      ALLOCATE  GRDSECM (*,*)
      ALLOCATE  EXCSECM (*,*)
      ALLOCATE  GRDQUAD (*,*)
      ALLOCATE  EXCQUAD (*,*)

      PARDO  a, i, a1, i1
         tiaia (i,a,i1,a1) = 0.0
         DO kroot
            PREPARE  L2AA_VECS (i,a,i1,a1,kroot)  = tiaia (i,a,i1,a1)
         ENDDO kroot
      ENDPARDO  a, i, a1, i1

      PARDO  b, j, b1, j1
         tjbjb (j,b,j1,b1) = 0.0
         DO kroot
            PREPARE  L2BB_VECS (j,b,j1,b1,kroot) = tjbjb (j,b,j1,b1)
         ENDDO kroot
      ENDPARDO  b, j, b1, j1

      PARDO  a, i, b, j
         tiajb (i,a,j,b) = 0.0
         DO kroot
            PREPARE  L2AB_VECS (i,a,j,b,kroot) = tiajb (i,a,j,b)
         ENDDO kroot
      ENDPARDO  a, i, b, j
#
#
#
#             Read in the necessary arrays from BLOCKDATA and
#             create necessary arrays that are in the loop
#
#
#
      CALL  READ
      CALL  CREATE_ARRAYS
#
#
#
#             Compute pieces for the dipole moment
#
#
#
      CALL  HF_DENSITY

      tmpnuc = 0.0
      DO jatom
         tmpnuc = tmpnuc + 1.0
      ENDDO jatom

      dipnucx = tmpnuc
      dipnucy = dipnucx
      dipnucz = dipnucy

      EXECUTE  NUC_DIPOLE_MOMENT  ONE    dipnucx
      EXECUTE  NUC_DIPOLE_MOMENT  TWO    dipnucy
      EXECUTE  NUC_DIPOLE_MOMENT  THREE  dipnucz

      R0           = 1.0

      LOGRIGHT     = ONE
      CALL  PUT_IN_Lk
      LOGRIGHT     = ZERO

      GROUNDSTATE  = ONE
      CALL  COMPUTE_DENSITY
      CALL  BACK_TRANS_COMP_DIP
#      CALL  PRINT_OUT_PIECES

      DIP_GRD_X  = DIP_MOM_X
      DIP_GRD_Y  = DIP_MOM_Y
      DIP_GRD_Z  = DIP_MOM_Z
      DIP_GRD_X += dipnucx
      DIP_GRD_Y += dipnucy
      DIP_GRD_Z += dipnucz

      EXECUTE  PRINT_SCALAR  ZERO
      EXECUTE  PRINT_SCALAR  DIP_GRD_X
      EXECUTE  PRINT_SCALAR  DIP_GRD_Y
      EXECUTE  PRINT_SCALAR  DIP_GRD_Z

      CALL  COMPUTE_MOMENTS
      GROUNDSTATE = ZERO
      EXECUTE  PRINT_SCALAR  ZERO
#
#
#
#             Begin the loop over states
#
#
#
      POLTOTXX = 0.0
      POLTOTYY = 0.0
      POLTOTZZ = 0.0
      POLTOTXY = 0.0
      POLTOTXZ = 0.0
      POLTOTYZ = 0.0

      iroot = 0
      DO indstate
#
#
#
#             Grab an R1 and an R2 for the computation
#
#                NOTE: If OMEGA is equal to 100,000.00 then that means
#                      that there are no more EOM excitation energies
#
#             Then print the arrays if necessary (debugging purposes)
#
#             Finally, compute an R  value
#                                  0
#
#
#
         iroot += 1
         EXECUTE  PRINT_SCALAR  iroot

         CALL  GET_Rk_ARRAY
 
         IF  OMEGA == 100000.0
            exit                                       # indstate
         ENDIF
 
#         CALL  AMPL_PRINT
 
         CALL  R0_COMPUTE
         OLD_R0 = R0
#
#
#
#             Set the "logic" to compute the Right Transition
#             Density Matrix.  Then put in LAMBDA arrays, then 
#             compute the Right Density
#
#             Then we back transform the density, and compute
#             the transition moments
#
#             NOTE:  One can print out the Density matrix if they want
#
#
#
         LOGRIGHT = ONE

         CALL  PUT_IN_Lk                      # This one puts in LAMBDA
         CALL  COMPUTE_DENSITY
         CALL  BACK_TRANS_COMP_DIP

         DIP_MOM_X_R = DIP_MOM_X
         DIP_MOM_Y_R = DIP_MOM_Y
         DIP_MOM_Z_R = DIP_MOM_Z

#         CALL  PRINT_OUT_PIECES
#
#
#
#             Set the "logic" to compute the Left Transition
#             Density Matrix.  Then put in Lk arrays, then 
#             compute the Right Density
#        
#             Then we back transform the density, and compute
#             the transition moments
#
#             NOTE:  One can print out the Density matrix if they want
#
#
#                                 !!! IMPORTANT !!!
#
#             Temporarily, we will put the transpose of R in for L
#             NOTE: This will rewrite the LAMBDA arrays, for this root
#
#
#
         LOGRIGHT = ZERO
         R0       = 1.0

         CALL  PUT_IN_Lk
         CALL  COMP_LR_NORM
         CALL  COMPUTE_DENSITY
         CALL  BACK_TRANS_COMP_DIP

         DIP_MOM_X_L = DIP_MOM_X
         DIP_MOM_Y_L = DIP_MOM_Y
         DIP_MOM_Z_L = DIP_MOM_Z

#         CALL  PRINT_OUT_PIECES
#
#
#
#             Compute the excited state dipole moment
#
#
#
         LOGRIGHT    = ONE
         R0          = OLD_R0

         EXCITESTATE = ONE
         CALL  COMPUTE_DENSITY

         GROUNDSTATE = ONE
         CALL  BACK_TRANS_COMP_DIP
         GROUNDSTATE = ZERO

#         CALL  PRINT_OUT_PIECES

         DIP_MOM_X *= LRNORM
         DIP_MOM_Y *= LRNORM
         DIP_MOM_Z *= LRNORM
         DIP_EXC_X  = DIP_MOM_X
         DIP_EXC_Y  = DIP_MOM_Y
         DIP_EXC_Z  = DIP_MOM_Z
         DIP_EXC_X += dipnucx
         DIP_EXC_Y += dipnucy
         DIP_EXC_Z += dipnucz

         EXECUTE  PRINT_SCALAR  ZERO
         EXECUTE  PRINT_SCALAR  DIP_EXC_X
         EXECUTE  PRINT_SCALAR  DIP_EXC_Y
         EXECUTE  PRINT_SCALAR  DIP_EXC_Z

         CALL  COMPUTE_MOMENTS
         EXCITESTATE = ZERO
#
#
#
#             Finally, compute the total transition moments,
#             oscillator strengths, electric polarizabilities,
#             total electric polarizabilities, and second
#             moments.  Then print the data.
#
#
#
         DIP_MOM_X  = DIP_MOM_X_R * DIP_MOM_X_L
         DIP_MOM_Y  = DIP_MOM_Y_R * DIP_MOM_Y_L
         DIP_MOM_Z  = DIP_MOM_Z_R * DIP_MOM_Z_L
         DIP_MOM_X *= LRNORM
         DIP_MOM_Y *= LRNORM
         DIP_MOM_Z *= LRNORM

         OSC_STREN_X = OMEGA2 * DIP_MOM_X
         OSC_STREN_Y = OMEGA2 * DIP_MOM_Y
         OSC_STREN_Z = OMEGA2 * DIP_MOM_Z

         OSC_STREN1 = OSC_STREN_X * OSC_STREN_X
         OSC_STREN2 = OSC_STREN_Y * OSC_STREN_Y
         OSC_STREN3 = OSC_STREN_Z * OSC_STREN_Z
         OSC_STREN  = OSC_STREN1
         OSC_STREN += OSC_STREN2
         OSC_STREN += OSC_STREN3

         EXECUTE  SQUARE_ROOT   OSC_STREN  ONEHALF

         DIPXY = DIP_MOM_X_R * DIP_MOM_Y_R
         DIPXZ = DIP_MOM_X_R * DIP_MOM_Z_R
         DIPYZ = DIP_MOM_Y_R * DIP_MOM_Z_R

         POLXX = TWO * DIP_MOM_X
         POLYY = TWO * DIP_MOM_Y
         POLZZ = TWO * DIP_MOM_Z
         POLXY = TWO * DIPXY
         POLXZ = TWO * DIPXZ
         POLYZ = TWO * DIPYZ
         POLXX = POLXX / OMEGA
         POLYY = POLYY / OMEGA
         POLZZ = POLZZ / OMEGA
         POLXY = POLXY / OMEGA
         POLXZ = POLXZ / OMEGA
         POLYZ = POLYZ / OMEGA
         POLTOTXX += POLXX
         POLTOTYY += POLYY
         POLTOTZZ += POLZZ
         POLTOTXY += POLXY
         POLTOTXZ += POLXZ
         POLTOTYZ += POLYZ

         CALL  PRINT_EOM_DATA

#         GROUNDSTATE = ONE
#         CALL  PRINT_MOM_DATA
#         GROUNDSTATE = ZERO
#
#         EXCITESTATE = ONE
#         CALL  PRINT_MOM_DATA
#         EXCITESTATE = ZERO

      ENDDO indstate

      DEALLOCATE  GRDSECM (*,*)
      DEALLOCATE  EXCSECM (*,*)
      DEALLOCATE  GRDQUAD (*,*)
      DEALLOCATE  EXCQUAD (*,*)

      EXECUTE SIP_BARRIER
#
#
#
#          ...ready!
#
#
#    -----------------------------
      ENDSIAL EOMCCSD_DENSITY_UHF
#    -----------------------------
#
#-------------------------------------------------------------------------