1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
subroutine optable_loop_sim(optable, noptable, array_table,
* narray_table,
* index_table, nindex_table,
* segment_table, nsegment_table, block_map_table,
* nblock_map_table,
* scalar_table, nscalar_table, proctab,
* stack_blksizes, block_count, nstacks)
c--------------------------------------------------------------------------
c Simulates the execution of the optable, accumulating a count of
c the number of blocks needed on each stack for each instruction.
c--------------------------------------------------------------------------
implicit none
include 'mpif.h'
include 'interpreter.h'
include 'trace.h'
include 'parallel_info.h'
include 'server_barrier_data.h'
include 'scratchpad.h'
common /load_balance/load_balance
logical load_balance
integer noptable, narray_table, nindex_table, nsegment_table
integer nblock_map_table, nscalar_table
integer optable(loptable_entry,noptable)
integer array_table(larray_table_entry,narray_table)
integer index_table(lindex_table_entry,nindex_table)
integer segment_table(lsegment_table_entry,nsegment_table)
integer block_map_table(lblock_map_entry,nblock_map_table)
integer proctab(2,*)
double precision scalar_table(nscalar_table)
integer nstacks
integer stack_blksizes(nstacks)
integer block_count(nstacks,noptable)
integer ierr
integer iop, iopsave, iblk
integer index, result_array, result_type
integer opcode
integer i, j, k, n
integer running_count(nstacks)
integer level, type, lop, lopbegin, lopend
integer max_level
parameter (max_level = 100)
integer current(nstacks, max_level)
integer instr(max_level)
integer matchind(mx_array_index)
integer save_ind(mx_array_index,narray_table)
integer ind(mx_array_index), seg(mx_array_index)
integer stack, which_stack
integer array, nind, numblks, iblock_map, proc
integer val1, val2
integer allocate_table(narray_table)
integer instruction
integer jseg, iseg(mx_array_index)
integer iblock, nseg(mx_array_index), bseg(mx_array_index),
* eseg(mx_array_index), iwild(mx_array_index),
* maxrange(mx_array_index), maxrange_seg(mx_array_index)
integer nblock, nwild
integer start_op, end_op
integer lookup, block_map_lookup
logical debug
logical countit
logical partial_create
call mpi_comm_size(mpi_comm_world, nprocs, ierr)
call mpi_comm_rank(mpi_comm_world, me, ierr)
trace = .false.
load_balance = .false.
debug = .false.
simulator = .true.
do i = 1, narray_table
allocate_table(i) = 0
enddo
do i = 1, nstacks
running_count(i) = 0
enddo
c running_count(nstacks) = 3 ! scratch arrays for contraction routines.
c--------------------------------------------------------------------------
c Clear the scratchpad areas.
c--------------------------------------------------------------------------
do i = 1, mx_scratchpad
scratchpad(i) = 0
enddo
do i = 1, mx_fscratchpad
fscratchpad(i) = 0.
enddo
c--------------------------------------------------------------------------
c Save original array table indices.
c--------------------------------------------------------------------------
do i = 1, narray_table
do j = 1, mx_array_index
save_ind(j,i) = array_table(c_index_array1+j-1,i)
enddo
enddo
c--------------------------------------------------------------------------
c Main processing loop.
c--------------------------------------------------------------------------
start_op = 0
end_op = noptable
iop = 1
1000 continue
opcode = optable(c_opcode, iop)
iopsave = iop
current_op = iop ! save operation pointer for debugging purposes.
current_line = optable(c_lineno,iop)
if (opcode .eq. call_op) then
call handle_call(optable, noptable, proctab, debug,
* start_op, end_op, iop)
else if (opcode .eq. return_op) then
call handle_return(optable, noptable, debug,
* start_op, end_op, iop)
else if (opcode .eq. go_to_op) then
call handle_goto(optable, noptable, debug,
* start_op, end_op, iop)
else if (opcode .eq. do_op .or.
* opcode .eq. enddo_op) then
c call doloop(optable, noptable, iop, index_table,
c * nindex_table, array_table, narray_table,
c * block_map_table, segment_table,
c * nsegment_table,
c * debug, .false.,
c * start_op, end_op)
else if (opcode .eq. pardo_op .or.
* opcode .eq. endpardo_op) then
c if (load_balance) then
c call pardo_loadb(optable, noptable, iop, index_table,
c * nindex_table, array_table, narray_table,
c * block_map_table,
c * comm, debug, .false.,
c * start_op, end_op)
c else
c call pardo_loop(optable, noptable, iop, index_table,
c * nindex_table, array_table, narray_table,
c * block_map_table,
c * comm, debug, .false.,
c * start_op, end_op)
c endif
else if (opcode .eq. exit_op) then
c call handle_exit(optable, noptable, debug,
c * array_table, narray_table,
c * index_table, nindex_table,
c * block_map_table,
c * start_op, end_op, iop)
else if (opcode .eq. cycle_op) then
c call handle_cycle(optable, noptable, debug,
c * start_op, end_op, iop)
endif
if (iop .gt. noptable) go to 2000
if (iopsave .ne. iop) then
go to 1000
endif
if (iop .lt. start_op .or.
* iop .gt. end_op) go to 900
current_op = iop ! save operation pointer for debugging purposes.
current_line = optable(c_lineno,iop)
do i = 1, nstacks
block_count(i,iop) = running_count(i)
enddo
c---------------------------------------------------------------------------
c Check for the following instructions: CREATE, DELETE, ALLOCATE,
c or DEALLOCATE.
c---------------------------------------------------------------------------
partial_create = .false.
if (optable(c_opcode,iop) .eq. create_op .or.
* optable(c_opcode,iop) .eq. delete_op) then
c---------------------------------------------------------------------------
c Determine the number of blocks for this array on the current processor.
c---------------------------------------------------------------------------
array = optable(c_result_array,iop)
iblock_map = array_table(c_block_map,array)
numblks = array_table(c_numblks,array)
nind = array_table(c_nindex,array)
do i = 1, nind
ind(i) = array_table(c_index_array1+i-1,array)
enddo
c---------------------------------------------------------------------------
c Is this a partial create/delete?
c---------------------------------------------------------------------------
partial_create = .false.
do k = 1, nind
if (optable(c_ind1+k-1,iop) .eq.
* wildcard_indicator) then
partial_create = .true.
endif
enddo
if (partial_create) go to 500
c---------------------------------------------------------------------------
c Loop over the number of blocks.
c---------------------------------------------------------------------------
do i = 1, numblks
proc = block_map_table(c_processor,iblock_map+i-1)
if (proc .eq. my_company_rank) then
c----------------------------------------------------------------------------
c Determine blocksize.
c----------------------------------------------------------------------------
n = 1
do j = 1, nind
seg(j) = block_map_table(c_block_map_seg+j-1,
* iblock_map+i-1)
index_table(c_current_seg,ind(j)) = seg(j)
call get_index_segment(ind(j), seg(j),
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
if (val1 .le. 0 .or. val2 .le. 0) go to 900
n = n * (val2 - val1 + 1)
enddo
c----------------------------------------------------------------------------
c Determine the proper stack.
c----------------------------------------------------------------------------
stack = which_stack(stack_blksizes, nstacks, n)
c---------------------------------------------------------------------------
c Increment (or decrement) the running block count.
c---------------------------------------------------------------------------
if (optable(c_opcode,iop) .eq. create_op) then
block_count(stack,iop) =
* block_count(stack,iop)+1
else
block_count(stack,iop) =
* block_count(stack,iop) - 1
endif
endif
enddo
endif ! create_op/delete_op
500 continue
if (optable(c_opcode,iop) .eq. allocate_op .or.
* (optable(c_opcode,iop) .eq. create_op .and.
* partial_create)) then
c----------------------------------------------------------------------------
c Since we don't know the actual distribution of the non-wildcard indices
c until runtime, we cannot directly calculate the size of each block.
c Instead, we calculate the number of wildcard blocks, and use the maximum
c size of each non-wildcard index to estimate an upper limit of the
c size of each block.
c----------------------------------------------------------------------------
array = optable(c_result_array,iop)
allocate_table(array) = iop ! save the instruction for dealloc
nblock = 1
nwild = 0
nind = 0
do i = 1, mx_array_index
if (array_table(c_index_array1+i-1,array) .gt. 0) then
nind = nind + 1
ind(i) = array_table(c_index_array1+i-1,array)
nseg(i) = index_table(c_nsegments, ind(i))
bseg(i) = index_table(c_bseg, ind(i))
eseg(i) = index_table(c_eseg, ind(i))
if (optable(c_ind1+i-1,iop) .eq.
* wildcard_indicator) then
nblock = nblock*nseg(i)
nwild = nwild + 1
iwild(nwild) = i
iseg(iwild(nwild)) = bseg(iwild(nwild))
endif
endif
enddo
do j = 1, nind
maxrange(j) = 0
maxrange_seg(j) = 0
do jseg = bseg(j), eseg(j)
call get_index_segment(ind(j),jseg,
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
if (val1 .le. 0 .and. val2 .le. 0) go to 900
n = val2 - val1 + 1
if (n .gt. maxrange(j)) then
maxrange(j) = n
maxrange_seg(j) = jseg
endif
enddo
enddo
do iblock = 1, nblock
c--------------------------------------------------------------------------
c Determine the blocksize. First loop over the non-wildcard indices,
c using the maxrange for the size of each of their segments.
c--------------------------------------------------------------------------
n = 1
do i = 1, nind
if (optable(c_ind1+i-1,iop) .ne.
* wildcard_indicator) then
n = n * maxrange(i)
seg(i) = maxrange_seg(i)
endif
enddo
c---------------------------------------------------------------------------
c Next, loop over the wildcard indices, determining the actual segment
c size for the next block.
c---------------------------------------------------------------------------
do i = 1, nwild
call get_index_segment(ind(iwild(i)),
* iseg(iwild(i)),
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
n = n * (val2 - val1 + 1)
seg(i) = iseg(iwild(i))
enddo
c--------------------------------------------------------------------------
c Determine the stack on which to place the block.
c--------------------------------------------------------------------------
stack = which_stack(stack_blksizes, nstacks, n)
c---------------------------------------------------------------------------
c Adjust the block count for the stack.
c---------------------------------------------------------------------------
if (partial_create) then
c---------------------------------------------------------------------------
c Only count it if the block_map_table indicates the block resides on
c this processor.
c---------------------------------------------------------------------------
lookup = block_map_lookup(seg, nind, array,
* array_table(1,array),
* index_table, nindex_table)
proc = block_map_table(c_processor,lookup)
if (proc .eq. my_company_rank)
* block_count(stack,iop) =
* block_count(stack,iop) + 1
else
block_count(stack,iop) =
* block_count(stack,iop) + 1
endif
c--------------------------------------------------------------------------
c Increment the "wildcard" segments.
c--------------------------------------------------------------------------
if (nwild .gt. 0)
* iseg(iwild(1)) = iseg(iwild(1)) + 1
do i = 2, nwild
if (iseg(iwild(i-1)) .le.
* eseg(iwild(i-1))) go to 100
iseg(iwild(i-1)) = bseg(iwild(i-1))
iseg(iwild(i)) = iseg(iwild(i)) + 1
enddo
100 continue
enddo
else if (optable(c_opcode,iop) .eq. deallocate_op .or.
* (optable(c_opcode,iop) .eq. delete_op .and.
* partial_create) ) then
c---------------------------------------------------------------------------
c Deallocate instruction: Wildcard indices are not encoded into the
c deallocate instruction, they must be decoded from the instruction that
c last allocated the array.
c---------------------------------------------------------------------------
array = optable(c_result_array,iop)
instruction = allocate_table(array)
allocate_table(array) = 0
nblock = 1
nwild = 0
nind = 0
do i = 1, mx_array_index
if (array_table(c_index_array1+i-1,array) .gt. 0) then
nind = nind + 1
ind(i) = array_table(c_index_array1+i-1,array)
nseg(i) = index_table(c_nsegments, ind(i))
bseg(i) = index_table(c_bseg, ind(i))
eseg(i) = index_table(c_eseg, ind(i))
if (optable(c_ind1+i-1,instruction) .eq.
* wildcard_indicator) then
nblock = nblock*nseg(i)
nwild = nwild + 1
iwild(nwild) = i
iseg(iwild(nwild)) = bseg(iwild(nwild))
endif
endif
enddo
do j = 1, nind
maxrange(j) = 0
maxrange_seg(j) = 0
do jseg = bseg(j), eseg(j)
call get_index_segment(ind(j),jseg,
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
if (val1 .le. 0 .and. val2 .le. 0) go to 900
n = val2 - val1 + 1
if (n .gt. maxrange(j)) then
maxrange(j) = n
maxrange_seg(j) = jseg
endif
enddo
enddo
do iblock = 1, nblock
c--------------------------------------------------------------------------
c Determine the blocksize. First loop over the non-wildcard indices,
c using the maxrange for the size of each of their segments.
c--------------------------------------------------------------------------
n = 1
do i = 1, nind
if (optable(c_ind1+i-1,instruction) .ne.
* wildcard_indicator) then
n = n * maxrange(i)
seg(i) = maxrange_seg(i)
endif
enddo
c---------------------------------------------------------------------------
c Next, loop over the wildcard indices, determining the actual segment
c size for the next block.
c---------------------------------------------------------------------------
do i = 1, nwild
call get_index_segment(ind(iwild(i)),
* iseg(iwild(i)),
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
n = n * (val2 - val1 + 1)
seg(i) = iseg(iwild(i))
enddo
c--------------------------------------------------------------------------
c Determine the stack on which to place the block.
c--------------------------------------------------------------------------
stack = which_stack(stack_blksizes, nstacks, n)
c---------------------------------------------------------------------------
c Adjust the block count for the stack.
c---------------------------------------------------------------------------
if (partial_create) then
c---------------------------------------------------------------------------
c Only delete it if the block_map_table indicates the block resides on
c this processor.
c---------------------------------------------------------------------------
lookup = block_map_lookup(seg, nind, array,
* array_table(1,array),
* index_table, nindex_table)
proc = block_map_table(c_processor,lookup)
if (proc .eq. my_company_rank)
* block_count(stack,iop) =
* block_count(stack,iop) - 1
else
block_count(stack,iop) =
* block_count(stack,iop) - 1
endif
c--------------------------------------------------------------------------
c Increment the "wildcard" segments.
c--------------------------------------------------------------------------
if (nwild .gt. 0)
* iseg(iwild(1)) = iseg(iwild(1)) + 1
do i = 2, nwild
if (iseg(iwild(i-1)) .le.
* eseg(iwild(i-1))) go to 200
iseg(iwild(i-1)) = bseg(iwild(i-1))
iseg(iwild(i)) = iseg(iwild(i)) + 1
enddo
200 continue
enddo
endif
do i = 1, nstacks
running_count(i) = block_count(i,iop)
enddo
900 continue
iop = iop + 1
c print *,'AT 900: iop, start_op, end_op = ',
c * iop, start_op, end_op
if (start_op .ne. 0 .or. iop .le. noptable) then
if (iop .gt. end_op) iop = start_op
c print *,' BRANCH TO iop = ',iop
if (iop .le. 0 .or. iop .gt. noptable) then
print *,'ERROR: iop out of range: iop = ',iop
call abort_job()
endif
go to 1000
endif
2000 continue
c---------------------------------------------------------------------------
c Refine our block estimate by analyzing each loop, attempting to
c add blocks that are brought into and out of scope during loop execution.
c---------------------------------------------------------------------------
do i = 1, max_level
instr(i) = 0
do j = 1, nstacks
current(j,i) = 0
running_count(j) = 0
enddo
enddo
level = 1
do iop = 1, noptable
opcode = optable(c_opcode,iop)
current_op = iop
current_line = optable(c_lineno, iop)
if (opcode .eq. pardo_op .or.
* opcode .eq. do_op) then
c---------------------------------------------------------------------------
c Increase the loop level and define the current number of blocks.
c---------------------------------------------------------------------------
level = level + 1
if (level .gt. max_level) then
print *,'Error: Loop nesting is > ',max_level,
* ' levels.'
call abort_job()
endif
do j = 1, nstacks
current(j,level) = 0
enddo
instr(level) = iop ! save beginning instruction number
c--------------------------------------------------------------------------
c The running count for the new loop is the sum of the newly
c created blocks from all previous levels.
c--------------------------------------------------------------------------
do j = 1, nstacks
running_count(j) = 0
do i = 1, level - 1
running_count(j) =
* running_count(j) + current(j,i)
enddo
enddo
else if (opcode .eq. enddo_op .or.
* opcode .eq. endpardo_op) then
c---------------------------------------------------------------------------
c Move back one loop level.
c---------------------------------------------------------------------------
level = level - 1
if (level .lt. 1) then
print *,'Error: Loop nesting level < 1 detected.'
call abort_job()
endif
c---------------------------------------------------------------------------
c Compute a new running count.
c---------------------------------------------------------------------------
do j = 1, nstacks
running_count(j) = 0
do i = 1, level
running_count(j) = running_count(j) + current(j,i)
enddo
enddo
else
c---------------------------------------------------------------------------
c Bypass checking logic for logical instructions.
c---------------------------------------------------------------------------
if (opcode .eq. jz_op .or.
* opcode .eq. go_to_op .or.
* opcode .eq. call_op .or.
* opcode .eq. destroy_op) go to 2300
if (opcode .ge. sp_add_op .and.
* opcode .le. sp_ldindex_op) go to 2300
if (opcode .ge. fl_add_op .and.
* opcode .le. fl_load_value_op) go to 2300
if (opcode .eq. sp_ldi_sym_op) go to 2300
c---------------------------------------------------------------------------
c Does this instruction create a temp result block?
c---------------------------------------------------------------------------
array = optable(c_result_array,iop)
if (array .gt. narray_table) then
print *,'ARRAY OUT OF BOUNDS: ',array,' iop ',
* iop,' op ',(optable(j,iop),j=1,loptable_entry)
call abort_job()
endif
type = array_table(c_array_type,array)
if (opcode .eq. reindex_op) then
do i = 1, mx_array_index
ind(i) = optable(c_ind1+i-1,iop)
enddo
call set_effective_indices(array_table(1,array),
* ind)
endif
if (opcode .ne. reindex_op .and. array .ne. 0 ) then
if (type .eq. temp_array .or.
* type .eq. served_array) then
c---------------------------------------------------------------------------
c The current instruction results in creation of a result block.
c Determine the maximum possible size of the block, and increment the
c corresponding stack count.
c---------------------------------------------------------------------------
nind = 0
do i = 1, mx_array_index
if (array_table(c_index_array1+i-1,array) .gt.
* 0) then
nind = nind + 1
ind(i) = array_table(c_index_array1+i-1,array)
if (ind(i) .gt. nindex_table) then
print *,'Task ',me,' INDEX OUT OF RANGE ',
* ind(i),' iop ',iop,
* ' op ',(optable(j,iop),j=1,loptable_entry)
print *,'Array ',array,' type ',type
call abort_job()
endif
nseg(i) = index_table(c_nsegments, ind(i))
bseg(i) = index_table(c_bseg, ind(i))
eseg(i) = index_table(c_eseg, ind(i))
endif
enddo
c---------------------------------------------------------------------------
c Check all previous instructions at the current "level" to see if this
c array and set of indices has already been used as a result. If so, we
c need not count it.
c----------------------------------------------------------------------------
countit = .true.
do j = 1, nind
matchind(j) = 0
enddo
lopbegin = instr(level)
if (level .gt. 1) then
lopbegin = instr(2) ! go through all nested loops.
endif
lopend = iop-1
if (optable(c_opcode,lopend) .eq. reindex_op .and.
* optable(c_result_array,lopend) .eq. array)
* lopend = lopend - 1
do 2100 lop = lopbegin, lopend
if (optable(c_result_array,lop) .eq. array) then
if (optable(c_opcode,lop) .eq. reindex_op) then
c--------------------------------------------------------------------------
c Save indices from the "reindex" instruction.
c--------------------------------------------------------------------------
do j = 1, nind
matchind(j) = optable(c_ind1+j-1,lop)
enddo
go to 2100
endif
do j = 1, nind
if (matchind(j) .ne. ind(j)) then
go to 2100 ! try next instruction
endif
enddo
countit = .false. ! got a match, so do not count it
go to 2200
endif
2100 continue
2200 continue
if (countit) then
c----------------------------------------------------------------------------
c Find the largest possible block with these indices.
c----------------------------------------------------------------------------
n = 1
do j = 1, nind
maxrange(j) = 0
do jseg = bseg(j), eseg(j)
call get_index_segment(ind(j),jseg,
* segment_table, nsegment_table,
* index_table, nindex_table,
* val1, val2)
maxrange(j) = max(maxrange(j),(val2-val1+1))
enddo
n = n * maxrange(j)
enddo
c--------------------------------------------------------------------------
c Determine the stack on which to place the block.
c--------------------------------------------------------------------------
stack = which_stack(stack_blksizes, nstacks, n)
c---------------------------------------------------------------------------
c Adjust the block count for the stack.
c---------------------------------------------------------------------------
current(stack,level) = current(stack,level) + 1
running_count(stack) = running_count(stack) + 1
c----------------------------------------------------------------------------
c Add an additional block to account for prefetching the REQUEST instruction.
c------------------------------------------------------------------------------
if (opcode .eq. request_op) then
current(stack,level) = current(stack,level) + 1
running_count(stack) = running_count(stack) + 1
endif
block_count(stack,iop) =
* block_count(stack,iop) +
* running_count(stack)
endif
endif
endif
2300 continue
endif
enddo
c-------------------------------------------------------------------------
c Restore array_table indices.
c-------------------------------------------------------------------------
do i = 1, narray_table
do j = 1, mx_array_index
array_table(c_index_array1+j-1,i) = save_ind(j,i)
enddo
enddo
call reset_timer_info()
simulator = .false.
return
end
integer function which_stack(stack_blksizes, nstacks, blocksize)
c------------------------------------------------------------------------
c Determines the appropriate stack for a particular blocksize.
c The stack_blksizes array is assumed to be ordered in increasing order.
c------------------------------------------------------------------------
implicit none
integer nstacks
integer stack_blksizes(nstacks)
integer blocksize
integer i
do i = 1, nstacks
if (stack_blksizes(i) .ge. blocksize) then
which_stack = i
return
endif
enddo
which_stack = nstacks ! use largest blocksize.
return
end
|