File: remove_xxsd.F

package info (click to toggle)
aces3 3.0.6-7
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 82,460 kB
  • sloc: fortran: 225,647; ansic: 20,413; cpp: 4,349; makefile: 953; sh: 137
file content (279 lines) | stat: -rw-r--r-- 9,019 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
C  Copyright (c) 2003-2010 University of Florida
C
C  This program is free software; you can redistribute it and/or modify
C  it under the terms of the GNU General Public License as published by
C  the Free Software Foundation; either version 2 of the License, or
C  (at your option) any later version.

C  This program is distributed in the hope that it will be useful,
C  but WITHOUT ANY WARRANTY; without even the implied warranty of
C  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C  GNU General Public License for more details.

C  The GNU General Public License is included in this distribution
C  in the file COPYRIGHT.
      subroutine remove_xxsd(array_table, 
     *                      narray_table, index_table,
     *                      nindex_table, segment_table, nsegment_table,
     *                      block_map_table, nblock_map_table,
     *                      scalar_table, nscalar_table, 
     *                      address_table, op)

c--------------------------------------------------------------------------
c
c   
c--------------------------------------------------------------------------

      implicit none
      include 'interpreter.h'
      include 'trace.h'
#ifdef ALTIX
      include 'sheap.h'
#endif

      integer narray_table, nindex_table, nsegment_table, 
     *        nblock_map_table 
      integer op(loptable_entry)
      integer array_table(larray_table_entry, narray_table)
      integer index_table(lindex_table_entry, nindex_table)
      integer segment_table(lsegment_table_entry, nsegment_table)
      integer block_map_table(lblock_map_entry, nblock_map_table)
      integer type(mx_array_index) 
      integer nscalar_table
      double precision scalar_table(nscalar_table)
      integer*8 address_table(narray_table)

      integer*8 iarray, ievec, get_index_from_base
      integer i, j, n1, n2, n3, n4  
      integer array, evec_array
      integer array_type, evec_type
      integer nindex, nindex_evec
      integer ind(mx_array_index)
      integer seg, index(mx_array_index), val1(mx_array_index), 
     *        val2(mx_array_index), junk

      integer block, blkndx
      integer find_current_block
      integer*8 get_block_index
      integer stack

      double precision x(1)
#ifdef ALTIX
      pointer (dptr, x)
#else
      common x
#endif

      if (dryrun) return
#ifdef ALTIX
      dptr = dshptr
#endif

c----------------------------------------------------------------------------
c   Locate the data for the input matrix.
c---------------------------------------------------------------------------

      array      = op(c_result_array)
      evec_array = op(c_op1_array)

      if (array .eq. 0 .or. evec_array .eq. 0) then
         print *,'Error: remove_single routine requires 2 
     *            array arguments.'
         print *,(op(i),i=1,loptable_entry)
         call abort_job()
      endif

      array_type = array_table(c_array_type, array)
      evec_type  = array_table(c_array_type, evec_array)

      nindex      = array_table(c_nindex, array)
      nindex_evec = array_table(c_nindex, evec_array)

      if (nindex .ne. nindex_evec) then
         print *,'Error: Both arrays in return_diagonal must use ',
     *           'the same number of indices.'
         print *,'First array has ',nindex,' indices.'
         print *,'Second array has ',nindex_evec,' indices.'
         call abort_job()
      endif

      do i = 1, nindex
         ind(i) = array_table(c_index_array1+i-1,array)
      enddo

c---------------------------------------------------------------------------
c   Look up each array's address.
c---------------------------------------------------------------------------

      block  = find_current_block(array, array_table(1,array),
     *                            index_table, nindex_table,
     *                            segment_table, nsegment_table,
     *                            block_map_table, blkndx)
      stack = array_table(c_array_stack,array) 
      iarray = get_block_index(array, block, stack, blkndx, x, .true.)  

      block  = find_current_block(evec_array, array_table(1,evec_array),
     *                            index_table, nindex_table,
     *                            segment_table, nsegment_table,
     *                            block_map_table, blkndx)
      stack = array_table(c_array_stack,evec_array) 
      ievec = get_block_index(evec_array, block, stack, blkndx,x,.true.)  

c     iarray = get_index_from_base(address_table(array), x, 2)
c     ievec  = get_index_from_base(address_table(evec_array), x, 2)

      n1 = index_table(c_index_size, ind(1))  ! pick up length of index
      n2 = index_table(c_index_size, ind(2))  ! pick up length of index

      if (nindex .eq. 4) then 
         n3 = index_table(c_index_size, ind(3))  ! pick up length of index
         n4 = index_table(c_index_size, ind(4))  ! pick up length of index
      endif 

c---------------------------------------------------------------------------
c   Find the indices of the array block.
c---------------------------------------------------------------------------

      do i = 1, nindex
         index(i) = array_table(c_index_array1+i-1,array)
         type(i)  = index_table(c_index_type, index(i))
         seg      = index_table(c_current_seg,index(i))

c-------------------------------------------------------------------------
c   Get segment ranges.
c-------------------------------------------------------------------------

         call get_index_segment(index(i), seg, segment_table,
     *                             nsegment_table, index_table,
     *                             nindex_table, val1(i), val2(i))
      enddo


      if (nindex .eq. 4) call retnoxxsd(x(iarray),x(ievec),
     *                      val1(1),val2(1),val1(2),val2(2), 
     *                      val1(3),val2(3),val1(4),val2(4),index,type)

      return 
      end 

      subroutine retnoxxsd(array1,array2,a1,a2,b1,b2,c1,c2,d1,d2, 
     *                   index,type) 

c---------------------------------------------------------------------------
c
c 
c---------------------------------------------------------------------------

      implicit none
      include 'interpreter.h'
      include 'int_gen_parms.h'  

      integer i, a, b, c, d, a1, a2, b1, b2, c1, c2, d1, d2  
      double precision array1(a1:a2,b1:b2,c1:c2,d1:d2) 
      double precision array2(a1:a2,b1:b2,c1:c2,d1:d2) 

      integer index(mx_array_index), type(mx_array_index) 
      integer nzero, zero(100), index1, index2, index3, index4 
      integer nszero, ndzero, szero(100), dzero(100) 
      common /SINDEX/index1, index2, index3, index4 

      if (nalpha_occupied .eq. nbeta_occupied) go to 100 

c     Initialize output array to input array. 
c     --------------------------------------- 

      do d = d1, d2 
      do c = c1, c2 
      do b = b1, b2 
      do a = a1, a2 

         array2(a,b,c,d) = array1(a,b,c,d) 

      enddo ! a 
      enddo ! b 
      enddo ! c 
      enddo ! d 
c
c     Determine range of singly occupied indices to be removed. 
c     --------------------------------------------------------- 

      b      = 0 
      nszero = 0 
      if (nalpha_occupied .gt. nbeta_occupied) then 
         nszero = nalpha_occupied - nbeta_occupied 
         do a = nalpha_occupied, nbeta_occupied, -1 
            b = b + 1 
            szero(b) = a 
         enddo 
      endif 
      if (nbeta_occupied .gt. nalpha_occupied) then 
         nszero = nbeta_occupied - nalpha_occupied 
         do a = nbeta_occupied, nalpha_occupied, -1 
            b = b + 1 
            szero(b) = a 
         enddo 
      endif 
c
c     Reduce third index. 
c     ------------------- 

      do i = 1,  nszero 
      do c = c1, c2  
         if (szero(i) .eq. c) then 
         do d = d1, d2 
         do b = b1, b2 
         do a = a1, a2 

            array2(a,b,c,d) = 0.0 

         enddo ! a 
         enddo ! b 
         enddo ! d 
         endif 
      enddo ! c
      enddo ! i 
c
c     Determine range of doubly occupied indices to be removed. 
c     --------------------------------------------------------- 

      b      = 0 
      ndzero = 0 
      if (nalpha_occupied .gt. nbeta_occupied) then 
         ndzero = nbeta_occupied 
         do a = 1, nbeta_occupied  
            b = b + 1 
            dzero(b) = a 
         enddo 
      endif 
      if (nbeta_occupied .gt. nalpha_occupied) then 
         ndzero = nalpha_occupied 
         do a = 1, nalpha_occupied  
            b = b + 1 
            dzero(b) = a 
         enddo 
      endif 
c
c     Reduce fourth index. 
c     ------------------- 

      do i = 1,  ndzero 
      do d = d1, d2  
         if (dzero(i) .eq. d) then 
         do c = c1, c2 
         do b = b1, b2 
         do a = a1, a2 

            array2(a,b,c,d) = 0.0 

         enddo ! a 
         enddo ! b 
         enddo ! c 
         endif 
      enddo ! d   
      enddo ! i 

100   continue 

      return
      end