1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
c OUTPUT
c double GRDXYZ(3,NATOM)
c double GRDINT(3,NATOM)
c double DIPXYZ(3)
c double POLXYZ(3,3)
c integer IMAP(NATOM)
c double DSCR(NDSCR)
c RECORDS
c get 'COORD'
c get 'ATOMMASS'
c get 'MAP2ZMAT'
c get 'NREALATM'
c get 'GRADIENT'
c get DOIT//'SYMQ'
SUBROUTINE GETGRD(NATOM,DOIT,REFGEOM,
& GRDXYZ,GRDINT,DIPXYZ,POLXYZ,
& IMAP,DSCR,NDSCR,PRINTQ)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER*4 DOIT
DIMENSION REFGEOM(3,NATOM)
DIMENSION GRDXYZ(3,NATOM),GRDINT(3,NATOM)
DIMENSION DIPXYZ(3),POLXYZ(3,3)
DIMENSION IMAP(NATOM)
double precision dscr(ndscr)
LOGICAL PRINTQ
DIMENSION DIPOL(3)
double precision WMAT(3,3), DA3x3(3,3)
LOGICAL POLAR_EXIST, DIPOL_EXIST
COMMON /MACHSP/ IINTLN,IFLTLN,IINTFP,IALONE,IBITWD
NSIZE = 3*NATOM
lTMP = 1+NSIZE
if (ndscr.lt.nsize*(1+nsize)) then
print *, '@GETGRD: Insufficient memory.'
print *, ' have ',ndscr,' doubles'
print *, ' need ',nsize*(1+nsize),' doubles'
call aces_exit(1)
end if
c The scratch usage works like this:
c COORD(1:NSIZE) -> DSCR(1)
c ATOMMASS(1:NATOM) -> DSCR(1+NSIZE)
c [ COORD + ATOMMASS forms WMAT ]
c [ WMAT + GRADIENT forms GRDSCR(1:NSIZE) in DSCR(1) ]
c [ GRDSCR + ATOMMASS forms GRDSCR2(1:NSIZE) in DSCR(1) ]
c DOIT//'SYMQ'(1:NSIZE,1:NSIZE) -> DSCR(1+NSIZE)
c o get the rotation matrix that maps the computational geometry into the
c original reference geometry from the finite difference grid
CALL DGETREC(20,'JOBARC','COORD',NSIZE,DSCR)
CALL DGETREC(20,'JOBARC','ATOMMASS',NATOM,DSCR(lTMP))
CALL Q2QPRIME(DSCR,REFGEOM,DSCR(lTMP),DSCR(lTMP+NATOM),WMAT,
& NATOM)
C READ GRADIENT (IN VMOL ORDER) AND PUT ATOMS IN CORRECT POSITIONS
C IN GRD VECTOR. CHANGE TO READ DIRECTLY FROM JOBARC 07/2000, Ajith Perera.
C See notes in vmol2ja for ordering reordering issues. Both Vmol and Seward
C generates symmetry redundent atoms in the same order and the MAP2ZMAT
C is same for both cases. See vmol2ja (v2j.f) for detailed notes.
c o pick up VMOL->ZMAT mapping vector
CALL IGETREC(20,'JOBARC','MAP2ZMAT',NATOM,IMAP)
CALL IGETREC(20,'JOBARC','NREALATM',1,NRATOM)
CALL DGETREC(20,'JOBARC','GRADIENT',3*NRATOM,GRDINT)
CALL ZERO(GRDXYZ,NSIZE)
DO IATMVML=1,NATOM
IATMZMAT=IMAP(IATMVML)
IF (IATMZMAT.NE.0) THEN
GRDXYZ(1,IATMZMAT)=GRDINT(1,IATMVML)
GRDXYZ(2,IATMZMAT)=GRDINT(2,IATMVML)
GRDXYZ(3,IATMZMAT)=GRDINT(3,IATMVML)
END IF
END DO
c o transform the gradient from int orient to ext orient
CALL XGEMM('N','N',3,NATOM,3,
& 1.d0,WMAT, 3,
& GRDXYZ,3,
& 0.d0,DSCR, 3)
CALL XDCOPY(NSIZE,DSCR,1,GRDXYZ,1)
c o mass-weight the gradient
IOFF=1
DO IATOM=0,NATOM-1
IF (DSCR(lTMP+IATOM).NE.0.d0) THEN
X=1.d0/SQRT(DSCR(lTMP+IATOM))
DSCR(IOFF+0)=X*DSCR(IOFF+0)
DSCR(IOFF+1)=X*DSCR(IOFF+1)
DSCR(IOFF+2)=X*DSCR(IOFF+2)
END IF
IOFF=IOFF+3
END DO
c o transform the gradient to symmetry adapted coordinates
CALL DGETREC(20,'JOBARC',DOIT//'SYMQ',NSIZE*NSIZE,DSCR(lTMP)
& )
CALL XGEMM('T','N',NSIZE,1,NSIZE,
& 1.d0,DSCR(lTMP),NSIZE,
& DSCR, NSIZE,
& 0.d0,GRDINT, NSIZE)
C NOW DEAL WITH THE DIPOLE MOMENT. Note that for the moment
C We can't do IR intensities with ALASKA integrals. We need to
C find a best possible way to read dipole integrals from ONE_INT
C file and the CC density matrix from JOBARC (or lists) to create
C the dipole moment vector. This is a part of the job that was
C assigned to Carlos Taylor. 07/2000, Ajith Perera
INQUIRE(FILE='DIPOL',EXIST=DIPOL_EXIST)
IF (DIPOL_EXIST) THEN
OPEN(UNIT=10,FILE='DIPOL',FORM='FORMATTED',STATUS='OLD')
READ(10,'(3F20.10)')DIPOL
CALL XGEMM('N','N',3,1,3,1.d0,WMAT,3,DIPOL,3,0.d0,DIPXYZ,3)
CLOSE(UNIT=10,STATUS='KEEP')
END IF
C Now deal with the polarizability, 07/98 John and Ajith
INQUIRE(FILE='POLAR',EXIST=POLAR_EXIST)
IF (POLAR_EXIST) THEN
OPEN(UNIT=10,FILE='POLAR',FORM='FORMATTED',STATUS='OLD')
DO I = 1, 3
READ(10,'(3F20.10)') (POLXYZ(J,I),J=1,3)
END DO
CLOSE(UNIT=10,STATUS='KEEP')
END IF
c o transform to the reference coordinate system
CALL XGEMM('N','N',3,3,3,1.d0,WMAT,3,POLXYZ,3,0.d0,DA3x3,3)
CALL XGEMM('N','T',3,3,3,1.d0,DA3x3,3,WMAT,3,0.d0,POLXYZ,3)
IF (PRINTQ) THEN
WRITE(6,*)' Dipole moment '
WRITE(6,'(3F20.10)')(DIPXYZ(I),I=1,3)
WRITE(6,*)' Gradient vector in cartesian coordinates '
DO IATOM=1,NATOM
WRITE(6,'(I5,3F20.10)')IATOM,(GRDXYZ(I,IATOM),I=1,3)
END DO
WRITE(6,*)' Gradient vector in internal coordinates '
DO IATOM=1,NATOM
WRITE(6,'(I5,3F20.10)')IATOM,(GRDINT(I,IATOM),I=1,3)
END DO
WRITE(6,*)' Polarizability '
DO I=1, 3
WRITE(6,'(3F20.10)')(POLXYZ(I,J),J=1,3)
END DO
END IF
RETURN
END
|