1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
C Copyright (c) 2003-2010 University of Florida
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C The GNU General Public License is included in this distribution
C in the file COPYRIGHT.
subroutine build_segment_table(index_table, nindex_table,
* end_nfps, nshells, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size,
* sip_sub_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize, sip_sub_ao_segsize,
* nocc_orbitals, naocc_orbitals,
* nbocc_orbitals,
* nvirt_orbitals, navirt_orbitals,
* nbvirt_orbitals,
* isegbase, nsegment_table,
* stack_blocksizes, nstacks,
* array_table, narray_table,
* atom_based, atoms)
c--------------------------------------------------------------------------
c Builds the segment table from the indices defined in the index_table
c and the basis function shell definitions.
c--------------------------------------------------------------------------
implicit none
include 'interpreter.h'
include 'machine_types.h'
include 'symbolic_constants.h'
c include 'int_gen_parms.h'
#ifdef ALTIX
include 'sheap.h'
#endif
integer nindex_table, nshells, nsegment_table
integer nocc_orbitals, naocc_orbitals, nbocc_orbitals
integer nvirt_orbitals, navirt_orbitals, nbvirt_orbitals
integer index_table(lindex_table_entry,nindex_table)
integer end_nfps(nshells)
integer*8 isegbase
integer*8 c_loc64
integer nstacks
integer stack_blocksizes(nstacks)
integer narray_table
integer array_table(larray_table_entry,narray_table)
integer atoms(nshells)
integer segtable(2)
#ifdef ALTIX
pointer (iptr, segtable)
#endif
integer naosegs
integer aosegs(nshells)
integer norbitals, nsegs, i, j, k, l, type, size, next
integer bseg, eseg, bseg_table, eseg_table
integer brange, erange, ierr
integer minrange, maxrange
integer*8 itable, ktable
integer boccval, eoccval, bvirtval, evirtval
integer baoccval, eaoccval, bavirtval, eavirtval
integer bboccval, eboccval, bbvirtval, ebvirtval
integer mx_ao_seg_size, mx_occ_seg_size, mx_virt_seg_size
integer sip_sub_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize, sip_sub_ao_segsize
integer superindex, superindex_type
integer factor, factore
integer segsize, range, nsubseg, norb_subseg, nrem, brange_s,
* erange_s, nseg_total, subsegment_counter
integer get_subindex_segsize
integer translate_symbolic_constant
logical atom_based
#ifdef ALTIX
iptr = ishptr
#endif
c---------------------------------------------------------------------------
c Map the ao shells defined by basis function data into segments.
c---------------------------------------------------------------------------
c norbitals = end_nfps(nshells)
norbitals = naocc_orbitals + navirt_orbitals
call shells_to_segments(end_nfps, nshells, mx_ao_seg_size,
* aosegs, naosegs, atom_based, atoms)
c----------------------------------------------------------------------------
c Translate the symbolic constants needed for index segment checking.
c----------------------------------------------------------------------------
boccval = translate_symbolic_constant(bocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
eoccval = translate_symbolic_constant(eocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
baoccval = translate_symbolic_constant(baocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
eaoccval = translate_symbolic_constant(eaocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
bboccval = translate_symbolic_constant(bbocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
eboccval = translate_symbolic_constant(ebocc, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
bvirtval = translate_symbolic_constant(bvirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
evirtval = translate_symbolic_constant(evirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
bavirtval = translate_symbolic_constant(bavirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
eavirtval = translate_symbolic_constant(eavirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
bbvirtval = translate_symbolic_constant(bbvirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
ebvirtval = translate_symbolic_constant(ebvirt, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
c----------------------------------------------------------------------------
c Store some values in the "symbolic_constants" table.
c-----------------------------------------------------------------------------
symbolic_constant_table(1) = naosegs ! norb
symbolic_constant_table(2) = eoccval-boccval+1 ! nocc
symbolic_constant_table(3) = evirtval-bvirtval+1 ! nvirt
symbolic_constant_table(4) = boccval ! bocc
symbolic_constant_table(5) = eoccval ! eocc
symbolic_constant_table(6) = bvirtval ! bvirt
symbolic_constant_table(7) = evirtval ! evirt
symbolic_constant_table(8) = eaoccval-baoccval+1 ! naocc
symbolic_constant_table(9) = eboccval-bboccval+1 ! nbocc
symbolic_constant_table(10) = eavirtval-bavirtval+1 ! navirt
symbolic_constant_table(11) = ebvirtval-bbvirtval+1 ! nbvirt
symbolic_constant_table(12) = baoccval ! baocc
symbolic_constant_table(13) = bboccval ! bbocc
symbolic_constant_table(14) = eaoccval ! eaocc
symbolic_constant_table(15) = eboccval ! ebocc
symbolic_constant_table(16) = bavirtval ! bavirt
symbolic_constant_table(17) = bbvirtval ! bbvirt
symbolic_constant_table(18) = eavirtval ! eavirt
symbolic_constant_table(19) = ebvirtval ! ebvirt
symbolic_constant_table(20) = nocc_orbitals ! noccorb
symbolic_constant_table(21) = nvirt_orbitals ! nvirtorb
symbolic_constant_table(22) = 1 ! boccorb
symbolic_constant_table(23) = nocc_orbitals ! eoccorb
symbolic_constant_table(24) = nocc_orbitals+1 ! bvirtorb
symbolic_constant_table(25) = norbitals ! evirtorb
symbolic_constant_table(26) = naocc_orbitals ! naoccorb
symbolic_constant_table(27) = nbocc_orbitals ! nboccorb
symbolic_constant_table(28) = navirt_orbitals ! navirtorb
symbolic_constant_table(29) = nbvirt_orbitals ! nbvirtorb
symbolic_constant_table(30) = 1 ! baoccorb
symbolic_constant_table(31) = 1 ! bboccorb
symbolic_constant_table(32) = naocc_orbitals ! eaoccorb
symbolic_constant_table(33) = nbocc_orbitals ! eboccorb
symbolic_constant_table(34) = naocc_orbitals+1 ! bavirtorb
symbolic_constant_table(35) = nbocc_orbitals+1 ! bbvirtorb
symbolic_constant_table(36) = norbitals ! eavirtorb
symbolic_constant_table(37) = norbitals ! ebvirtorb
c----------------------------------------------------------------------------
c Make a pass through the index table to count the number of segments needed.
c----------------------------------------------------------------------------
nsegs = 0
do 100 i = 1, nindex_table
c------------------------------------------------------------------------------
c Set the superindex in the c_subindex_ptr field if this is a subindex type.
c------------------------------------------------------------------------------
if (index_table(c_index_type,i) .eq. subindex) then
c------------------------------------------------------------------------------
c The compiler has filled in the superindex in the bseg field of the table
c as it is written to disk. We must store it in the subindex_ptr field.
c------------------------------------------------------------------------------
superindex = index_table(c_bseg, i) + 1 ! convert to a Fortran index
superindex_type = index_table(c_index_type,superindex)
index_table(c_subindex_ptr,i) = superindex
c------------------------------------------------------------------------------
c Fill in the ranges from the superindex into the index_table entry for the
c subindex.
c------------------------------------------------------------------------------
index_table(c_bseg,i) = index_table(c_bseg,superindex)
index_table(c_eseg,i) = index_table(c_eseg,superindex)
c----------------------------------------------------------------------------
c Compiler puts "norb" in table for some moindex indices.
c Change the symbolic "norb" value to one that is unambiguous.
c----------------------------------------------------------------------------
if (eseg_table .eq. norb) then
if (superindex_type .eq. moindex) then
eseg_table = evirt
else if (superindex_type .eq. moaindex) then
eseg_table = eavirt
else if (superindex_type .eq. mobindex) then
eseg_table = ebvirt
endif
endif
else ! not a subindex
index_table(c_subindex_ptr,i) = 0
endif
bseg_table = index_table(c_bseg,i)
eseg_table = index_table(c_eseg,i)
c----------------------------------------------------------------------------
c Compiler puts "norb" in table for some moindex indices.
c Change the symbolic "norb" value to one that is unambiguous.
c----------------------------------------------------------------------------
if (eseg_table .eq. norb) then
if (index_table(c_index_type,i) .eq. moindex) then
eseg_table = evirt
else if (index_table(c_index_type,i) .eq. moaindex) then
eseg_table = eavirt
else if (index_table(c_index_type,i) .eq. mobindex) then
eseg_table = ebvirt
endif
endif
c----------------------------------------------------------------------------
c If the table segment is a symbolic segment value, translate it now.
c----------------------------------------------------------------------------
if (bseg_table .le. 0) then
bseg = translate_symbolic_constant(bseg_table, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
else
bseg = bseg_table
call check_index_range(bseg, index_table(c_index_type,i),
* i, naosegs, boccval, eoccval, bvirtval, evirtval,
* baoccval, eaoccval, bavirtval, eavirtval,
* bboccval, eboccval, bbvirtval, ebvirtval)
endif
if (eseg_table .le. 0) then
eseg = translate_symbolic_constant(eseg_table, naosegs,
* norbitals, nocc_orbitals, naocc_orbitals,
* nbocc_orbitals, mx_ao_seg_size,
* mx_occ_seg_size, mx_virt_seg_size)
else
eseg = eseg_table
call check_index_range(eseg, index_table(c_index_type,i),
* i, naosegs, boccval, eoccval, bvirtval, evirtval,
* baoccval, eaoccval, bavirtval, eavirtval,
* bboccval, eboccval, bbvirtval, ebvirtval)
endif
if (index_table(c_index_type,i) .eq. subindex) then
c---------------------------------------------------------------------------
c Loop over the segments of the superindex.
c---------------------------------------------------------------------------
bseg = index_table(c_bseg,superindex)
eseg = index_table(c_eseg,superindex)
nseg_total = 0
do j = bseg, eseg
c---------------------------------------------------------------------------
c Determine the subindex segsize for this segment.
c---------------------------------------------------------------------------
segsize = get_subindex_segsize(superindex_type, j,
* sip_sub_segsize,
* sip_sub_ao_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize, boccval, eoccval,
* baoccval, eaoccval, bboccval, eboccval)
c----------------------------------------------------------------------------
c Find the range of orbitals in the superindex segment.
c----------------------------------------------------------------------------
call segment_get_range(superindex_type, j,
* aosegs, naosegs,
* norbitals, nocc_orbitals,
* naocc_orbitals, nbocc_orbitals,
* mx_ao_seg_size, mx_occ_seg_size,
* mx_virt_seg_size,
* brange, erange)
c----------------------------------------------------------------------------
c Calculate the number of subindex segments for this superindex segment.
c----------------------------------------------------------------------------
range = erange - brange + 1
nsubseg = range / segsize
if (nsubseg * segsize .ne. range) nsubseg = nsubseg + 1
nseg_total = nseg_total + nsubseg
enddo
bseg = 1
eseg = nseg_total
endif
c---------------------------------------------------------------------------
c Set remaining fields of index_table entry.
c---------------------------------------------------------------------------
index_table(c_bseg,i) = bseg
index_table(c_eseg,i) = eseg
index_table(c_nsegments,i) = eseg - bseg + 1
c---------------------------------------------------------------------------
c Count the number of segments.
c---------------------------------------------------------------------------
nsegs = nsegs + eseg - bseg + 1
100 continue
c--------------------------------------------------------------------------
c Allocate the memory for the segment_table.
c--------------------------------------------------------------------------
call mem_alloc(segtable, lsegment_table_entry*nsegs, intsize,
* itable, .true., ierr)
if (ierr .ne. 0) then
print *,'Memory allocation error: ',
* ' Cannot allocate segment_table. nsegs = ', nsegs
call abort_job()
endif
isegbase = c_loc64(segtable, itable, intsize)
c--------------------------------------------------------------------------
c Make a second pass through the index_table, creating segment_table
c entries for each segment of each regular index.
c--------------------------------------------------------------------------
nsegment_table = 0
do 200 i = 1, nindex_table
bseg = index_table(c_bseg,i)
eseg = index_table(c_eseg,i)
type = index_table(c_index_type,i)
if (type .eq. subindex) go to 200 ! do normal index entries first
minrange = 1000000
maxrange = 0
do j = bseg, eseg
call segment_get_range(type, j, aosegs, naosegs,
* norbitals, nocc_orbitals,
* naocc_orbitals, nbocc_orbitals,
* mx_ao_seg_size, mx_occ_seg_size,
* mx_virt_seg_size,
* brange, erange)
ktable = itable + nsegment_table * lsegment_table_entry
segtable(ktable + c_index - 1) = i
segtable(ktable + c_segment - 1) = j
segtable(ktable + c_range1 - 1) = brange
segtable(ktable + c_range2 - 1) = erange
segtable(ktable + c_subseg1 - 1) = 0
segtable(ktable + c_subseg2 - 1) = 0
if (brange .gt. erange) then
print *,'Error: Index ',i,' segment ',j,' has ',
* 'brange =',brange,' erange = ',erange,
* ' index type ',type
print *,'Index table:'
do k = 1, nindex_table
print *,'Entry ',k,': ',
* (index_table(l,k),l=1,lindex_table_entry)
enddo
print *,'norbitals ',norbitals,' nocc_orbitals ',
* nocc_orbitals,' naocc_orbitals ',
* naocc_orbitals,' nbocc_orbitals ',
* nbocc_orbitals
call abort_job()
endif
nsegment_table = nsegment_table + 1
minrange = min(brange, minrange)
maxrange = max(erange, maxrange)
enddo
index_table(c_index_size,i) = maxrange - minrange + 1
200 continue
c------------------------------------------------------------------------------
c Make another pass through the index table, creating the segtable entries
c for each subindex.
c------------------------------------------------------------------------------
do 300 i = 1, nindex_table
type = index_table(c_index_type,i)
if (type .ne. subindex) go to 300
c-----------------------------------------------------------------------------
c Determine the superindex and its type, use the superindex size as the
c subindex size.
c-----------------------------------------------------------------------------
superindex = index_table(c_subindex_ptr,i)
type = index_table(c_index_type, superindex)
index_table(c_index_size,i) =
* index_table(c_index_size,superindex)
c----------------------------------------------------------------------------
c Loop over the segments of the superindex.
c----------------------------------------------------------------------------
bseg = index_table(c_bseg, superindex)
eseg = index_table(c_eseg, superindex)
subsegment_counter = 0
do j = bseg, eseg
c----------------------------------------------------------------------------
c Recalculate the brange, erange of the superindex segment.
c----------------------------------------------------------------------------
call segment_get_range(type, j, aosegs, naosegs,
* norbitals, nocc_orbitals,
* naocc_orbitals, nbocc_orbitals,
* mx_ao_seg_size, mx_occ_seg_size,
* mx_virt_seg_size,
* brange, erange)
c----------------------------------------------------------------------------
c Determine the correct segment size to use for this subindex segment.
c----------------------------------------------------------------------------
segsize = get_subindex_segsize(type, j, sip_sub_segsize,
* sip_sub_ao_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize, boccval, eoccval,
* baoccval, eaoccval, bboccval, eboccval)
c----------------------------------------------------------------------------
c Determine the number of subindex segments needed to fill up the
c superindex segment.
c----------------------------------------------------------------------------
range = erange-brange+1
nsubseg = range/segsize
if (segsize * nsubseg .ne. range)
* nsubseg = nsubseg + 1
norb_subseg = range / nsubseg ! orbitals per subsegment
nrem = range - norb_subseg * nsubseg ! num extra segs
c----------------------------------------------------------------------------
c Fill in the subindex segment table entries.
c----------------------------------------------------------------------------
brange_s = brange
do k = 1, nsubseg
erange_s = brange_s + norb_subseg - 1
if (k .le. nrem) erange_s = erange_s + 1
subsegment_counter = subsegment_counter + 1
ktable = itable + nsegment_table * lsegment_table_entry
segtable(ktable + c_index - 1) = i
segtable(ktable + c_segment - 1) = subsegment_counter
segtable(ktable + c_range1 - 1) = brange_s
segtable(ktable + c_range2 - 1) = erange_s
segtable(ktable + c_subseg1 - 1) = 0
segtable(ktable + c_subseg2 - 1) = 0
nsegment_table = nsegment_table + 1
brange_s = erange_s + 1
enddo ! k
enddo ! j
300 continue ! i
c-----------------------------------------------------------------------------
c Now make another pass, indexing the subsegment ranges for each superindex
c segment. This will be used later in "do ii in i" constructs.
c-----------------------------------------------------------------------------
call set_subsegment_ranges(index_table, nindex_table,
* segtable(itable), nsegment_table)
c------------------------------------------------------------------------------
c Determine the stack size for each individual type of data used.
c------------------------------------------------------------------------------
call determine_stack_blocksizes(index_table, nindex_table,
* segtable(itable), nsegment_table, boccval, eoccval,
* baoccval, eaoccval, bboccval, eboccval,
* stack_blocksizes, nstacks)
return
end
integer function translate_symbolic_constant(iseg, naosegs,
* norbitals, nocc_orbitals,
* naocc_orbitals, nbocc_orbitals,
* mx_ao_seg_size, mx_occ_seg_size,
* mx_virt_seg_size)
implicit none
include 'interpreter.h'
include 'int_gen_parms.h'
integer iseg, naosegs, norbitals, nocc_orbitals
integer mx_ao_seg_size, mx_occ_seg_size, mx_virt_seg_size
integer naocc_orbitals, nbocc_orbitals
integer seg, bo, eo, bv, ev
integer bao, eao, bav, eav
integer bbo, ebo, bbv, ebv
bo = 1
eo = (nocc_orbitals - 1) / mx_occ_seg_size + 1
bv = eo + 1
ev = (norbitals - nocc_orbitals - 1) / mx_virt_seg_size + bv
bao = 1
eao = (naocc_orbitals - 1) / mx_occ_seg_size + 1
bav = eao + 1
eav = (norbitals -naocc_orbitals - 1) / mx_virt_seg_size + bav
bbo = 1
ebo = (nbocc_orbitals - 1) / mx_occ_seg_size + 1
bbv = ebo + 1
ebv = (norbitals - nbocc_orbitals - 1) / mx_virt_seg_size + bbv
if (iseg .eq. norb) then
seg = naosegs
else if (iseg .eq. bocc) then
seg = bo
else if (iseg .eq. eocc) then
seg = eo
else if (iseg .eq. bvirt) then
seg = bv
else if (iseg .eq. evirt) then
seg = ev
else if (iseg .eq. naocc) then
seg = naocc_orbitals
else if (iseg .eq. baocc) then
seg = bao
else if (iseg .eq. eaocc) then
seg = eao
else if (iseg .eq. bavirt) then
seg = bav
else if (iseg .eq. eavirt) then
seg = eav
else if (iseg .eq. nbocc) then
seg = nbocc_orbitals
else if (iseg .eq. bbocc) then
seg = bbo
else if (iseg .eq. ebocc) then
seg = ebo
else if (iseg .eq. bbvirt) then
seg = bbv
else if (iseg .eq. ebvirt) then
seg = ebv
else if (iseg .eq. noccorb) then
seg = nocc_orbitals
else if (iseg .eq. nvirtorb) then
seg = norbitals - nocc_orbitals
else if (iseg .eq. boccorb) then
seg = 1
else if (iseg .eq. eoccorb) then
seg = nocc_orbitals
else if (iseg .eq. bvirtorb) then
seg = nocc_orbitals + 1
else if (iseg .eq. evirtorb) then
seg = norbitals
else if (iseg .eq. naoccorb) then
seg = naocc_orbitals
else if (iseg .eq. nboccorb) then
seg = nbocc_orbitals
else if (iseg .eq. navirtorb) then
seg = norbitals - naocc_orbitals
else if (iseg .eq. nbvirtorb) then
seg = norbitals - nbocc_orbitals
else if (iseg .eq. baoccorb) then
seg = 1
else if (iseg .eq. bboccorb) then
seg = 1
else if (iseg .eq. eaoccorb) then
seg = naocc_orbitals
else if (iseg .eq. eboccorb) then
seg = nbocc_orbitals
else if (iseg .eq. bavirtorb) then
seg = naocc_orbitals + 1
else if (iseg .eq. bbvirtorb) then
seg = nbocc_orbitals + 1
else if (iseg .eq. eavirtorb) then
seg = norbitals
else if (iseg .eq. ebvirtorb) then
seg = norbitals
else if (iseg .eq. cc_iter_cons) then
seg = cc_iter
else if (iseg .eq. cc_hist_cons) then
seg = cc_hist
else if (iseg .eq. cc_beg_cons) then
seg = cc_beg
else if (iseg .eq. scf_iter_cons) then
seg = scf_iter
else if (iseg .eq. scf_hist_cons) then
seg = scf_hist
else if (iseg .eq. scf_beg_cons) then
seg = scf_beg
else if (iseg .eq. natoms_cons) then
seg = ncenters
else if (iseg .eq. subb_parm) then
seg = subb
else if (iseg .eq. sube_parm) then
seg = sube
else if (iseg .eq. sip_sub_segsize_parm) then
seg = sip_sub_segsize
else if (iseg .eq. sip_sub_occ_segsize_parm) then
seg = sip_sub_occ_segsize
else if (iseg .eq. sip_sub_virt_segsize_parm) then
seg = sip_sub_virt_segsize
else if (iseg .eq. sip_sub_ao_segsize_parm) then
seg = sip_sub_ao_segsize
else
print *,'Error in translate_symbolic_constant: ',
* 'Unknown symbolic constant ',iseg
call abort_job()
endif
translate_symbolic_constant = seg
return
end
subroutine segment_get_range(type, seg, aosegs, naosegs,
* norbitals, nocc_orbitals,
* naocc_orbitals, nbocc_orbitals,
* mx_ao_seg_size, mx_occ_seg_size,
* mx_virt_seg_size,
* brange, erange)
implicit none
include 'interpreter.h'
integer type, seg, naosegs, norbitals, nocc_orbitals
integer naocc_orbitals, nbocc_orbitals
integer no_per_seg, no_left, nv_per_seg, nv_left, nvorbitals
integer nosegs, nvsegs
integer mx_ao_seg_size, mx_occ_seg_size, mx_virt_seg_size,
* brange, erange
integer aosegs(naosegs)
if (type .eq. aoindex) then
if (seg .eq. 1) then
brange = 1
else
brange = aosegs(seg-1) + 1
endif
erange = aosegs(seg)
else if (type .eq. moindex) then
nosegs = (nocc_orbitals - 1) / mx_occ_seg_size + 1
if (seg .le. nosegs) then
no_per_seg = (nocc_orbitals - 1)/nosegs
no_left = nocc_orbitals - nosegs * no_per_seg
if (seg .le. no_left) then
brange = (seg-1) * (no_per_seg+1) + 1
erange = min0(nocc_orbitals, brange + no_per_seg)
else
brange = no_left + (seg-1)*no_per_seg + 1
erange = min0(nocc_orbitals, brange + no_per_seg-1)
endif
else
nvorbitals = norbitals - nocc_orbitals
nvsegs = (norbitals - nocc_orbitals - 1) /
* mx_virt_seg_size + 1
nv_per_seg = (nvorbitals - 1)/nvsegs
nv_left = nvorbitals - nvsegs * nv_per_seg
if (seg .le. nosegs + nv_left) then
brange = (seg-nosegs-1) * (nv_per_seg + 1) +
* nocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg)
else
brange = nv_left + (seg-nosegs-1)*nv_per_seg +
* nocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg - 1)
endif
endif
else if (type .eq. moaindex) then
nosegs = (naocc_orbitals - 1) / mx_occ_seg_size + 1
nvsegs = (norbitals - naocc_orbitals - 1) /
* mx_virt_seg_size + 1
if (seg .le. nosegs) then
no_per_seg = (naocc_orbitals - 1)/nosegs
no_left = naocc_orbitals - nosegs * no_per_seg
if (seg .le. no_left) then
brange = (seg-1) * (no_per_seg+1) + 1
erange = min0(naocc_orbitals, brange + no_per_seg)
else
brange = no_left + (seg-1)*no_per_seg + 1
erange = min0(naocc_orbitals, brange + no_per_seg-1)
endif
else
nvorbitals = norbitals - naocc_orbitals
nv_per_seg = (nvorbitals - 1)/nvsegs
nv_left = nvorbitals - nvsegs * nv_per_seg
if (seg .le. nosegs + nv_left) then
brange = (seg-nosegs-1) * (nv_per_seg + 1) +
* naocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg)
else
brange = nv_left + (seg-nosegs-1)*nv_per_seg +
* naocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg - 1)
endif
endif
else if (type .eq. mobindex) then
nosegs = (nbocc_orbitals - 1) / mx_occ_seg_size + 1
nvsegs = (norbitals - nbocc_orbitals - 1) /
* mx_virt_seg_size + 1
if (seg .le. nosegs) then
no_per_seg = (nbocc_orbitals - 1)/nosegs
no_left = nbocc_orbitals - nosegs * no_per_seg
if (seg .le. no_left) then
brange = (seg-1) * (no_per_seg+1) + 1
erange = min0(nbocc_orbitals, brange + no_per_seg)
else
brange = no_left + (seg-1)*no_per_seg + 1
erange = min0(nbocc_orbitals, brange + no_per_seg-1)
endif
else
nvorbitals = norbitals - nbocc_orbitals
nv_per_seg = (nvorbitals - 1)/nvsegs
nv_left = nvorbitals - nvsegs * nv_per_seg
if (seg .le. nosegs + nv_left) then
brange = (seg-nosegs-1) * (nv_per_seg + 1) +
* nbocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg)
else
brange = nv_left + (seg-nosegs-1)*nv_per_seg +
* nbocc_orbitals + 1
erange = min0(norbitals, brange + nv_per_seg - 1)
endif
endif
else if (type .eq. simple_index) then
brange = seg
erange = seg
else if (type .eq. laindex) then
brange = 1
erange = 1
else if (type .eq. subindex) then
brange = seg
erange = seg
else
print *,'Error in segment_get_range: Unknown type ',type
call abort_job()
endif
return
end
subroutine check_index_range(seg, type, index_id, naosegs,
* ibocc, ieocc, ibvirt, ievirt,
* ibaocc, ieaocc, ibavirt, ieavirt,
* ibbocc, iebocc, ibbvirt, iebvirt)
c--------------------------------------------------------------------------
c Verifies that a given segment is within the actual range for its
c index type. If an error is detected, an error message is printed,
c and the job aborts.
c--------------------------------------------------------------------------
implicit none
include 'interpreter.h'
integer seg, type, naosegs, ibocc, ieocc, ibvirt, ievirt
integer ibavirt, ieavirt, ibaocc, ieaocc
integer ibbvirt, iebvirt, ibbocc, iebocc
integer seg1, seg2, ierr
integer index_id
ierr = 0
if (type .eq. aoindex) then
if (seg .lt. 1 .or. seg .gt. naosegs) then
ierr = 1
seg1 = 1
seg2 = naosegs
endif
else if (type .eq. moindex) then
if (seg .lt. ibocc .or. seg .gt. ievirt) then
ierr = 1
seg1 = ibocc
seg2 = ievirt
endif
else if (type .eq. moaindex) then
if (seg .lt. ibaocc .or. seg .gt. ieavirt) then
ierr = 1
seg1 = ibaocc
seg2 = ieavirt
endif
else if (type .eq. mobindex) then
if (seg .lt. ibbocc .or. seg .gt. iebvirt) then
ierr = 1
seg1 = ibbocc
seg2 = iebvirt
endif
else if (type .eq. simple_index) then
if (seg .le. 0) then
print *,'Error: Invalid range for index number ',index_id
print *,'Range must be > 0, code has index value of ',
* seg
call abort_job()
endif
else if (type .eq. laindex) then
else if (type .eq. subindex) then
else
print *,'Error: Invalid index type in check_index_range: ',
* 'Index = ',index_id, ' Type = ',type
call abort_job()
endif
if (ierr .eq. 1) then
print *,'Error: Index range error for index ',index_id,
* ' type = ',type
print *,'Index should be between ',seg1,' and ',seg2
call abort_job()
endif
return
end
integer function get_subindex_segsize(superindex_type, seg,
* sip_sub_segsize,
* sip_sub_ao_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize, boccval, eoccval,
* baoccval, eaoccval, bboccval, eboccval)
c---------------------------------------------------------------------------
c Function to return the correct segment size for a subindex segment
c corresponding to segment "seg" of a superindex of type "superindex_type".
c----------------------------------------------------------------------------
implicit none
include 'interpreter.h'
integer superindex_type, seg
integer sip_sub_segsize, sip_sub_ao_segsize, sip_sub_occ_segsize,
* sip_sub_virt_segsize
integer boccval, eoccval, baoccval, eaoccval, bboccval, eboccval
if (superindex_type .eq. aoindex) then
get_subindex_segsize = sip_sub_ao_segsize
else if (superindex_type .eq. simple_index) then
get_subindex_segsize = sip_sub_segsize
else if (superindex_type .eq. moindex) then
if (seg .ge. boccval .and. seg .le. eoccval) then
get_subindex_segsize = sip_sub_occ_segsize
else
get_subindex_segsize = sip_sub_virt_segsize
endif
else if (superindex_type .eq. moaindex) then
if (seg .ge. baoccval .and. seg .le. eaoccval) then
get_subindex_segsize = sip_sub_occ_segsize
else
get_subindex_segsize = sip_sub_virt_segsize
endif
else if (superindex_type .eq. mobindex) then
if (seg .ge. bboccval .and. seg .le. eboccval) then
get_subindex_segsize = sip_sub_occ_segsize
else
get_subindex_segsize = sip_sub_virt_segsize
endif
endif
return
end
subroutine set_subsegment_ranges(index_table, nindex_table,
* segment_table, nsegment_table)
c-------------------------------------------------------------------------
c For each superindex segment, fills in the beginning and ending
c segment of its corresponding subindex.
c-------------------------------------------------------------------------
implicit none
include 'interpreter.h'
integer nsegment_table
integer nindex_table
integer index_table(lindex_table_entry, nindex_table)
integer segment_table(lsegment_table_entry, nsegment_table)
integer i, j, k
integer subindex_seg, superindex, super_bseg, super_eseg
integer bseg, eseg
do k = 1, nindex_table
if (index_table(c_index_type, k) .eq. subindex) then
c----------------------------------------------------------------------------
c We have a subindex. Process all the segments of its superindex.
c----------------------------------------------------------------------------
superindex = index_table(c_subindex_ptr,k)
super_bseg = index_table(c_bseg, superindex)
super_eseg = index_table(c_eseg, superindex)
do j = super_bseg, super_eseg
c---------------------------------------------------------------------------
c Find the bseg and eseg of the subindex corresponding to superindex
c segment j.
c---------------------------------------------------------------------------
call get_subrange_segments(superindex, j, k,
* index_table, nindex_table,
* segment_table, nsegment_table,
* bseg, eseg)
c----------------------------------------------------------------------------
c Now look up the segment_table entry for this superindex segment, and
c store the bseg and eseg. This data may be used in a "do ii in i"
c type loop.
c----------------------------------------------------------------------------
do i = 1, nsegment_table
if (segment_table(c_index,i) .eq. superindex .and.
* segment_table(c_segment,i) .eq. j) then
segment_table(c_subseg1,i) = bseg
segment_table(c_subseg2,i) = eseg
go to 100
endif
enddo ! i
100 continue
enddo ! j
endif
enddo ! k
return
end
|