File: defalist.lisp

package info (click to toggle)
acl2 2.9-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 27,196 kB
  • ctags: 26,113
  • sloc: lisp: 353,947; makefile: 3,250; sh: 85; csh: 47
file content (1035 lines) | stat: -rwxr-xr-x 40,128 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
; defalist.lisp - defining typed alists
; Copyright (C) 1997  Computational Logic, Inc.

; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.

; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

; Written by:  Bill Bevier (bevier@cli.com) and Bishop Brock
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    defalist.lisp
;;;
;;;    A package for defining a recognizer for a typed alist. Rewrite
;;;    rules describing how the recognizer interacts with functions
;;;    from the list theory can be automatically generated.
;;;
;;;    Bill Bevier
;;;    Computational Logic, Inc.
;;;    1717 West 6th Street, Suite 290
;;;    Austin, Texas 78703
;;;    bevier@cli.com
;;;
;;;    Modified by Bishop Brock, brock@cli.com
;;;    
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; To certify this book:
#|
 (in-package "ACL2")
 (defpkg "U" (union-eq *acl2-exports*
                       *common-lisp-symbols-from-main-lisp-package*))
 (certify-book "defalist" 1)
|#

(in-package "ACL2")

(include-book "alist-defuns")
(include-book "list-defuns")
(include-book "utilities")

(encapsulate ((domain-elem-type (x) boolean)
	      (domain-type (l) boolean)
	      (range-elem-type (x) boolean)
	      (range-type (l) boolean)
	      (alist-type (a) boolean))
  (local (in-theory '(ground-zero)))
  (local (defun domain-elem-type (x)
	   (symbolp x)))
  (local (defun domain-type (l)
	   (symbol-listp l)))
  (local (defun range-elem-type (x)
	   (integerp x)))
  (local (defun range-type (l)
	   (integer-listp l)))
  (local (defun alist-type (a)
	   (cond ((atom a) (eq a nil))
		 (t (and (consp (car a))
			 (domain-elem-type (caar a))
			 (range-elem-type (cdar a))
			 (alist-type (cdr a)))))))
  (defthm domain-type-domain-elem-type
    (and (domain-type nil)
	 (equal (domain-type (cons x l))
		(and (domain-elem-type x)
		     (domain-type l)))))
  (defthm range-type-range-elem-type
    (and (range-type nil)
	 (equal (range-type (cons x l))
		(and (range-elem-type x)
		     (range-type l)))))
  (defthm alist-type-defun
    (iff (alist-type l)
	 (cond ((atom l) (eq l nil))
	       (t (and (consp (car l))
		       (domain-elem-type (caar l))
		       (range-elem-type (cdar l))
		       (alist-type (cdr l))))))
    :rule-classes ((:rewrite :corollary
			     (implies (atom l)
				      (equal (alist-type l) (null l))))
		   (:rewrite :corollary
			     (equal (alist-type (cons x l))
				    (and (consp x)
					 (domain-elem-type (car x))
					 (range-elem-type (cdr x))
					 (alist-type l))))))
  )


;; Some utility functions

(defun replace-equal (a b l)
  (declare (xargs :guard (true-listp l)))
  (cond ((endp l) nil)
	((equal (car l) a) (cons b (replace-equal a b (cdr l))))
	(t (cons (car l) (replace-equal a b (cdr l))))))

(defun my-conjoin (termlist1 termlist2)
  (declare (xargs :guard (and (true-listp termlist1)
			      (true-listp termlist2)
			      (or (consp termlist1) (consp termlist2)))))
  (let ((termlist (append termlist1 termlist2)))
    (cond ((= (len termlist) 1)
	   (car termlist))
	  (t (fcons-term 'and termlist)))))

(mutual-recursion

 (defun my-conjuncts (term)
   (cond ((eq term t) ())
	 ((atom term) (list term))
	 ((eq (car term) 'and) (my-conjuncts-list (cdr term)))
	 (t (list term))))

 (defun my-conjuncts-list (termlist)
   (cond ((atom termlist) nil)
	 (t (append (my-conjuncts (car termlist))
		    (my-conjuncts-list (cdr termlist))))))
 )


; For each lemma in the theory, the lemma term is defined by a macro
; to make it easy to instantiate. The lemma is then proved. 


; The macros in the following script generate forms that are believed to be
; lemmas about list predicates. The arguments to these macros have the following meanings.
;
; alist-type-fn: a symbol that names a predicate which recognizes a typed alist
; dom-type-fn
; ran-type-fn
; dom-elem-type-fn
; ran-elem-type-fn
; 
; formals:      the formal parameter list to alist-type-fn
;               We assume that the other type fns are unary predicates, either
;               symbols or lambda expressions.
;
; guard         either 't, or an expression in the formal parameters
;
; Example: 
;
;  (defun bound-numberp (x lub) 
;    (and (acl2-numberp x) (acl2-numberp lub) (< x lub)))
;
;  (defun bound-number-listp (l lub) 
;    (cond ((atom l) t)
;          (t (and (bound-numberp (car l) lub)
;                  (bound-number-listp (cdr l) lub)))))
;

(defmacro alist-type-alistp-lemma (alist-type-fn dom-type-fn
						 ran-type-fn
						 dom-elem-type-fn
						 ran-elem-type-fn
						 formals
						 &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn
		   dom-elem-type-fn ran-elem-type-fn))
  `(implies ,(my-conjoin (my-conjuncts guard)
			 `((,alist-type-fn ,@formals)))
	    (alistp l)))
					      
(defthm alist-type-alistp
  (alist-type-alistp-lemma alist-type domain-type range-type 
			   domain-elem-type range-elem-type
			   (l))
  :rule-classes :forward-chaining
  :hints (("Goal" :induct t)))

(in-theory (disable alist-type-alistp))

(defmacro alist-type-acons-lemma (alist-type-fn dom-type-fn
						ran-type-fn
						dom-elem-type-fn
						ran-elem-type-fn
						formals
						&optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn))
  (let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var1 (car vars))
	 (var2 (cadr vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (,dom-elem-type-fn ,var1)
			     (,ran-elem-type-fn ,var2)))
	      (,alist-type-fn ,@(replace-equal 'l 
					       `(acons ,var1 ,var2 l)
					       formals)))))
  
(defthm alist-type-acons
  (alist-type-acons-lemma alist-type domain-type range-type 
			  domain-elem-type range-elem-type (l))
  :hints (("Goal" :do-not-induct t
	   :in-theory (enable alist-type-alistp acons))))

(defmacro alist-type-append-lemma  (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "L" alist-type-fn) formals))
	 (var1 (car vars))
	 (var2 (cadr vars)))
    `(implies ,(my-conjoin (my-conjuncts guard) 
			   `((,alist-type-fn ,@(replace-equal 'l var1 formals))
			     (,alist-type-fn ,@(replace-equal 'l var2 formals))))
	      (,alist-type-fn ,@(replace-equal 'l `(append ,var1 ,var2) formals)))))

(defthm alist-type-append 
  (alist-type-append-lemma alist-type domain-type range-type 
			   domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-bind-equal-lemma (alist-type-fn dom-type-fn
					       ran-type-fn
					       dom-elem-type-fn
					       ran-elem-type-fn
					       formals
					       &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn))
  (let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var1 (car vars))
	 (var2 (cadr vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (,dom-elem-type-fn ,var1)
			     (,ran-elem-type-fn ,var2)))
	      (,alist-type-fn ,@(replace-equal 'l 
					       `(bind-equal ,var1 ,var2 l)
					       formals)))))
  
(defthm alist-type-bind-equal
  (alist-type-bind-equal-lemma alist-type domain-type range-type 
			 domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-rembind-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)))
	      (,alist-type-fn ,@(replace-equal 'l `(rembind-equal ,var l) formals)))))

(defthm alist-type-rembind-equal
  (alist-type-rembind-equal-lemma alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-pairlis$-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var1 (car vars))
	 (var2 (cadr vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((true-listp ,var1)
			     (,dom-type-fn ,var1)
			     (,ran-type-fn ,var2)
			     (eql (len ,var1) (len ,var2))))
	      (,alist-type-fn ,@(replace-equal 'l
					       `(pairlis$ ,var1 ,var2)
					       formals)))))

(defthm alist-type-pairlis$
  (alist-type-pairlis$-lemma alist-type domain-type range-type 
			     domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-bind-all-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 3 (intern-in-package-of-symbol "L" alist-type-fn) formals))
	 (var1 (car vars))
	 (var2 (cadr vars))
	 (var3 (caddr vars)))	       
    `(implies ,(my-conjoin (my-conjuncts guard) 
			   `((,dom-type-fn ,@(replace-equal 'l var1 formals))
			     (,ran-type-fn ,@(replace-equal 'l var2 formals))
			     (,alist-type-fn ,@(replace-equal 'l var3 formals))))
	      (,alist-type-fn ,@(replace-equal 'l `(bind-all-equal ,var1 ,var2 ,var3) formals)))))

(defthm alist-type-bind-all-equal 
  (alist-type-bind-all-equal-lemma alist-type domain-type range-type 
			   domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))


(defmacro alist-type-domain-restrict-equal-lemma  (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "L" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)))
	      (,alist-type-fn ,@(replace-equal 'l
					       `(domain-restrict-equal ,var l)
					       formals)))))

(defthm alist-type-domain-restrict-equal 
  (alist-type-domain-restrict-equal-lemma alist-type domain-type range-type 
				    domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-rembind-all-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "L" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)))
	      (,alist-type-fn ,@(replace-equal 'l `(rembind-all-equal ,var l) formals)))))

(defthm alist-type-rembind-all-equal
  (alist-type-rembind-all-equal-lemma alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))

(defmacro alist-type-bind-pairs-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "PAIRS" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@(Replace-equal 'l var formals))
			     (,alist-type-fn ,@formals)))
	      (,alist-type-fn ,@(replace-equal 'l `(bind-pairs-equal ,var l) formals)))))

(defthm alist-type-bind-pairs-equal
  (alist-type-bind-pairs-equal-lemma alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :hints (("Goal" :induct t)))


(defmacro alist-type-assoc-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (not (,dom-elem-type-fn ,var))))
	      (not (assoc-equal ,var l)))))

(defthm alist-type-assoc-equal
  (alist-type-assoc-equal-lemma  alist-type domain-type range-type 
		      domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (enable alist-type-alistp assoc-equal))))

(defmacro alist-type-bound?-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (not (,dom-elem-type-fn ,var))))
	      (not (bound?-equal ,var l)))))

(defthm alist-type-bound?-equal
  (alist-type-bound?-equal-lemma  alist-type domain-type range-type 
		      domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (enable alist-type-alistp bound?-equal))))


(defmacro alist-type-all-bound?-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (true-listp ,var)
			     (not (,dom-type-fn ,var))))
	      (not (all-bound?-equal ,var l)))))


(defthm alist-type-all-bound?-equal
  (alist-type-all-bound?-equal-lemma  alist-type domain-type range-type 
		      domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (set-difference-theories (enable alist-type-alistp all-bound?-equal)
						      '(bound?-equal)))))

(defmacro alist-type-binding-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (bound?-equal ,var l)))
	      (,ran-elem-type-fn (binding-equal ,var l)))))

(defthm alist-type-binding-equal
  (alist-type-binding-equal-lemma alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :rule-classes :forward-chaining
  :hints (("Goal" :in-theory (enable alist-type-alistp binding-equal bound?-equal))))

(defmacro alist-type-cdr-assoc-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn ran-type-fn dom-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)
			     (assoc-equal ,var l)))
	      (,ran-elem-type-fn (cdr (assoc-equal ,var l))))))

(defthm alist-type-cdr-assoc-equal
  (alist-type-cdr-assoc-equal-lemma alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :rule-classes :forward-chaining
  :hints (("Goal" :in-theory (enable alist-type-alistp assoc-equal bound?-equal))))

(defmacro alist-type-domain-lemma (alist-type-fn dom-type-fn
						 ran-type-fn
						 dom-elem-type-fn
						 ran-elem-type-fn
						 formals
						 &optional (guard 't))
  (declare (ignore ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  `(implies ,(my-conjoin (my-conjuncts guard)
			 `((,alist-type-fn ,@formals)))
	    (,dom-type-fn (domain l))))

(defthm alist-type-domain
  (alist-type-domain-lemma  alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (enable alist-type-alistp domain))))

(defmacro alist-type-range-lemma (alist-type-fn dom-type-fn
						 ran-type-fn
						 dom-elem-type-fn
						 ran-elem-type-fn
						 formals
						 &optional (guard 't))
  (declare (ignore dom-type-fn dom-elem-type-fn ran-elem-type-fn))
  `(implies ,(my-conjoin (my-conjuncts guard)
			 `((,alist-type-fn ,@formals)))
	    (,ran-type-fn (range l))))

(defthm alist-type-range
  (alist-type-range-lemma   alist-type domain-type range-type 
			    domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (enable alist-type-alistp range))))

(defmacro alist-type-collect-bound-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore ran-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)))
	      (,dom-type-fn ,@(replace-equal 'l `(collect-bound-equal ,var l) formals)))))

(defthm alist-type-collect-bound-equal
  (alist-type-collect-bound-equal-lemma  alist-type domain-type range-type 
		      domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (set-difference-theories (enable alist-type-alistp collect-bound-equal)
						      '(bound?-equal)))))

(defmacro alist-type-all-bindings-equal-lemma (alist-type-fn dom-type-fn
						  ran-type-fn
						  dom-elem-type-fn
						  ran-elem-type-fn
						  formals
						  &optional (guard 't))
  (declare (ignore dom-type-fn dom-elem-type-fn ran-elem-type-fn))
  (let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" alist-type-fn) formals))
	 (var (car vars)))
    `(implies ,(my-conjoin (my-conjuncts guard)
			   `((,alist-type-fn ,@formals)))
	      (,ran-type-fn ,@(replace-equal 'l `(all-bindings-equal ,var l) formals)))))

(defthm alist-type-all-bindings-equal
  (alist-type-all-bindings-equal-lemma  alist-type domain-type range-type 
		      domain-elem-type range-elem-type (l))
  :hints (("Goal" :in-theory (set-difference-theories (enable alist-type-alistp all-bindings-equal)
						      '(bound?-equal binding-equal)))))

; ------------------------------------------------------------
; Typed ALists
; ------------------------------------------------------------

(defconst *defalist-true-fn* '(lambda (x) (declare (ignore x)) t)
  "The single-argument predicate that is always true.")

(defconst *defalist-theory-options*
  '(acons alistp all-bindings-equal all-bound?-equal append assoc-equal
	  bind-all-equal bind-equal bind-pairs-equal binding-equal
	  bound?-equal collect-bound-equal domain domain-restrict-equal
	  pairlis$ range rembind-all-equal rembind-equal)
  "This list contains all of the symbols recognized as valid options for
   the DEFALIST :THEORY option.")

(defun pack-intern-names (name1 name2)
  (u::pack-intern name1 name1 "-" name2))

(u::defloop pack-intern-all-names (name l)
	    (for ((x in l))
		 (collect (pack-intern-names name x))))

; DEFALIST-DEFTHMS.
; Generate a list of DEFTHM forms. These defthms explain
; the properties of standard list operations with 
; respect to a typed list predicate.
; For arguments, see documentation for DEF-TYPED-LIST
; macro below.

(u::defloop defalist-defthms (alist-type-fn formals dom-elem-type-fn ran-elem-type-fn 
					    dom-type-fn ran-type-fn guard theory binding-equal-rule-classes)
	    (declare (xargs :guard (and (symbolp alist-type-fn)
					(arglistp formals)
					(consp formals)
					(symbol-listp theory))
			    :mode :program))
	    (for ((fn in theory))
		 (append (let ((lemmaname (pack-intern-names alist-type-fn fn))
			       (lemma-macro-name (u::pack-intern alist-type-fn 'alist-type- fn '-lemma))
			       (rule-classes (case fn
					       (binding-equal binding-equal-rule-classes)
					       (alistp '(:forward-chaining))
					       (t '(:rewrite))))
			       (hints (if (or (consp (my-conjuncts guard))
					      (and (equal dom-type-fn *defalist-true-fn*)
						   (not (equal dom-elem-type-fn *defalist-true-fn*)))
					      (and (equal ran-type-fn *defalist-true-fn*)
						   (not (equal ran-elem-type-fn *defalist-true-fn*)))
					      (> (len formals) 1))
					  `(("Goal" :in-theory (enable ,fn ,@(if (eq fn 'binding-equal) '(bound?-equal) ()))))
					;; The functional instance of the domain and range element types are
					;; presented as lambda forms, since these may be defined as macros.
					(let ((domain-elem-type-instance (if (equal dom-elem-type-fn *defalist-true-fn*) 
									     (remove-equal '(declare (ignore x)) dom-elem-type-fn)
									   (cond ((and (consp dom-elem-type-fn)
										       (eq (car dom-elem-type-fn) 'acl2::lambda))
										  dom-elem-type-fn)
										 (t `(lambda (x) (,dom-elem-type-fn x))))))
					      (domain-type-instance (if (equal dom-type-fn *defalist-true-fn*) 
									(remove-equal '(declare (ignore x)) dom-type-fn)
								      dom-type-fn))
					      (range-elem-type-instance (if (equal ran-elem-type-fn *defalist-true-fn*) 
									    (remove-equal '(declare (ignore x)) ran-elem-type-fn)
									  (cond ((and (consp ran-elem-type-fn)
										      (eq (car ran-elem-type-fn) 'acl2::lambda))
										 ran-elem-type-fn)
										(t `(lambda (x) (,ran-elem-type-fn x))))))
					      (range-type-instance (if (equal ran-type-fn *defalist-true-fn*) 
								       (remove-equal '(declare (ignore x)) ran-type-fn)
								     ran-type-fn)))
					  `(("Goal" :do-not-induct t
					     :use  (:functional-instance
						    ,(u::pack-intern alist-type-fn 'alist-type- fn)
						    ;; In the case a type fn is (lambda (x) (declare (ignore x)) t)
						    ;; we have to remove the (declare (ignore x)) to make it a pseudo-lambda
						    ;; expression. See :doc lemma-instance.
						    (domain-elem-type ,domain-elem-type-instance)
						    (domain-type ,domain-type-instance)
						    (range-elem-type ,range-elem-type-instance)
						    (range-type ,range-type-instance)
						    (alist-type ,alist-type-fn))))))))
			   `((defthm ,lemmaname
			       (,lemma-macro-name ,alist-type-fn ,dom-type-fn ,ran-type-fn ,dom-elem-type-fn ,ran-elem-type-fn
						  ,formals ,guard)
			       :rule-classes ,rule-classes
			       :hints ,hints)
			     ;; When the fn is ASSOC-EQUAL, then we generate both the ASSOC-EQUAL and CDR-ASSOC-EQUAL lemmas.
			     ,@(if  (and (eq fn 'assoc-equal) (not (equal ran-elem-type-fn *defalist-true-fn*)))
				   `((defthm ,(pack-intern-names alist-type-fn (pack-intern-names 'cdr fn))
				      (,(u::pack-intern alist-type-fn 'alist-type-cdr-assoc-equal-lemma)
				       ,alist-type-fn ,dom-type-fn ,ran-type-fn ,dom-elem-type-fn ,ran-elem-type-fn ,formals ,guard)
				      :rule-classes ,binding-equal-rule-classes
				      :hints ,(subst (pack-intern-names 'alist-type (pack-intern-names 'cdr fn))
						     (u::pack-intern alist-type-fn 'alist-type- fn)
						     hints)))
				 nil))))))
				       

(defconst *defalist-options* '(:BINDING-EQUAL-RULE-CLASSES :THEORY :OMIT-DEFUN :DOMAIN-TYPE :RANGE-TYPE :THEORY-NAME)
  "This list contains all of the  valid keyword options for DEFALIST.")

(defconst *forward-chaining-elem-types*
  '(integerp rationalp complex-rationalp symbolp true-listp stringp characterp 
	     alistp acl2-numberp
             #+:non-standard-analysis realp
             #+:non-standard-analysis complexp)
  "When a range element type recognizer is one of these, then BINDING-EQUAL-RULE-CLASSES
defaults to :forward-chaining, otherwise :rewrite.")

(defun defalist-check-syntax (name formals body)
  "Return NIL if no errors, otherwise crash."
  (declare (xargs :mode :program))
  (cond
   ((not (symbolp name))
    (u::bomb 'DEFALIST "The function name must be a symbol, but ~p0 is not."
	     name))
   ((not (true-listp formals))
    (u::bomb 'DEFALIST "The argument list ~p0 is not a true list." formals))
   ((not (arglistp formals))
    (mv-let (elmt msg) (find-first-bad-arg formals)
      (u::bomb 'DEFALIST "The argument list ~p0 is not valid because the ~
                          element ~p1 ~@2." formals elmt msg)))
   ((let* ((formal-strings (u::mapcar-string formals))
	   (l-tail (member-equal "L" formal-strings))
	   (multiple-ls (member-equal "L" (cdr l-tail))))
      (or (not l-tail) multiple-ls))
    (u::bomb 'DEFALIST "The formal argument list to DEFALIST must be a valid ~
                       functional argument list that contains exactly 1 ~
                       symbol whose print-name is \"L\", but ~p0 is not."
	     formals))
   ((null body) (u::bomb 'DEFALIST "The function body is empty!"))
   (t (let* ((last-form (car (last body)))
	     (options? (and (>= (len body) 2)
			    (true-listp last-form)
			    (eq (car last-form) :OPTIONS)))
	     (predicate (if options?
			    (car (last (butlast body 1)))
			  last-form)))
	(cond
	 ((and (consp predicate)
	       (let ((d (car predicate))
		     (r (cdr predicate)))
		 (and (or (symbolp d)
			  (and (true-listp d)
			       (>= (len d) 3)
			       (eq (first d) 'ACL2::LAMBDA)
			       (arglistp (second d))
			       (equal (len (second d)) 1)))
		      (or (symbolp r)
			  (and (true-listp r)
			       (>= (len r) 3)
			       (eq (first r) 'ACL2::LAMBDA)
			       (arglistp (second r))
			       (equal (len (second r)) 1))))))
	  NIL)
	 (t (u::bomb 'DEFALIST "The DEFALIST predicate designator must be a ~
                             pair (d . r) where d is either a function symbol
                             or a 1-argument LAMBDA function, and r ~
                             is either a function symbol or a 1-argument
                             LAMBDA function. ~p0 does not satisfy this
                             requirement." predicate))))))) 

(deftheory minimal-theory-for-defalist
  (union-theories
   (current-theory 'ground-zero)
   (current-theory 'alist-defuns)))

;; It is ok to avoid placing a type restriction on the domain or range of a defalist.
;; When a type is omitted, certain lemmas should be omitted from the generated theory.
;; This filter weeds out the theory elements that should be avoided in these cases.

(u::defloop filter-alist-theory (theory dom-elem-type-fn ran-elem-type-fn dom-type-fn ran-type-fn)
	    (for ((fn in theory))
		 (when (case fn
			 (binding-equal (not (equal ran-elem-type-fn *defalist-true-fn*)))
			 (bound?-equal (not (equal dom-elem-type-fn *defalist-true-fn*)))
			 (domain (not (equal dom-type-fn *defalist-true-fn*)))
			 (range (not (equal ran-type-fn *defalist-true-fn*)))
			 (pairlis$ (and (not (equal dom-type-fn *defalist-true-fn*))
					(not (equal ran-type-fn *defalist-true-fn*))))
			 (bind-all-equal (and (not (equal dom-type-fn *defalist-true-fn*))
					      (not (equal ran-type-fn *defalist-true-fn*))))
			 (all-bound?-equal (not (equal dom-type-fn *defalist-true-fn*)))
			 (collect-bound-equal (not (equal dom-type-fn *defalist-true-fn*)))
			 (all-bindings-equal (not (equal ran-type-fn *defalist-true-fn*)))
			 (t t))
		   (collect fn))))
			    
(defmacro defalist (name formals &rest body)
  ":doc-section defalist
  Define a new alist type, and a theory of the alist type.
  ~/
 Examples:

  (defalist symbol-to-integer-alistp (l)
    \"Recognizes an alist mapping symbols to integers.\"
    (symbolp . integerp))   
 
  (defalist symbol-to-bnatural-alistp (l lub)
    \"Recognizes an alists mapping symbols to  naturals bounded by lub.\"
    (symbolp . (lambda (x) (bnaturalp x lub))))
 
  (defalist symbol-alistp (l)
    \"Define an alist theory alists from an unspecified domain type to
     symbols.\"
    ((lambda (x) t) . symbolp)
    (:options :omit-defun (:range-type symbol-listp)))
 
  (defalist string-to-integer-alistp (l)
    \"Recognizes an alist mapping strings to integers. Produce a minimal 
     theory, and store the BINDING-EQUAL lemma as a :TYPE-PRESCRIPTION.\"
    (stringp . integerp)
    (:options (:theory nth put) (:binding-equal-rule-classes :type-prescription)
              (:domain-type string-listp) (:range-type integer-listp)))
 ~/
 Syntax:

   DEFALIST name arglist [documentation] {declaration}* type-pair [option-list]
 
   option-list ::= (:OPTIONS <<!options>>)
 
   options ::= !binding-equal-rule-classes-option |
               !omit-defun-option |
               !theory-option |
               !domain-type-option |
               !range-type-option |
               !theory-name-option 
 
   theory-option ::= (:THEORY <<!alist-functions>>)

   theory-name-option ::= (:THEORY-NAME theory-name)
 
   alist-functions ::= acons | alistp | all-bindings-equal| all-bound?-equal | append |
                       assoc-equal | bind-all-equal | bind-equal | bind-pairs-equal | 
                       binding-equal | bound?-equal | collect-bound-equal | domain |
                       domain-restrict-equal | pairlis$ | range | rembind-all-equal |
                       rembind-equal
 
   binding-equal-rule-classes-option ::= (:BINDING-EQUAL-RULE-CLASSES rule-classes)
 
   omit-defun-option ::= :OMIT-DEFUN

 Arguments and Values:
 
   arglist -- an argument list satisfying ACL2::ARGLISTP, and containing
     exactly one symbol whose `print-name' is \"L\".
 
   declaration -- any valid declaration.
 
   documentation -- a string; not evaluated.
  
   name -- a symbol.

   theory-name -- any symbol that is a legal name for a deftheory event.
  
   type-pair -- A pair (d . r) where d and r are either a function symbol
     or a one argument LAMBDA function or the constant T. 
     d designates a predicate to be applied to each element of the domain 
     of the alist, and r designates a predicate to be applied to each element
     of the range of the alist. T means no type restriction.

   rule-classes -- any form legal as an argument to the :RULE-CLASSES keyword
    of DEFTHM.

   Acl2-theory-expression -- Any legal Acl2 theory expression

 Description:

  DEFALIST defines a recognizer for association lists whose pairs map
  keys of a given type to values of a given type, and by default creates 
  an extensive theory for alists of the newly defined type.

  To define an alist type with DEFALIST you must supply a name for the alist
  recognizer, an argument list for the recognizer, and predicate designator for
  elements of the alist's range. The name may be any symbol.  The argument list
  must be valid as a functional argument list, and must contain exactly one
  symbol whose `print-name'is \"L\".  By convention this is the alist argument
  recognized by the function defined by DEFALIST.

  The type of the domain and range of the alist is given by a pair (d . r)
  where d identifies the type of an element of the alist's domain, and r
  specifies the type of an element of the alist's range. Either of these
  may be specified by a symbol which names a one-argument function (or macro)
  which tests the elements of the domain and range of L. Either of d and r may
  also be specified as a single-argument LAMBDA function. Finally, either of d
  and r may be specified as the constant t, indicating no type constraint.

  Any number of other arguments to the alist functions may be supplied, 
  but only the L argument will change in the recursive structure of the recognizer.

  Note that DEFALIST does not create any guards for L or any other argument.
  Guards may be specified in the usual way since any number of DECLARE forms
  may preceed the predicate specification in the DEFALIST form.  Bear in mind
  that if you are defining a function to be used as a guard, then you are
  advised to consider what impact guarding the arguments of the function may
  have on its utility.  In general the most useful guard functions are those
  that are guard-free.

 Theory:

  By default, DEFALIST creates an extensive theory for the recognized alists.
  This theory contains appropriate lemmas for all of the alist functions 
  appearing in the `alist-functions' syntax description above.  One can select
  a subset of this theory to be generated by using the :THEORY option
  (see below).  DEFALIST always creates a :FORWARD-CHAINING rule from the 
  recognizer to ALISTP.

  DEFALIST also creates a DEFTHEORY event that lists all of the lemmas created
  by the DEFALIST.  The name of the theory is formed by concatenating the
  function name and the string \"-THEORY\", and INTERNing the resulting string
  in the package of the function name.

 Options:

  DEFALIST options are specified with a special :OPTIONS list systax.  If
  present, the :OPTIONS list must appear as the last form in the body of the
  DEFALIST.

  :OMIT-DEFUN

    If the :OMIT-DEFUN keyword is present then the definition will not be
    created.  Instead, only the list theory for the function is
    generated. Use this option to create a list theory for recognizers
    defined elsewhere.

  :THEORY  

   This option is used to specify that only a subset of the list theory be
   created.  In the STRINGP-LISTP example above we specify that only lemmas
   about STRINGP-LISTP viz-a-viz NTH and PUT are to be generated.  By default
   the complete list theory for the recognizer is created.  If the option is
   given as (:THEORY) then the entire theory will be suppressed,
   except for the :FORWARD-CHAINING rule from the recognizer to TRUE-LISTP.

  :BINDING-EQUAL-RULE-CLASSES

   This option specifies a value for the :RULE-CLASSES keyword for the 
   DEFTHM generated for the BINDING-EQUAL function (and for CDRASSOC) applied to
   an alist recognized by the DEFALIST recognizer.  The default is :REWRITE.

  :DOMAIN-TYPE

   This option specifies a predicate that recognizes a list of domain elements.
   It may be either a symbol or LAMBDA form. If present, and when not prevented
   by a :THEORY specification, a rewrite rule for the type of the domain
   will be generated. A lemma will be generated to check the compatibility
   of the specified domain type and domain element type.

  :RANGE-TYPE

   This option specifies a predicate that recognizes a list of range elements.
   It may be either a symbol or LAMBDA form. If present, and when not prevented
   by a :THEORY specification, a rewrite rule for the type of the range
   will be generated.  A lemma will be generated to check the compatibility
   of the specified range type and domain element type.

  :THEORY-NAME

   This option allows the user to define the name of the deftheory event
   that is automatically generated, and which includes the defthms that
   are generated. 
   ~/"
  (let*
    ((syntax-err (defalist-check-syntax name formals body))
     (last-form (car (last body)))
     (options? (and (>= (len body) 2)
                    (true-listp last-form)
                    (eq (car last-form) :OPTIONS)))
     (option-list (if options? (cdr last-form) nil))
     (type-pair (if options?
		    (car (last (butlast body 1)))
		  last-form))
     (dom-elemtype (if (eq (car type-pair) t)
		       *defalist-true-fn*
		     (car type-pair)))
     (ran-elemtype (if (eq (cdr type-pair) t)
		       *defalist-true-fn*
		     (cdr type-pair)))
     (l (nth (position-equal "L" (u::mapcar-string formals)) formals))
     (guard (u::get-guards-from-body body))
     (ctx 'DEFALIST)
     (option-err (u::get-option-check-syntax
                  ctx option-list *defalist-options* nil nil))
     (omit-defun (u::get-option-as-flag ctx :OMIT-DEFUN option-list))
     (theory (u::get-option-subset
              ctx :THEORY option-list
	      *defalist-theory-options* *defalist-theory-options*))
     (binding-equal-rule-classes (u::get-option-argument
			    ctx :BINDING-EQUAL-RULE-CLASSES option-list :FORM
			    :REWRITE :REWRITE))
     (domain-type (u::get-option-argument
		   ctx :DOMAIN-TYPE option-list :FORM 
		   *defalist-true-fn*
		   *defalist-true-fn*))
     (range-type (u::get-option-argument
		  ctx :RANGE-TYPE option-list :FORM
		  *defalist-true-fn*
		  *defalist-true-fn*))
     (theory-name (u::get-option-argument
		   ctx :THEORY-NAME option-list :FORM
		   (u::pack-intern name name "-THEORY") (u::pack-intern name name "-THEORY")))
     )
    (or
     syntax-err				;Both better be NIL.
     option-err
     (and (equal dom-elemtype *defalist-true-fn*)
	  (not (equal domain-type *defalist-true-fn*)))
     (and (equal ran-elemtype *defalist-true-fn*)
	  (not (equal range-type *defalist-true-fn*)))

     ;; We always generate the alistp event.

     (let ((theory1 
	    (union-equal '(alistp)
			 (filter-alist-theory theory dom-elemtype ran-elemtype domain-type range-type))))
	    
       `(ENCAPSULATE ()

		     ;; We do the definition and proofs in a minimal theory for speed.
		     ;; The first label is for proofs that need the original theory.

		     (LOCAL (DEFLABEL DEFALIST-RESERVED-LABEL))

		     ,@(if omit-defun
			   nil
			 (list
			  `(DEFUN ,name ,formals
			     ,@(butlast body (if options? 2 1))
			     (COND ((ATOM ,l) (NULL ,l))
				   (T (AND (consp (CAR ,l))
					   (,dom-elemtype (caar ,l))
					   (,ran-elemtype (cdar ,l))
					   (,name ,@(replace-equal l `(CDR ,l) formals))))))
			  ))
         
		     ,@(defalist-defthms
			 name formals dom-elemtype ran-elemtype domain-type range-type
			 guard theory1 binding-equal-rule-classes)

		     (DEFTHEORY ,theory-name
		       ',(pack-intern-all-names name theory1))))
    )))

#|

Examples:

(defalist symbol-to-integer-alistp (l)
  "Recognizes an alist mapping symbols to integers."
  (symbolp . integerp)
  (:options (:domain-type symbol-listp)
	    (:range-type integer-listp)))

(defmacro naturalp (n) 
  `(and (integerp ,n) (<= 0 ,n)))

(defun natural-listp (l)
  (if (atom l) t
    (and (naturalp (car l)) (natural-listp (cdr l)))))
 
(defalist symbol-to-natural-alistp (l)
  "Recognizes an alists mapping symbols to  naturals bounded by lub."
  (symbolp . naturalp)
  (:options (:domain-type symbol-listp)
	    (:range-type natural-listp)
	    (:theory binding-equal)
	    (:theory-name sym->nat-theory)))
 
(defalist string-to-integer-alistp (l)
  "Recognizes an alist mapping strings to integers. Produce a minimal 
  theory, and store the BINDING-EQUAL lemma as a :TYPE-PRESCRIPTION."
  (stringp . integerp)
  (:options (:theory bind binding-equal bound?-equal)
	    (:binding-equal-rule-classes :type-prescription)
	    (:domain-type string-listp) 
	    (:range-type integer-listp)))

(defalist symbol-alistp (l)
  "Define an alist theory for alists mapping symbols to an arbitrary range type."
  (symbolp . t)
  (:options :omit-defun (:domain-type symbol-listp)))

(defalist anything-to-integer-alistp (l)
  (t . integerp)
  (:options (:range-type integer-listp)
	    (:theory binding-equal)))

|#