1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
|
; deflist.lisp -- defining typed lists
; Copyright (C) 1997 Computational Logic, Inc.
; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
; Written by: Bill Bevier (bevier@cli.com) and Bishop Brock
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; deflist.lisp
;;;
;;; A package for defining a recognizer for a typed list. Rewrite
;;; rules describing how the recognizer interacts with functions
;;; from the list theory can be automatically generated.
;;;
;;; Bill Bevier
;;; Computational Logic, Inc.
;;; 1717 West 6th Street, Suite 290
;;; Austin, Texas 78703
;;; bevier@cli.com
;;;
;;; Modified by Bishop Brock, brock@cli.com
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
; To certify this book:
#|
(in-package "ACL2")
(defpkg "U" (union-eq *acl2-exports*
*common-lisp-symbols-from-main-lisp-package*))
(certify-book "deflist" 1)
|#
(in-package "ACL2")
(include-book "list-defuns")
(include-book "utilities")
(local (include-book "list-defthms"))
; ------------------------------------------------------------
; This section introduces three pairs of predicates
;
; ELEM-TYPE00, LIST-TYPE00
; ELEM-TYPE10, LIST-TYPE10
; ELEM-TYPE11, LIST-TYPE11
;
; ELEM-type00 is a unary predicate, and LIST-type00 is a unary predicate
; that recognizes lists in which every element satisfies ELEM-type00.
; ELEM-TYPE11 and LIST-TYPE11 are similar, but allow an extra
; parameter. The parameter that represents the value to be tested is
; the left one. For example, ELEM-TYPE10 can be instantiated with
; the function (lambda (x lub) (and (numberp x) (< x lub)))
; and LIST-TYPE10 can be similarly instantiated.
;
; The only difference between ELEM-TYPE11 and ELEM-TYPE10 is the
; order of the parameters. In 11, the tested arg is second;
; in 10, the tested arg is first.
;
; Note: do not change the names of these functions. The names are
; used in subsequent macros.
; ------------------------------------------------------------
(encapsulate ((elem-type00 (x) boolean)
(list-type00 (l) boolean))
(local (in-theory '(ground-zero)))
(local (defun elem-type00 (x)
(declare (ignore))
(integerp x)))
(local (defun list-type00 (l)
(cond ((atom l) (eq l nil))
(t (and (elem-type00 (car l))
(list-type00 (cdr l)))))))
(defthm list-type00-defun
(iff (list-type00 l)
(cond ((atom l) (eq l nil))
(t (and (elem-type00 (car l))
(list-type00 (cdr l))))))
:rule-classes ((:rewrite :corollary
(implies (atom l)
(equal (list-type00 l) (null l))))
(:rewrite :corollary
(equal (list-type00 (cons x l))
(and (elem-type00 x)
(list-type00 l))))))
)
(encapsulate ((elem-type10 (x a) boolean)
(list-type10 (l a) boolean))
(local (in-theory '(ground-zero)))
(local (defun elem-type10 (x a)
(declare (ignore a))
(integerp x)))
(local (defun list-type10 (l a)
(cond ((atom l) (eq l nil))
(t (and (elem-type10 (car l) a)
(list-type10 (cdr l) a))))))
(defthm list-type10-defun
(iff (list-type10 l a)
(cond ((atom l) (eq l nil))
(t (and (elem-type10 (car l) a)
(list-type10 (cdr l) a)))))
:rule-classes ((:rewrite :corollary
(implies (atom l)
(equal (list-type10 l a) (null l))))
(:rewrite :corollary
(equal (list-type10 (cons x l) a)
(and (elem-type10 x a)
(list-type10 l a))))))
)
(encapsulate ((elem-type11 (a x) boolean)
(list-type11 (a l) boolean))
(local (in-theory '(ground-zero)))
(local (defun elem-type11 (a x)
(declare (ignore a))
(integerp x)))
(local (defun list-type11 (a l)
(cond ((atom l) (eq l nil))
(t (and (elem-type11 a (car l))
(list-type11 a (cdr l)))))))
(defthm list-type11-defun
(iff (list-type11 a l)
(cond ((atom l) (eq l nil))
(t (and (elem-type11 a (car l))
(list-type11 a (cdr l))))))
:rule-classes ((:rewrite :corollary
(implies (atom l)
(equal (list-type11 a l) (null l))))
(:rewrite :corollary
(equal (list-type11 a (cons x l))
(and (elem-type11 a x)
(list-type11 a l))))))
)
;; Some utility functions
(defun replace-equal (a b l)
(declare (xargs :guard (true-listp l)))
(cond ((endp l) nil)
((equal (car l) a) (cons b (replace-equal a b (cdr l))))
(t (cons (car l) (replace-equal a b (cdr l))))))
(defun my-conjoin (termlist1 termlist2)
(declare (xargs :guard (and (true-listp termlist1)
(true-listp termlist2)
(or (consp termlist1) (consp termlist2)))))
(let ((termlist (append termlist1 termlist2)))
(cond ((= (len termlist) 1)
(car termlist))
(t (fcons-term 'and termlist)))))
(mutual-recursion
(defun my-conjuncts (term)
(cond ((eq term t) ())
((atom term) (list term))
((eq (car term) 'and) (my-conjuncts-list (cdr term)))
(t (list term))))
(defun my-conjuncts-list (termlist)
(cond ((atom termlist) nil)
(t (append (my-conjuncts (car termlist))
(my-conjuncts-list (cdr termlist))))))
)
; For each lemma in the theory, the lemma term is defined by a macro
; to make it easy to instantiate. The lemma is then proved.
; The macros in the following script generate forms that are believed to be
; lemmas about list predicates. The arguments to these macros have the following meanings.
; elem-type-fn: a symbol that names a predicate, or a lambda expression of one argument
; list-type-fn: a symbol that names a predicate which recognizes a list of elem types
; formals: the formal parameter list to list-type-fn
; The convention is that the formal parameter L represents the list argument.
; If elem-type-fn is a symbol, then the formal parameter list to elem-type-fn
; assumes that the parameter in this position represents an element in the list.
; guard either 't, or an expression in the formal parameters
;
; Example:
;
; (defun bound-numberp (x lub)
; (and (acl2-numberp x) (acl2-numberp lub) (< x lub)))
;
; (defun bound-number-listp (l lub)
; (cond ((atom l) t)
; (t (and (bound-numberp (car l) lub)
; (bound-number-listp (cdr l) lub)))))
;
; ---------- TRUE-LISTP ----------
(defmacro list-type-true-listp-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(true-listp l)))
(defthm list-type-true-listp00
(list-type-true-listp-lemma elem-type00 list-type00 (l))
:rule-classes :forward-chaining
:hints (("Goal" :induct t)))
(defthm list-type-true-listp10
(list-type-true-listp-lemma elem-type10 list-type10 (l a))
:rule-classes :forward-chaining
:hints (("Goal" :induct t)))
(defthm list-type-true-listp11
(list-type-true-listp-lemma elem-type11 list-type11 (a l))
:rule-classes :forward-chaining
:hints (("Goal" :induct t)))
; ---------- CONS ----------
(defmacro list-type-cons-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l var formals) (list var)))
(,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(cons ,var l) formals)))))
(defthm list-type-cons00
(list-type-cons-lemma elem-type00 list-type00 (l))
:rule-classes nil)
(defthm list-type-cons10
(list-type-cons-lemma elem-type10 list-type10 (l a))
:rule-classes nil)
(defthm list-type-cons11
(list-type-cons-lemma elem-type11 list-type11 (a l))
:rule-classes nil)
; ---------- CDR ----------
(defmacro list-type-cdr-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l '(cdr l) formals))))
(defthm list-type-cdr00
(list-type-cdr-lemma elem-type00 list-type00 (l)))
(defthm list-type-cdr10
(list-type-cdr-lemma elem-type10 list-type10 (l a)))
(defthm list-type-cdr11
(list-type-cdr-lemma elem-type11 list-type11 (a l)))
(in-theory (disable list-type-cdr00 list-type-cdr10
list-type-cdr11))
; ---------- APPEND ----------
(defmacro list-type-append-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "L" list-type-fn) formals))
(var1 (car vars))
(var2 (cadr vars)))
`(implies ,(my-conjoin (my-conjuncts guard) `((true-listp ,var1)))
(equal (,list-type-fn ,@(replace-equal 'l `(append ,var1 ,var2) formals))
(and (,list-type-fn ,@(replace-equal 'l var1 formals))
(,list-type-fn ,@(replace-equal 'l var2 formals)))))))
(defthm list-type-append00
(list-type-append-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t)))
(defthm list-type-append10
(list-type-append-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t)))
(defthm list-type-append11
(list-type-append-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t)))
; ---------- FIRSTN ----------
(defmacro list-type-firstn-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(firstn ,var l) formals)))))
(defthm list-type-firstn00
(list-type-firstn-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-firstn10
(list-type-firstn-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-firstn11
(list-type-firstn-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- LAST ----------
(defmacro list-type-last-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l '(last l) formals))))
(defthm list-type-last00
(list-type-last-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t)))
(defthm list-type-last10
(list-type-last-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t)))
(defthm list-type-last11
(list-type-last-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t)))
; ---------- MAKE-LIST ----------
(defmacro list-type-make-list-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((vars (u::unique-symbols 3 (intern-in-package-of-symbol "X" list-type-fn) formals))
(var1 (car vars))
(var2 (cadr vars))
(var3 (caddr vars))
(guards (my-conjuncts guard))
(rule `(iff (,list-type-fn ,@(replace-equal 'l `(make-list-ac ,var1 ,var2 ,var3) formals))
(and (or (zp ,var1)
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l var2 formals) (list var2))))
(,list-type-fn ,@(replace-equal 'l var3 formals))))))
(cond (guards `(implies ,(my-conjoin guards nil)
,rule))
(t rule))))
(defthm list-type-make-list00
(list-type-make-list-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-make-list10
(list-type-make-list-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-make-list11
(list-type-make-list-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- NTHCDR ----------
(defmacro list-type-nthcdr-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(nthcdr ,var l) formals)))))
(defthm list-type-nthcdr00
(list-type-nthcdr-lemma elem-type00 list-type00 (l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-nthcdr10
(list-type-nthcdr-lemma elem-type10 list-type10 (l a))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-nthcdr11
(list-type-nthcdr-lemma elem-type11 list-type11 (a l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- NTH-SEG ----------
(defmacro list-type-nth-seg-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var1 (car vars))
(var2 (cadr vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(nth-seg ,var1 ,var2 l) formals)))))
(defthm list-type-nth-seg00
(list-type-nth-seg-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-nth-seg10
(list-type-nth-seg-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-nth-seg11
(list-type-nth-seg-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- PUT-NTH ----------
(defmacro list-type-put-nth-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var1 (car vars))
(var2 (cadr vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(iff (,list-type-fn ,@(replace-equal 'l `(put-nth ,var1 ,var2 l) formals))
(if (< (nfix ,var1) (len l))
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l var2 formals) (list var2)))
t)))))
(defthm list-type-put-nth00
(list-type-put-nth-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-put-nth10
(list-type-put-nth-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-put-nth11
(list-type-put-nth-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- PUT-SEG ----------
(defmacro list-type-put-seg-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 2 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var1 (car vars))
(var2 (cadr vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)
(,list-type-fn ,@(replace-equal 'l var2 formals))))
(,list-type-fn ,@(replace-equal 'l `(put-seg ,var1 ,var2 l) formals)))))
(defthm list-type-put-seg00
(list-type-put-seg-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-put-seg10
(list-type-put-seg-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-put-seg11
(list-type-put-seg-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- REMOVE-EQUAL ----------
(defmacro list-type-remove-equal-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(remove-equal ,var l) formals)))))
(defthm list-type-remove-equal00
(list-type-remove-equal-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-remove-equal10
(list-type-remove-equal-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-remove-equal11
(list-type-remove-equal-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- REVAPPEND ----------
(defmacro list-type-revappend-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 2
(intern-in-package-of-symbol "L" list-type-fn)
formals))
(var1 (car vars))
(var2 (cadr vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@(replace-equal 'l var1 formals))
(,list-type-fn ,@(replace-equal 'l var2 formals))))
(,list-type-fn ,@(replace-equal 'l `(revappend ,var1 ,var2) formals)))))
(defthm list-type-revappend00
(list-type-revappend-lemma elem-type00 list-type00 (l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-revappend10
(list-type-revappend-lemma elem-type10 list-type10 (l a))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-revappend11
(list-type-revappend-lemma elem-type11 list-type11 (a l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
(in-theory (disable list-type-revappend00
list-type-revappend10
list-type-revappend11))
; ---------- REVERSE ----------
(defmacro list-type-reverse-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l '(reverse l) formals))))
(defthm list-type-reverse00
(list-type-reverse-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :do-not-induct t :in-theory (enable list-type-revappend00))))
(defthm list-type-reverse10
(list-type-reverse-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :do-not-induct t :in-theory (enable list-type-revappend10))))
(defthm list-type-reverse11
(list-type-reverse-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :do-not-induct t :in-theory (enable list-type-revappend11))))
; ---------- FIRST-N-AC ----------
(defmacro list-type-first-n-ac-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((nvars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(acvars (u::unique-symbols 1 (intern-in-package-of-symbol "AC" list-type-fn) formals))
(nvar (car nvars))
(acvar (car acvars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)
(,list-type-fn ,@(replace-equal 'l acvar formals))
(<= ,nvar (len l))))
(,list-type-fn
,@(replace-equal 'l `(first-n-ac ,nvar l ,acvar) formals)))))
(defthm list-type-first-n-ac00
(list-type-first-n-ac-lemma elem-type00 list-type00 (l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00 list-type-revappend00))))
(defthm list-type-first-n-ac10
(list-type-first-n-ac-lemma elem-type10 list-type10 (l a))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10 list-type-revappend10))))
(defthm list-type-first-n-ac11
(list-type-first-n-ac-lemma elem-type11 list-type11 (a l))
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11 list-type-revappend11))))
; ---------- BUTLAST ----------
(defmacro list-type-butlast-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var (car vars)))
`(IMPLIES ,(my-conjoin (my-conjuncts guard)
`((,LIST-TYPE-fn ,@formals)
(<= 0 ,var)))
(,LIST-TYPE-fn ,@(replace-equal 'l `(BUTLAST L ,var) formals)))))
(defthm list-type-butlast00
(list-type-butlast-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable butlast))))
(defthm list-type-butlast10
(list-type-butlast-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable butlast))))
(defthm list-type-butlast11
(list-type-butlast-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable butlast))))
; ---------- SUBSEQ ----------
(defmacro list-type-subseq-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((startvars (u::unique-symbols 1 (intern-in-package-of-symbol "START" list-type-fn) formals))
(startvar (car startvars))
(endvars (u::unique-symbols 1 (intern-in-package-of-symbol "END" list-type-fn) formals))
(endvar (car endvars)))
`(IMPLIES ,(my-conjoin (my-conjuncts guard)
`((,LIST-TYPE-fn ,@formals)
(integerp ,startvar)
(<= 0 ,startvar)
(<= ,startvar (len l))
(or (null ,endvar)
(and (integerp ,endvar)
(<= ,endvar (len l))))))
(,LIST-TYPE-fn ,@(replace-equal 'l `(subseq L ,startvar ,endvar) formals)))))
(defthm list-type-subseq00
(list-type-subseq-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable subseq))))
(defthm list-type-subseq10
(list-type-subseq-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable subseq))))
(defthm list-type-subseq11
(list-type-subseq-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :do-not-induct t
:in-theory (enable subseq))))
; ---------- UPDATE-NTH ----------
(defmacro list-type-update-nth-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((nvars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(nvar (car nvars))
(valvars (u::unique-symbols 1 (intern-in-package-of-symbol "VAL" list-type-fn) formals))
(valvar (car valvars)))
`(IMPLIES ,(my-conjoin (my-conjuncts guard)
`((,LIST-TYPE-fn ,@formals)
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l valvar formals) (list valvar)))
(<= ,nvar (len l))))
(,LIST-TYPE-fn ,@(replace-equal 'l `(update-nth ,nvar ,valvar L) formals)))))
(defthm list-type-update-nth00
(list-type-update-nth-lemma elem-type00 list-type00 (l))
:rule-classes nil)
(defthm list-type-update-nth10
(list-type-update-nth-lemma elem-type10 list-type10 (l a))
:rule-classes nil)
(defthm list-type-update-nth11
(list-type-update-nth-lemma elem-type11 list-type11 (a l))
:rule-classes nil)
; ---------- INITIAL-SUBLISTP-EQUAL ----------
(defmacro list-type-initial-sublistp-equal-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
(let* ((xvars (u::unique-symbols 1 (intern-in-package-of-symbol "X" list-type-fn) formals))
(xvar (car xvars)))
`(IMPLIES ,(my-conjoin (my-conjuncts guard)
`((,LIST-TYPE-fn ,@formals)
(true-listp ,xvar)
(initial-sublistp-equal ,xvar l)))
(,LIST-TYPE-fn ,@(replace-equal 'l xvar formals)))))
(defthm list-type-initial-sublistp-equal00
(list-type-initial-sublistp-equal-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-initial-sublistp-equal10
(list-type-initial-sublistp-equal-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-initial-sublistp-equal11
(list-type-initial-sublistp-equal-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- MEMBER-EQUAL ----------
(defmacro list-type-member-equal-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "X" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((member-equal ,var l)
(,list-type-fn ,@formals)))
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l var formals) (list var))))))
(defthm list-type-member-equal00
(list-type-member-equal-lemma elem-type00 list-type00 (l))
:rule-classes :rewrite
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-member-equal10
(list-type-member-equal-lemma elem-type10 list-type10 (l a))
:rule-classes :rewrite
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-member-equal11
(list-type-member-equal-lemma elem-type11 list-type11 (a l))
:rule-classes :rewrite
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ---------- MEMBERP-EQUAL ----------
; This is an odd case. Apparently, because MEMBERP-EQUAL is a
; non-recursive function, the theorem prover cannot automatically
; guess an induction strategy. Therefore, we must explictly give an
; induction hint in the three following DEFTHMs. The fallout is that
; we can't automatically generate a unique variable in the macro
; LIST-TYPE-MEMBERP-EQUAL-LEMMA. We must pick one that is unlikely to
; appear as an auxiliary argument to a list-type predicate, so that we
; can mention it explicitly in the induction hints in the lemmas.
(defmacro list-type-memberp-equal-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let ((var (intern-in-package-of-symbol "X" 'x-unlikely-variable-name-x)))
`(implies ,(my-conjoin `((memberp-equal ,var l)
(,list-type-fn ,@formals))
(my-conjuncts guard))
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l var formals) (list var))))))
(defthm list-type-memberp-equal00
(list-type-memberp-equal-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct (member-equal x-unlikely-variable-name-x l) :in-theory (enable list-type-cdr00 memberp-equal))))
(defthm list-type-memberp-equal10
(list-type-memberp-equal-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct (member-equal x-unlikely-variable-name-x l) :in-theory (enable list-type-cdr10))))
(defthm list-type-memberp-equal11
(list-type-memberp-equal-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct (member-equal x-unlikely-variable-name-x l) :in-theory (enable list-type-cdr11))))
; ---------- REMOVE-DUPLICATES-EQUAL ----------
(defmacro list-type-remove-duplicates-equal-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(declare (ignore elem-type-fn))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)))
(,list-type-fn ,@(replace-equal 'l `(remove-duplicates-equal l) formals))))
(defthm list-type-remove-duplicates-equal00
(list-type-remove-duplicates-equal-lemma elem-type00 list-type00 (l))
:hints (("Goal" :induct t)))
(defthm list-type-remove-duplicates-equal10
(list-type-remove-duplicates-equal-lemma elem-type10 list-type10 (l a))
:hints (("Goal" :induct t)))
(defthm list-type-remove-duplicates-equal11
(list-type-remove-duplicates-equal-lemma elem-type11 list-type11 (a l))
:hints (("Goal" :induct t)))
; ---------- CAR ----------
(defmacro list-type-car-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)
l))
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l '(car l) formals) (list '(car l))))))
(defthm list-type-car00
(list-type-car-lemma elem-type00 list-type00 (l))
:rule-classes nil)
(defthm list-type-car10
(list-type-car-lemma elem-type10 list-type10 (l a))
:rule-classes nil)
(defthm list-type-car11
(list-type-car-lemma elem-type11 list-type11 (a l))
:rule-classes nil)
; ---------- NTH ----------
(defmacro list-type-nth-lemma (elem-type-fn list-type-fn formals &optional (guard 't))
(let* ((vars (u::unique-symbols 1 (intern-in-package-of-symbol "N" list-type-fn) formals))
(var (car vars)))
`(implies ,(my-conjoin (my-conjuncts guard)
`((,list-type-fn ,@formals)
(< (nfix ,var) (len l))))
(,elem-type-fn ,@(if (symbolp elem-type-fn) (replace-equal 'l `(nth ,var l) formals) (list `(nth ,var l)))))))
(defthm list-type-nth00
(list-type-nth-lemma elem-type00 list-type00 (l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr00))))
(defthm list-type-nth10
(list-type-nth-lemma elem-type10 list-type10 (l a))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr10))))
(defthm list-type-nth11
(list-type-nth-lemma elem-type11 list-type11 (a l))
:rule-classes nil
:hints (("Goal" :induct t :in-theory (enable list-type-cdr11))))
; ------------------------------------------------------------
; Typed Lists
; ------------------------------------------------------------
(defun pack-intern-names (name1 name2)
(u::pack-intern name1 name1 "-" name2))
(u::defloop pack-intern-all-names (name l)
(for ((x in l))
(collect (pack-intern-names name x))))
; DEFLIST-DEFTHMS.
; Generate a list of DEFTHM forms. These defthms explain
; the properties of standard list operations with
; respect to a typed list predicate.
; For arguments, see documentation for DEF-TYPED-LIST
; macro below.
(u::defloop deflist-defthms (list-type-fn formals elem-type-fn guard theory car-rule-classes nth-rule-classes)
(declare (xargs :guard (and (symbolp list-type-fn)
(arglistp formals)
(consp formals)
(or (symbolp elem-type-fn)
(and (consp elem-type-fn)
(eq (car elem-type-fn) 'acl2::lambda)
(<= (len (cadr elem-type-fn)) 2)))
(symbol-listp theory))
:mode :program))
(for ((fn in theory))
(collect (let ((lemmaname (pack-intern-names list-type-fn fn))
(lemma-macro-name (u::pack-intern list-type-fn 'list-type- fn '-lemma))
(rule-classes (case fn
(car car-rule-classes)
(nth nth-rule-classes)
(true-listp '(:forward-chaining))
(t '(:rewrite))))
;; If guards are present, or the number of formals is greater then 2, then
;; the proofs must be done by induction. Otherwise, we can get the proofs
;; much more quickly by functional instantiation.
(hints (if (or (consp (my-conjuncts guard))
(> (len formals) 2))
`(("Goal" :induct t))
(let* ((numparams (1- (len formals)))
(posn (position-equal 'l formals))
(numparams-string (coerce (explode-nonnegative-integer numparams nil) 'string))
(posn-string (coerce (explode-nonnegative-integer posn nil) 'string))
(canonical-elem-type-fn (u::pack-intern list-type-fn 'elem-type numparams-string posn-string))
(canonical-list-type-fn (u::pack-intern list-type-fn 'list-type numparams-string posn-string))
(lemma-name (u::pack-intern list-type-fn 'list-type- fn numparams-string posn-string))
;; The functional instance of the elem-type-fn is presented as a lambda form
;; since the elem-type recognizer may be a macro.
(elem-type-instance (cond ((and (consp elem-type-fn)
(eq (car elem-type-fn) 'acl2::lambda))
elem-type-fn)
(t (let ((elem-formals (replace-equal 'l 'x formals)))
`(lambda ,elem-formals (,elem-type-fn ,@elem-formals))))))
(subst (case (length formals)
(2 `((a ,(car (remove 'l formals)))))
(t nil))))
`(("Goal" :do-not-induct t
:use (:functional-instance
(:instance ,lemma-name ,@subst)
(,canonical-elem-type-fn ,elem-type-instance)
(,canonical-list-type-fn ,list-type-fn))))
)))
)
`(DEFTHM ,lemmaname
(,lemma-macro-name ,elem-type-fn ,list-type-fn ,formals ,guard)
:rule-classes ,rule-classes
:hints ,hints)))))
(defconst *deflist-options*
'(:CAR-RULE-CLASSES :NTH-RULE-CLASSES :THEORY :OMIT-DEFUN :THEORY-NAME)
"This list contains all of the valid keyword options for DEFLIST.")
(defconst *deflist-theory-options*
'((append)
(butlast)
(cons)
(car)
(cdr)
(firstn)
(initial-sublistp-equal)
(last)
(make-list)
(member-equal)
(memberp-equal)
(nth)
(nth-seg)
(nthcdr)
(put-nth)
(put-seg)
(remove-duplicates-equal)
(remove-equal)
(reverse)
(subseq)
(true-listp)
(update-nth))
"This Alist contains all of the symbols recognized as valid options for
the DEFLIST :THEORY option. Each symbol is associated with the other functions
that must be present due to functional dependencies.")
(defconst *forward-chaining-elem-types*
'(integerp rationalp complex-rationalp symbolp true-listp stringp characterp
alistp acl2-numberp
#+:non-standard-analysis realp
#+:non-standard-analysis complexp)
"When an element type recognizer is one of these, then CAR-RULE-CLASSES and
NTH-RULE-CLASSES defaults to :forward-chaining, otherwise :rewrite.")
(defun my-set-difference (l1 l2)
(cond ((atom l1) nil)
((member-equal (car l1) l2)
(my-set-difference (cdr l1) l2))
(t (cons (car l1) (my-set-difference (cdr l1) l2)))))
(defun insert-dependencies (l alist already-seen)
(cond ((atom l) nil)
((member (car l) already-seen)
(insert-dependencies (cdr l) alist already-seen))
(t (let ((pair (assoc-equal (car l) alist)))
(let ((new (my-set-difference (cdr pair) already-seen)))
(append new (list (car l)) (insert-dependencies (cdr l) alist (cons (car l) (append new already-seen)))))))))
(deftheory minimal-theory-for-deflist
(union-theories
(current-theory 'ground-zero)
(current-theory 'list-defuns)))
(defun deflist-check-syntax (name formals body)
"Return NIL if no errors, otherwise crash."
(declare (xargs :mode :program))
(cond
((not (symbolp name))
(u::bomb 'DEFLIST "The function name must be a symbol, but ~p0 is not."
name))
((not (true-listp formals))
(u::bomb 'DEFLIST "The argument list ~p0 is not a true list." formals))
((not (arglistp formals))
(mv-let (elmt msg) (find-first-bad-arg formals)
(u::bomb 'DEFLIST "The argument list ~p0 is not valid because the ~
element ~p1 ~@2." formals elmt msg)))
((let* ((formal-strings (u::mapcar-string formals))
(l-tail (member-equal "L" formal-strings))
(multiple-ls (member-equal "L" (cdr l-tail))))
(or (not l-tail) multiple-ls))
(u::bomb 'DEFLIST "The formal argument list to DEFLIST must be a valid ~
functional argument list that contains exactly 1 ~
symbol whose print-name is \"L\", but ~p0 is not."
formals))
((null body) (u::bomb 'DEFLIST "The function body is empty!"))
(t (let* ((last-form (car (last body)))
(options? (and (>= (len body) 2)
(true-listp last-form)
(eq (car last-form) :OPTIONS)))
(predicate (if options?
(car (last (butlast body 1)))
last-form)))
(cond
((or (symbolp predicate)
(and (true-listp predicate)
(equal (len predicate) 3)
(eq (first predicate) 'ACL2::LAMBDA)
(arglistp (second predicate))
(<= (len (second predicate)) 2)))
NIL)
(t (u::bomb 'DEFLIST "The DEFLIST predicate designator must either ~
be a symbol, or a 1 or 2-argument LAMBDA function, ~
but ~p0 is not." predicate)))))))
(defmacro deflist (name formals &rest body)
":doc-section deflist
Define a new list type, and a theory of the list type.
~/
Examples:
(deflist integer-listp (l)
\"Recognizes true-lists of integers.\"
integerp)
(deflist bnatural-listp (l lub)
\"Recognizes lists of naturals bounded by lub.\"
(lambda (x) (bnaturalp x lub)))
(deflist symbol-listp (l)
\"Define a list theory for this function which is already defined by
Acl2.\"
symbolp
(:options :omit-defun))
(deflist stringp-listp (l)
\"Recognizes lists of strings; produce a minimal theory, and store the NTH
lemma as a :TYPE-PRESCRIPTION.\"
stringp
(:options (:theory nth put-nth) (:nth-rule-classes :type-prescription)))
~/
Syntax:
DEFLIST name arglist [documentation] {declaration}* predicate [option-list]
option-list ::= (:OPTIONS <<!options>>)
options ::= !car-rule-classes-option |
!nth-rule-classes-option |
!omit-defun-option |
!theory-option |
!theory-name-option
theory-name-option ::= (:THEORY-NAME theory-name)
theory-option ::= (:THEORY <<!list-functions>>)
list-functions ::= APPEND | BUTLAST | CONS | CAR | CDR |
FIRSTN | INITIAL-SUBLISTP-EQUAL | LAST |
MAKE-LIST | MEMBER-EQUAL | MEMBERP-EQUAL |
NTH | NTH-SEG | NTHCDR | PUT-NTH | PUT-SEG |
REMOVE-DUPLICATES-EQUAL | REMOVE-EQUAL |
REVERSE | SUBSEQ | UPDATE-NTH
car-rule-classes-option ::= (:CAR-RULE-CLASSES rule-classes)
nth-rule-classes-option ::= (:NTH-RULE-CLASSES rule-classes)
omit-defun-option ::= :OMIT-DEFUN
Arguments and Values:
arglist -- an argument list satisfying ACL2::ARGLISTP, and containing
exactly one symbol whose `print-name' is \"L\".
declaration -- any valid declaration.
documentation -- a string; not evaluated.
name -- a symbol.
predicate -- Either a symbol or a one argument LAMBDA function;
designates a predicate to be applied to each element of the list.
rule-classes -- any form legal as an argument to the :RULE-CLASSES keyword
of DEFTHM.
theory-name -- any symbol that is a legal name for a deftheory event.
Description:
DEFLIST defines a recognizer for true lists whose elements all satisfy a
given predicate, and by default creates an extensive theory for lists of the
newly defined type.
To define a list type with DEFLIST you must supply a name for the
recognizer, an argument list, and predicate designator. The name may be
any symbol. The argument list must be valid as a functional argument list,
and must contain exactly 1 symbol whose `print-name'is \"L\". By convention
this is the list argument recognized by the function defined by DEFLIST.
The DEFLIST recognizer will return T only if each element of L satisfies
(returns a non-NIL value) the given predicate, otherwise NIL. If the
predicate is specified as a symbol, then this is assumed to be the function
symbol of a one argument function (or macro) with which to test the
elements of L. If the predicate is specified as a single-argument LAMBDA
function, then the given LAMBDA function will be applied to test successive
elements of L.
Any number of other arguments to the function may be supplied, but only the
L argument will change in the recursive structure of the recognizer.
Note that DEFLIST does not create any guards for L or any other argument.
Guards may be specified in the usual way since any number of DECLARE forms
may precede the predicate specification in the DEFLIST form. DO NOT
DECLARE GUARDS FOR THE LIST ARGUMENT L, as this may cause DEFLIST to
blindly generate unprovable conjectures and unusable theorems. Bear in
mind that if you are defining a function to be used as a guard, then you
are advised to consider what impact guarding the arguments of the function
may have on its utility. In general the most useful guard functions are
those that are guard-free.
Theory:
By default, DEFLIST creates an extensive theory for the recognized lists.
This theory contains appropriate lemmas for all of the list functions
appearing in the `list-functions' syntax description above. This list of
function symbols is also available as the Acl2 constant
*DEFLIST-THEORY-OPTIONS*.
One can select a subset of this theory to be generated by using the :THEORY
option (see below). DEFLIST always creates a :FORWARD-CHAINING rule from
the recognizer to TRUE-LISTP. DEFLIST also creates a DEFTHEORY event that
lists all of the lemmas created by the DEFLIST. The name of the theory is
formed by concatenating the function name and the string \"-THEORY\", and
interning the resulting string in the package of the function name.
Options:
DEFLIST options are specified with a special :OPTIONS list systax. If
present, the :OPTIONS list must appear as the last form in the body of the
DEFLIST.
:OMIT-DEFUN
If the :OMIT-DEFUN keyword is present then the definition will not be
created. Instead, only the list theory for the function is
generated. Use this option to create a list theory for recognizers
defined elsewhere.
:THEORY
This option is used to specify that only a subset of the list theory be
created. In the STRINGP-LISTP example above we specify that only lemmas
about STRINGP-LISTP viz-a-viz NTH and PUT-NTH are to be generated. By
default the complete list theory for the recognizer is created. If the
option is given as (:THEORY) then the entire theory will be suppressed,
except for the :FORWARD-CHAINING rule from the recognizer to TRUE-LISTP.
:THEORY-NAME
This option allows the user to define the name of the deftheory event
that is automatically generated, and which includes the defthms that
are generated.
:CAR-RULE-CLASSES
:NTH-RULE-CLASSES
These options specify a value for the :RULE-CLASSES keyword for the
DEFTHM generated for the CAR and NTH element of a list recognized by the
DEFLIST recognizer respectively. The default is :REWRITE.
~/"
(let*
((syntax-err (deflist-check-syntax name formals body))
(last-form (car (last body)))
(options? (and (>= (len body) 2)
(true-listp last-form)
(eq (car last-form) :OPTIONS)))
(option-list (if options? (cdr last-form) nil))
(predicate (if options?
(car (last (butlast body 1)))
last-form))
;;(l (nth (position-equal "L" (u::mapcar-string formals)) formals))
(guard (u::get-guards-from-body body))
(ctx 'DEFLIST)
(option-err (u::get-option-check-syntax
ctx option-list *deflist-options* nil nil))
(omit-defun (u::get-option-as-flag ctx :OMIT-DEFUN option-list))
(theory (insert-dependencies
(u::get-option-subset
ctx :THEORY option-list
(strip-cars *deflist-theory-options*)
(strip-cars *deflist-theory-options*))
*deflist-theory-options*
nil))
(theory-name (u::get-option-argument
ctx :THEORY-NAME option-list :FORM
(u::pack-intern name name "-THEORY") (u::pack-intern name name "-THEORY")))
(car-rule-classes (u::get-option-argument
ctx :CAR-RULE-CLASSES option-list :FORM
:REWRITE :REWRITE))
(nth-rule-classes (u::get-option-argument
ctx :NTH-RULE-CLASSES option-list :FORM
:REWRITE :REWRITE)))
(or
syntax-err ;Both better be NIL.
option-err
;; We always generate the true-listp event.
(let ((theory1 (union-equal '(true-listp) theory)))
`(ENCAPSULATE ()
;; We do the definition and proofs in a minimal theory for speed.
;; The first label is for proofs that need the original theory.
(LOCAL (DEFLABEL DEFLIST-RESERVED-LABEL))
(LOCAL (IN-THEORY (THEORY 'MINIMAL-THEORY-FOR-DEFLIST)))
,@(if omit-defun
nil
(list
`(DEFUN ,name ,formals
,@(butlast body (if options? 2 1))
(COND
((ATOM l) (eq l nil))
(T (AND (,predicate ,@(replace-equal 'l '(CAR l) formals))
(,name ,@(replace-equal 'l '(CDR l) formals))))))))
(LOCAL (IN-THEORY (ENABLE ,name)))
,@(deflist-defthms
name formals predicate guard theory1
car-rule-classes nth-rule-classes)
(DEFTHEORY ,theory-name
',(pack-intern-all-names name theory1))))
)))
#|
Test Cases.
(trans1
'(deflist integer-listp (l)
"Recognizes true-lists of integers."
integerp
(:options (:car-rule-classes :type-prescription))))
(deflist integer-listp (l)
"Recognizes true-lists of integers."
integerp
(:options :omit-defun
(:car-rule-classes :type-prescription)
(:nth-rule-classes :type-prescription)
(:theory append nthcdr)
))
(deflist integer-listp (l)
"Recognizes true-lists of integers."
integerp
(:options :omit-defun
(:car-rule-classes :type-prescription)
(:nth-rule-classes :type-prescription)
(:theory car nth)
(:theory-name integer-listp-theory2)))
(defmacro naturalp (n)
`(and (integerp ,n) (<= 0 ,n)))
(trans1
'(deflist natural-listp (l) naturalp
(:options (:theory nth))))
(trans1
'(deflist natural-listp (l) (lambda (x) (naturalp x))
(:options (:theory nth))))
(deflist natural-listp (l) (lambda (x) (naturalp x))
(:options (:theory nth)))
(trans1 '(deflist my-subset (l the-set)
(declare (xargs :guard (eqlable-listp the-set)))
(lambda (x) (member x the-set))))
(deflist my-subset (l the-set)
(declare (xargs :guard (eqlable-listp the-set)))
(lambda (x) (member x the-set)))
(defmacro bnaturalp (x lub)
`(AND (naturalp ,x)
(INTEGERP ,lub)
(< ,x ,lub)))
(trans1
'(deflist bnatural-listp (l lub) (lambda (x lub) (bnaturalp x lub))
(:options (:theory nth))))
(trans1
'(deflist bnatural-listp (l lub) bnaturalp
(:options (:theory nth))))
(deflist bnatural-listp (l lub) bnaturalp
(:options (:theory nth)))
(trans1
'(deflist symbol-listp (l)
"Define a list theory for this function which is already defined by
Acl2."
symbolp
(:options :omit-defun (:nth-rule-classes :type-prescription))))
(deflist symbol-listp (l)
"Define a list theory for this function which is already defined by
Acl2."
symbolp
(:options :omit-defun (:theory put-nth) (:nth-rule-classes :type-prescription)))
(deflist stringp-listp (l)
"Recognizes lists of strings ; produce a minimal theory, and store the NTH
lemma as a :TYPE-PRESCRIPTION."
stringp
(:options (:theory nth put-nth) (:nth-rule-classes :type-prescription)))
; Errors:
(deflist l (u::l l)
consp)
(deflist l (l cons)
consp)
(deflist l (l)
0)
(deflist l (l x)
(lambda (x l) (cons x l)))
(deflist l (l x)
(lambda (0) (cons x l)))
(deflist l (l)
consp
(:options (:theory foo)))
|#
|