1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
; list-defuns.lisp -- definitions in the theory of lists
; Copyright (C) 1997 Computational Logic, Inc.
; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
; Written by: Bill Bevier (bevier@cli.com)
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
(in-package "ACL2")
(deflabel list-defuns-section)
; * Structure of the Theory
;
; The functions which occur in the list theory are selected from
; the ACL2 base theory (as defined in axioms.lisp) plus other functions
; which descend from earlier list libraries.
;
; list-defuns.lisp contains the definitions of functions which are not
; in the ACL2 base theory.
;
; list-defthms.lisp contains theorems about the functions in the
; theory. Segregating the theory into two files allows one to load
; only the definitions when one is only interested in running
; simulations.
;
; * General Strategy for Theory Construction
;
; The goal of this theory is to provide useful list-processing functions
; and useful theorems about those functions. We use the term ``function,''
; although some names are defined as macros, and some are introduced
; axiomatically.
;
; * Enabled and Disabled functions
;
; We plan to leave all recursive functions enabled. The theorem prover
; is good at deciding when to open recursive functions. An expert user
; can choose to disable them explicitly.
;
; Non-recursive functions are globally disabled by the book list-defthms.
;
; * Equality
;
; ACL2 (and Common Lisp) support three notions of equality: EQL, EQ and EQUAL.
; One uses EQL or EQ, rather than EQUAL, for efficiency. Many functions
; have three versions, each based on a different equality. MEMBER uses EQL,
; however MEMBER-EQ and MEMBER-EQUAL are also defined.
;
; We have followed this naming convention. When a function relies on equality.
; the default notion is EQL; -EQ and -EQUAL versions of the function are
; also provided.
;
; In list-defthms, the EQL and EQ versions of all functions are re-written to the
; EQUAL version. All interesting rewrite rules about the list functions are
; expressed in terms of the EQUAL versions of list functions.
;
; As a result, one can execute using the EQL or EQ versions, but one will reason
; using the EQUAL version.
; ------------------------------------------------------------
; Functions
; ------------------------------------------------------------
; Function Name In Result
; (supporting function) ACL2 Type
; ---------------------- ---- ----
; append (binary-append) Yes list
; butlast (take) Yes list
; firstn No list
; last Yes list
; make-list (make-list-ac) Yes list
; member (eql) Yes list
; member-eq Yes list
; member-equal Yes list
; nth-seg No list
; nthcdr Yes list
; put-nth No list
; put-seg No list
; remove (eql) Yes list
; remove-eq No list
; remove-equal No list
; remove-duplicates (eql) Yes list
; remove-duplicates-eq No list
; remove-duplicates-equal Yes list
; reverse (revappend) Yes list
; subseq (subseq-list) Yes list
; update-nth Yes list
;
; nth Yes ?
;
; consp Yes boolean
; initial-sublistp (eql) No boolean
; initial-sublistp-eq No boolean
; initial-sublistp-equal No boolean
; memberp (eql) No boolean
; memberp-eq No boolesn
; memberp-equal No boolean
; no-duplicatesp (eql) Yes boolean
; no-duplicatesp-eq No boolean
; no-duplicatesp-equal Yes boolean
; true-listp Yes boolean
;
; len Yes natural
; occurrences (eql) No natural
; occurrences-eq No natural
; occurrences-equal No natural
; position (eql) Yes natural V NIL
; position-eq Yes natural V NIL
; position-equal Yes natural V NIL
(defun firstn (n l)
"The sublist of L consisting of its first N elements."
(declare (xargs :guard (and (true-listp l)
(integerp n)
(<= 0 n))))
(cond ((endp l) nil)
((zp n) nil)
(t (cons (car l)
(firstn (1- n) (cdr l))))))
(defun initial-sublistp (l1 l2)
"Is the first list an initial sublist of the second?"
(declare (xargs :guard (and (eqlable-listp l1)
(eqlable-listp l2))))
(cond ((endp l1) t)
((endp l2) nil)
(t (and (eql (car l1) (car l2))
(initial-sublistp (cdr l1) (cdr l2))))))
(defun initial-sublistp-eq (l1 l2)
"Is the first list an initial sublist of the second?"
(declare (xargs :guard (and (symbol-listp l1)
(symbol-listp l2))))
(cond ((endp l1) t)
((endp l2) nil)
(t (and (eq (car l1) (car l2))
(initial-sublistp-eq (cdr l1) (cdr l2))))))
(defun initial-sublistp-equal (l1 l2)
"Is the first list an initial sublist of the second?"
(declare (xargs :guard (and (true-listp l1)
(true-listp l2))))
(cond ((endp l1) t)
((endp l2) nil)
(t (and (equal (car l1) (car l2))
(initial-sublistp-equal (cdr l1) (cdr l2))))))
(defun memberp (x l)
(DECLARE (XARGS :GUARD
(IF (EQLABLEP X)
(TRUE-LISTP L)
(EQLABLE-LISTP L))))
(consp (member x l)))
(defun memberp-eq (x l)
(declare (xargs :guard
(if (symbolp x)
(true-listp l)
(symbol-listp l))))
(consp (member-eq x l)))
(defun memberp-equal (x l)
(declare (xargs :guard (true-listp l)))
(consp (member-equal x l)))
(defun no-duplicatesp-eq (l)
(declare (xargs :guard (symbol-listp l)))
(cond ((endp l) t)
((member-eq (car l) (cdr l)) nil)
(t (no-duplicatesp-equal (cdr l)))))
(defun nth-seg (i j l)
"The sublist of L beginning at offset I for length J."
(declare (xargs :guard (and (integerp i) (<= 0 i)
(integerp j) (<= 0 j)
(true-listp l))))
(cond ((endp l) nil)
((zp i)
(cond ((zp j) nil)
(t (cons (car l) (nth-seg i (1- j) (cdr l))))))
(t (nth-seg (1- i) j (cdr l)))))
(defun occurrences-ac (item lst acc)
(DECLARE (XARGS :GUARD
(AND (TRUE-LISTP LST)
(OR (EQLABLEP ITEM) (EQLABLE-LISTP LST))
(ACL2-NUMBERP ACC))))
(cond ((endp lst) acc)
((eql item (car lst)) (occurrences-ac item (cdr lst) (1+ acc)))
(t (occurrences-ac item (cdr lst) acc))))
(defun occurrences (item lst)
(declare (xargs :guard (and (true-listp lst)
(or (eqlablep item) (eqlable-listp lst)))))
(occurrences-ac item lst 0))
(defun occurrences-eq-ac (item lst acc)
(DECLARE (XARGS :GUARD (and (true-listp lst)
(or (symbolp item)
(symbol-listp lst))
(ACL2-NUMBERP ACC))))
(cond ((endp lst) acc)
((eq item (car lst)) (occurrences-eq-ac item (cdr lst) (1+ acc)))
(t (occurrences-eq-ac item (cdr lst) acc))))
(defun occurrences-eq (item lst)
(declare (xargs :guard (symbol-listp lst)))
(occurrences-eq-ac item lst 0))
(defun occurrences-equal-ac (item lst acc)
(DECLARE (XARGS :GUARD
(AND (TRUE-LISTP LST)
(ACL2-NUMBERP ACC))))
(cond ((endp lst) acc)
((equal item (car lst)) (occurrences-equal-ac item (cdr lst) (1+ acc)))
(t (occurrences-equal-ac item (cdr lst) acc))))
(defun occurrences-equal (item lst)
(declare (xargs :guard (true-listp lst)))
(occurrences-equal-ac item lst 0))
(defun put-nth (n v l)
"The list derived from L by replacing its Nth element with value V."
(declare (xargs :guard (and (integerp n) (<= 0 n)
(true-listp l))))
(cond ((endp l) nil)
((zp n) (cons v (cdr l)))
(t (cons (car l) (put-nth (1- n) v (cdr l))))))
(defun put-seg (i seg l)
"The list derived from L by replacing its contents beginning
at location I with the contents of SEG. The length of the resulting
list equals the length of L."
(declare (xargs :guard (and (integerp i)
(<= 0 i)
(true-listp seg)
(true-listp l))))
(cond ((endp l) nil)
((zp i)
(cond ((endp seg) l)
(t (cons (car seg) (put-seg i (cdr seg) (cdr l))))))
(t (cons (car l) (put-seg (1- i) seg (cdr l))))))
(defun remove-eq (x l)
"The list constructed from L by removing all occurrences of X."
(declare (xargs :guard (if (symbolp x)
(true-listp l)
(symbol-listp l))))
(cond ((endp l) nil)
((eq x (car l)) (remove-eq x (cdr l)))
(t (cons (car l) (remove-eq x (cdr l))))))
(defun remove-equal (x l)
"The list constructed from L by removing all occurrences of X."
(declare (xargs :guard (true-listp l)))
(cond ((endp l) nil)
((equal x (car l)) (remove-equal x (cdr l)))
(t (cons (car l) (remove-equal x (cdr l))))))
(defun remove-duplicates-eq (l)
(declare (xargs :guard (symbol-listp l)))
(cond ((endp l) nil)
((member-eq (car l) (cdr l)) (remove-duplicates-eq (cdr l)))
(t (cons (car l) (remove-duplicates-eq (cdr l))))))
(deftheory list-defuns
(set-difference-theories (current-theory :here)
(current-theory 'list-defuns-section)))
|