File: structures.lisp

package info (click to toggle)
acl2 2.9-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 27,196 kB
  • ctags: 26,113
  • sloc: lisp: 353,947; makefile: 3,250; sh: 85; csh: 47
file content (2795 lines) | stat: -rwxr-xr-x 94,675 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
; structures.lisp -- a book about typed structures
; Copyright (C) 1997  Computational Logic, Inc.

; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.

; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

; Written by:  Bishop Brock
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    structures.lisp
;;;
;;;    Define and characterize a general purpose record structure with typed
;;;    slots.
;;;    
;;;    The on-line documentation only contains examples and a formal syntax
;;;    description. The complete documentation for DEFSTRUCTURE is a report
;;;    entitled "DEFSTRUCTURE for ACL2." This report is distributed with the
;;;    ACL2 release, and is also available from the ACL2 home page:
;;;    
;;;    http://www.cs.utexas.edu/users/moore/acl2
;;;
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West 6th Street, Suite 290
;;;    Austin, Texas 78703
;;;    brock@cli.com
;;;    
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;  Package Note:
;;;
;;;  The majority of the following code resides in the "STRUCTURES" package.
;;;  The macro exported by this book, DEFSTRUCTURE, resides in the "ACL2"
;;;  package.
;;;
;;;  Among other reasons for placing this code in a separate package is that
;;;  these macros often need to create variable names.  As long as one does
;;;  not attempt to define structures in the "STRUCTURES" package these names
;;;  will not collide with the user's slot names.
;;;
;;;  This book can only be loaded in an environment that includes the
;;;  "STRUCTURES" package and the "U" package (from the utilities book).
;;;  To define the "STRUCTURES" package:
#|

(in-package "ACL2")

(defpkg "STRUCTURES"
  (union-eq
   '(DEFSTRUCTURE)			;The main macro exported by this book.
   (union-eq
    *acl2-exports*
    (union-eq
     *common-lisp-symbols-from-main-lisp-package*
     '(ACCESS ARGLISTP *BUILT-IN-EXECUTABLE-COUNTERPARTS*
        CHANGE CONSTANT DEFREC ER *EXPANDABLE-BOOT-STRAP-NON-REC-FNS*
        HARD LEGAL-VARIABLE-OR-CONSTANT-NAMEP MAKE MSG
        REASON-FOR-NON-KEYWORD-VALUE-LISTP STATE-GLOBAL-LET*

       u::defloop u::force-term-list
       u::get-option-argument u::get-option-as-flag
       u::get-option-check-syntax u::get-option-entry
       u::get-option-entries u::get-option-member
       u::get-option-subset u::pack-intern
       u::unique-symbols)))))

|#
;;;
;;;  Style Note:
;;;
;;;  These macros generate a lot of Acl2 code, and backquote is used
;;;  extensively to do this.  You will see some cases where backquote is used
;;;  to do simple stuff, like `(,x) as opposed to (LIST x).  The convention
;;;  is that every symbolic `result' created by these macros is created using
;;;  backquote, to make it clear that this result is Acl2 code, and not just
;;;  some internal data structure used by the macros and functions.
;;;
;;;  All constant symbols are always uppercased, e.g., 'SYMBOL.  This
;;;  convention extends to backquoted forms, where constant symbols are
;;;  uppercased, but forms in the scope of a comma are lowercased.  This
;;;  convention provides a visual clue as to what is constant and what is
;;;  variable.
;;;

(in-package "STRUCTURES")

(include-book "utilities")

(program)

(set-ignore-ok t)


;;;****************************************************************************
;;;
;;;   Documentation
;;;
;;;****************************************************************************

(defdoc defstructure
  
  ":doc-section defstructure
Define and characterize a general purpose record structure with typed slots.

The on-line documentation only contains examples and a formal syntax
description. The complete documentation for DEFSTRUCTURE is a report entitled
\"DEFSTRUCTURE for ACL2.\"  This report is distributed with the ACL2 release,
and is also available from the ACL2 home page:

http://www.cs.utexas.edu/users/moore/acl2
~/
Examples:

 (DEFSTRUCTURE SHIP X-POSITION Y-POSITION X-VELOCITY Y-VELOCITY MASS)
 
 (DEFSTRUCTURE MC-STATE
   \"The state of the MC68020.\"
   (STATUS (:ASSERT (SYMBOLP STATUS) :TYPE-PRESCRIPTION))
   (RFILE  (:ASSERT (RFILEP RFILE) :REWRITE))
   (PC     (:ASSERT (LONGWORD-P PC) :REWRITE
                    (:TYPE-PRESCRIPTION (NATURALP PC))))
   (CCR    (:ASSERT (CCR-P CCR) :REWRITE
                    (:TYPE-PRESCRIPTION (NATURALP CCR))))
   (MEM    (:ASSERT (MEMORYP MEM) :REWRITE))
 
   (:OPTIONS :GUARDS (:CONC-NAME MC-)))
 
 (DEFSTRUCTURE S&ADDR 
   \"An MC68020 effective address abstraction.\"
   (S     (:ASSERT (MC-STATE-P S) :REWRITE))
   (LOC   (:ASSERT (SYMBOLP LOC)  :TYPE-PRESCRIPTION))
   (ADDR  (:ASSERT ((LAMBDA (LOC ADDR)
                      (CASE LOC
                        ((D A) (RN-NUMBERP ADDR))
                        ((M I) (LONGWORD-P ADDR))
                        (OTHERWISE (NULL ADDR))))
                    LOC ADDR)
                   (:REWRITE
                    (IMPLIES
                     (OR (EQUAL LOC 'D) (EQUAL LOC 'A))
                     (RN-NUMBERP ADDR)))
                   (:REWRITE
                    (IMPLIES
                     (OR (EQUAL LOC 'M) (EQUAL LOC 'I))
                     (LONGWORD-P ADDR)))))
 
   (:OPTIONS :GUARDS))
 
 (DEFSTRUCTURE V&CVZNX
   \"An MC68020 value abstraction.\"
   (V     (:ASSERT (LONGWORD-P V) :REWRITE
                   (:TYPE-PRESCRIPTION (NATURALP V))))
   (CVZNX (:ASSERT (CCR-P CVZNX) :REWRITE
                   (:TYPE-PRESCRIPTION (NATURALP CVZNX))))
 
   ;;  These options make this nothing more than a typed CONS.
 
   (:OPTIONS :GUARDS (:REPRESENTATION (V . CVZNX)) (:DO-NOT :TAG)))

~/
Syntax:

DEFSTRUCTURE name [documentation] {slot-and-options}* [option-list]

  option-list ::= (:OPTIONS [[options]])

  options ::= guards-option |
              verify-guards-option |
              slot-writers-option |
              inline-option
              conc-name-option |
              set-conc-name-option |
              keyword-constructor-option |
              keyword-updater-option |
              predicate-option |
              weak-predicate-option |
              force-option |
              representation-option |
              do-not-option |
              mv-intro-macro-option
              update-method-option |
              assertion-lemma-hints-option |
              predicate-guard-hints-option |
              prefix-option |
              {assert-option}*

  slot-and-options ::= slot-name | (slot-name [[slot-options]])

  slot-options ::= default-option |
                   read-only-option |
                   {assert-option}* 

  default-option ::= :DEFAULT | (:DEFAULT) | (:DEFAULT slot-initform)

  read-only-option ::= :READ-ONLY

  assert-option ::= (:ASSERT assertion {assertion-rule-descriptor}*)

  assertion-rule-descriptor ::= rule-token | 
                                (rule-token corollary [other-rule-forms])

  rule-token ::= NIL | :REWRITE | :LINEAR | :LINEAR-ALIAS |
                 :WELL-FOUNDED-RELATION | :BUILT-IN-CLAUSE |
                 :COMPOUND-RECOGNIZER | :ELIM | :GENERALIZE | :META |
                 :FORWARD-CHAINING | :EQUIVALENCE | :REFINEMENT | 
                 :CONGRUENCE | :TYPE-PRESCRIPTION | :DEFINITION | :INDUCTION |
                 :TYPE-SET-INVERTER 

  guards-option ::= :GUARDS

  verify-guards-option ::= :VERIFY-GUARDS | (:VERIFY-GUARDS) |
                           (:VERIFY-GUARDS T) | (:VERIFY-GUARDS NIL)

  slot-writers-option ::= :SLOT-WRITERS

  inline-option ::= :INLINE

  conc-name-option ::= :CONC-NAME | (:CONC-NAME) | (:CONC-NAME conc-name)

  set-conc-name-option ::= :SET-CONC-NAME | (:SET-CONC-NAME) |
                           (:SET-CONC-NAME set-conc-name)

  keyword-constructor-option ::= :KEYWORD-CONSTRUCTOR |
                                 (:KEYWORD-CONSTRUCTOR) |
                                 (:KEYWORD-CONSTRUCTOR keyword-constructor)

  keyword-updater-option ::= :KEYWORD-UPDATER | (:KEYWORD-UPDATER) | 
                          (:KEYWORD-UPDATER keyword-updater)

  predicate-option ::=  :PREDICATE | (:PREDICATE) | (:PREDICATE predicate)

  weak-predicate-option ::=  :WEAK-PREDICATE | (:WEAK-PREDICATE) |  
                             (:WEAK-PREDICATE weak-predicate)

  force-option ::= :FORCE

  do-not-option ::= (:DO-NOT [[do-not-options]])

  do-not-options ::= :TAG | :READ-WRITE | :WRITE-WRITE

  representation-option ::= :REPRESENTATION | (:REPRESENTATION) |
                            (:REPRESENTATION representation)

  representation ::= :LIST | :MV | :DOTTED-LIST | :TREE | template

  mv-intro-macro-option ::=  :MV-INTRO-MACRO |
                             (:MV-INTRO-MACRO) |  
                             (:MV-INTRO-MACRO mv-intro-macro)

  update-method-option ::= :UPDATE-METHOD | (:UPDATE-METHOD) |
                           (:UPDATE-METHOD update-method)

  update-method ::= :HEURISTIC | :SET | :COPY

  assertion-lemma-hints-option ::= 
    :ASSERTION-LEMMA-HINTS | (:ASSERTION-LEMMA-HINTS) | 
    (:ASSERTION-LEMMA-HINTS hints)

  predicate-guard-hints-option ::= 
    :PREDICATE-GUARD-HINTS | (:PREDICATE-GUARD-HINTS) | 
    (:PREDICATE-GUARD-HINTS hints)

  prefix-option ::= :PREFIX | (:PREFIX) | (:PREFIX prefix)

Arguments and Values:

assertion -- a slots-assertion.

corollary -- a slots-assertion.

conc-name -- a string-designator.

documentation -- a string; not evaluated.

hints -- an acl2-hints.

keyword-constructor -- a symbol.

keyword-updater -- a symbol.

name -- a symbol.

mv-intro-macro -- a symbol.

other-rule-forms -- Some acl2-rule-forms.

predicate -- a symbol.

prefix -- a string-designator.

read-write-lemma -- a symbol.

set-conc-name -- a string-designator.

slot-initform -- a form; not evaluated.

slot-name -- a valid-slot-name.

tag -- a symbol.

template -- A slots-template.

weak-predicate -- a symbol.

write-write-lemma -- a symbol. 

Definitions:

acl2-hints -- any form valid as the hints argument of defthm.  See the
documentation for HINTS in the ACL2 documentation.

acl2-rule-forms -- Any forms that would be valid in an ACL2 rule-classes
form, except for the rule class itself, or a corollary and formula.  See the
documentation for the DEFSTRUCTURE assertion theory in the DEFSTRUCTURE
document,and the ACL2 documentations for RULE-CLASSES.

slots-assertion -- DEFSTRUCTURE assertions are covered in the DEFSTRUCTURE
document. 

slots-template -- A cons tree whose flattened form (by STRUCTURES::FLATTEN) is
a permutation of the list of slot names of the structure.

string-designator -- a character, string or symbol, it designates the string
obtained by (STRING STRING-DESIGNATOR) except that by convention the symbol
NIL designates the empty string.

valid-slot-name -- Any symbol valid for use as a formal parameter of a
function. This is any symbol not in the \"keyword\" package, neither T nor NIL,
neither beginning nor ending with `*', and not beginning with `&'.  In
addition, no slot-name may be the same as the structure name, and all
slot-names must have unique print names, i.e., it is illegal to duplicate
slot names, and it is illegal to use symbols from different packages that
have the same print name.

  ~/"
  )


;;;****************************************************************************
;;;
;;;    Importing
;;;
;;;    The definition of DEFSTRUCTURE requires a few select routines from the
;;;    Acl2 system code and the utilities package.  To avoid having to prefix
;;;    these names with the package name everywhere, we define these
;;;    names in the "STRUCTURES" package as macros that expand into identical
;;;    calls of the native things.
;;;
;;;****************************************************************************

;;;  All imports moved to package declaration.  

#|
(u::import-as-macros ACL2::A-SYMBOL-UNIQUE-TO-THE-ACL2-PACKAGE)

(u::import-as-macros U::A-SYMBOL-UNIQUE-TO-THE-U-PACKAGE)
|#


;;;****************************************************************************
;;;
;;;    Macros
;;;
;;;****************************************************************************

(defmacro acons-up (&rest forms)
  (cond
   ((null forms) '())
   (t `(ACONS$ ,(caar forms) ,(cadar forms)
	       (ACONS-UP ,@(cdr forms))))))

(defmacro bomb-from (where fmt &rest args)
  `(ER HARD ,where ,fmt ,@args))

(defmacro bomb (fmt &rest args)
  `(BOMB-FROM 'DEFSTRUCTURE ,fmt ,@args))

(mutual-recursion

 (defun mlambda-fn-lst (args list)
   (cond
    ((atom list) ())
    (t (cons (mlambda-fn args (car list))
	     (mlambda-fn-lst args (cdr list))))))

 (defun mlambda-fn (args form)
   (declare (xargs :guard (symbol-listp args)))
   (cond ((atom form) (cond ((member form args) form)
			    (t (list 'QUOTE form))))
	 ((eq (car form) 'QUOTE) (list 'QUOTE form))
	 (t (cons 'LIST
		  (cons (list 'QUOTE (car form))
			(mlambda-fn-lst args (cdr form))))))))

(defmacro mlambda (args form)
  "A macro lambda that doesn't substitute function symbols or quoted
   constants." 
  (declare (xargs :guard (symbol-listp args)))
  (mlambda-fn args form))


;;;****************************************************************************
;;;
;;;    Utility Functions
;;;
;;;****************************************************************************

(defun acons$ (key datum value)
  (cons (cons key datum) value))

(defun ncars (n l)
  "The 1st n CARs of l."
  (cond
   ((= n 0) ())
   ((null l) ())
   (t (cons (car l) (ncars (- n 1) (cdr l))))))

(defun fold (args)
  "Folds a list into a somewhat balanced tree."
  (cond
   ((null args) nil)
   ((null (cdr args)) (car args))
   (t (cons (fold (ncars (truncate (length args) 2) args))
	    (fold (nthcdr (truncate (length args) 2) args))))))

(defun flatten (args)
  "An `improper' list flattener.  NIL is always flattened away."
  (cond
   ((atom args) (cond
		 ((null args) nil)
		 (t (list args))))
   (t (append (flatten (car args))
	      (flatten (cdr args))))))

(defun dotify (l)
  "Make the last CONS of l a `dotted pair' if possible."
  (cond
   ((atom l) l)
   ((atom (cdr l)) l)
   ((atom (cdr (cdr l))) (cond
			  ((null (cdr (cdr l))) (cons (car l) (cadr l)))
			  (t l)))
   (t (cons (car l) (dotify (cdr l))))))

(defun duplicates-equal (lst)
  (cond
   ((atom lst) nil)
   ((member-equal (car lst) (cdr lst))
    (add-to-set-equal (car lst)
		      (duplicates-equal (cdr lst))))
   (t (duplicates-equal (cdr lst)))))

(defun keywordify (string-designator)
  (intern-in-package-of-symbol (string string-designator) :keyword))

(defloop keywordify-list (l)
  (for ((x in l)) (collect (keywordify x))))

(defun keywordify-tree (tree)
  (cond
   ((atom tree)
    (cond
     ((not tree) nil)
     ((not (symbolp tree)) (bomb-from 'KEYWORDIFY-TREE "Bug. ~p0" tree))
     (t (keywordify tree))))
   (t (cons (keywordify-tree (car tree)) (keywordify-tree (cdr tree))))))

(defloop keywordp-listp (l)
  (for ((x in l)) (always (keywordp x))))

(defloop list-all (l)
  (for ((x in l))
    (collect (list x))))

(defloop map-string (l)
  (for ((x in l)) (collect (string x))))

(defloop remove-strings (l)
  (for ((x in l)) (unless (stringp x) (collect x))))

(defun x-or-car-x (x) (if (atom x) x (car x)))

(defloop map-x-or-car-x (l)
  (for ((x in l)) (collect (x-or-car-x x))))

(defun x-or-cadr-x (x)
  (declare (xargs :guard (or (atom x) (and (consp x) (consp (cdr x))))))
  (if (atom x) x (cadr x)))

(defloop map-x-or-cadr-x (l)
  (for ((x in l)) (collect (x-or-cadr-x x))))

(defun designated-string (string-designator)
  (cond
   ((null string-designator) "")
   (t (string string-designator))))

;;;  NB: Acl2 has the advantage of knowning that all terms have been
;;;  translated, which we can't do here do to lack of access to STATE.
;;;  So we define an `assertion' term, along with a free variable finder and a
;;;  substituter for assertion terms.

(defun lambda-function-p (x)
  (and (true-listp x)
       (equal (length x) 3)
       (equal (first x) 'ACL2::LAMBDA)
       (true-listp (second x))))

(mutual-recursion

 (defun assertion-termp (term)
   (cond
    ((atom term) t)
    ((eq (car term) 'QUOTE) t)
    (t (and (or (symbolp (car term))
		(lambda-function-p (car term)))
	    (assertion-termp-list (cdr term))))))

 (defun assertion-termp-list (l)
   (cond
    ((atom l) (null l))
    (t (and (assertion-termp (car l))
	    (assertion-termp-list (cdr l)))))))

(mutual-recursion

 (defun reason-for-not-assertion-termp (term)
   (cond
    ((atom term) nil)
    ((eq (car term) 'QUOTE) nil)
    (t (if (or (symbolp (car term))
	       (lambda-function-p (car term)))
	    (reason-for-not-assertion-termp-list (cdr term))
	 (msg "the CAR of ~p0 is neither a symbol nor a LAMBDA function."
	      term))))) 

 (defun reason-for-not-assertion-termp-list (l)
   (cond
    ((atom l) (or (null l)
		  (msg "it contains an `improper' list terminated by the atom ~
                        ~p0." l)))
    (t (or (reason-for-not-assertion-termp (car l))
	   (reason-for-not-assertion-termp-list (cdr l)))))))

(mutual-recursion

 (defun free-vars1 (term ans)
   "A free variable is a symbol that is not a constant, i.e., it excludes T,
    NIL, and *CONST* etc."
   (cond
    ((atom term) (if (and (symbolp term)
			  (not (eq (legal-variable-or-constant-namep term)
				   'CONSTANT)))
		     (add-to-set-eq term ans)
		   ans))
    ((eq (car term) 'QUOTE) ans)
    (t (free-vars1-lst (cdr term) ans))))

 (defun free-vars1-lst (terms ans)
   (cond
    ((atom terms) ans)
    (t (free-vars1-lst (cdr terms) (free-vars1 (car terms) ans))))))

(defun free-vars (term)
  (free-vars1 term '()))

(mutual-recursion

 (defun subst-expr (new old term)
   (cond
    ((equal term old) new)
    ((atom term) term)
    ((eq (car term) 'QUOTE) term)
    (t (cons (car term) (subst-expr-lst new old (cdr term))))))

 (defun subst-expr-lst (new old args)
   (cond
    ((null args) nil)
    (t (cons (subst-expr new old (car args))
	     (subst-expr-lst new old (cdr args)))))))

(defun subst-expr-all (term new-list old-list)
  (cond
   ((atom old-list) term)
   (t (subst-expr-all
       (subst-expr (car new-list) (car old-list) term)
       (cdr new-list) (cdr old-list)))))


;;;****************************************************************************
;;;
;;;   Lemmas
;;;
;;;****************************************************************************

(logic)

(defthm open-mv-nth
  (implies
   (syntaxp (and (consp n) (eq (car n) 'QUOTE)))
   (equal (mv-nth n l)
	  (if (zp n)
	      (car l)
	    (mv-nth (1- n) (cdr l)))))
  :hints
  (("Goal"
    :in-theory (enable mv-nth))))

(in-theory (disable open-mv-nth))

(program)


;;;****************************************************************************
;;;
;;;    Data Base
;;;
;;;    We maintain a `data base' of everything we need to know to process the
;;;    DEFSTRUCTURE.  This data base contains user command options, names,
;;;    code fragments, etc.  By convention the data-base is always bound to
;;;    the variable DB, and always appears as the last argument of any
;;;    function that needs it.
;;;
;;;    The data base is an alist, and contains 2 kinds of entries:
;;;
;;;    (<keyword> . <value>) --  A global entry, where <keyword> is a Lisp
;;;                              keyword.
;;;
;;;    ((<slot> . <keyword>) . <value>) -- An entry for a particular slot.
;;;
;;;    The macro DB can be used either as (DB <keyword>) to retrieve the
;;;    first kind of entry, and (DB <slot> <keyword>) to retrieve the second.
;;;    To help catch programming errors we insist that each requested field
;;;    be in the data base, and DB enforces this restriction.
;;;
;;;    The macro DB-LET, e.g., (DB-LET (NAME (slot READER)), expands into a
;;;    LET that binds a variable with the same name as the keyword entry (or
;;;    slot keyword entry for the given slot) to the appropriate entry.
;;;
;;;    Normally keyword entries are put into DB by ACONS or ACONS-DB.
;;;    Slot-keyword entries are often created by mapping the list of slot
;;;    names, and are attached with APPEND or APPEND-DB.  If the entry is the
;;;    name of a function, macro, or lemma, then by convention a missing or
;;;    NULL entry indicates that the function, macro, or lemma will not be
;;;    generated. 
;;;
;;;    The following are lists of all possible entries in DB.  Please keep
;;;    them up to date as the code is modified.  These lists are also stored as
;;;    the constants *DB-FIELDS* and *DB-SLOT-FIELDS*. The phrase "user option"
;;;    below means that this is a keyword option specified by the user either
;;;    for the DEFSTRUCTURE as a whole or for a particular slot, and its
;;;    meaning can be gleaned from the user documentation.
;;;
;;;    Keyword Entries, accessed by (DB <keyword>) :
;;;
;;;    :ACL2-COUNT-LEMMA -- The lemma describing the ACL2-COUNT of the
;;;                         structure. 
;;;    :ASSERTIONS -- A list of ASSERTION records recording each assertion
;;;                   about the structure.
;;;    :ASSERTION-LEMMA -- The lemma capturing all assertions about the
;;;      structure. 
;;;    :ASSERTION-LEMMA-HINTS -- User option.
;;;    :CONC-NAME -- User option.
;;;    :CONSTRUCTOR-CALL -- A symbolic call of the constructor.
;;;    :DEFINITION-THEORY -- The theory of runes associated with the functions
;;;      defined by the structure that will remain DISABLEd by default.
;;;    :DOC -- The documentation string for the structure, or NIL.
;;;    :ELIMINATION-LEMMA -- The :ELIM lemma for the constructor.
;;;    :FORCE -- Boolean; true to force hypotheses.
;;;    :GUARDS -- User option.
;;;    :INLINE -- User option.
;;;    :KEYWORD-CONSTRUCTOR -- User option.
;;;    :KEYWORD-SLOT-NAMES -- Slot names mapped to equivalent keyword symbols.
;;;    :KEYWORD-UPDATER -- User option.
;;;    :LIFT-IF-LEMMA -- The name of a lemma that `lifts' IFs through
;;;                      accessor references.
;;;    :LEMMA-THEORY -- The theory of all lemmas created by this DEFSTRUCTURE. 
;;;    :MV-INTRO-MACRO -- The name of a macro that generates a lemma that
;;;                       `introduces' MV constructors.
;;;    :NAME -- The structure name.
#|
;;;    :NORMALIZATION-LEMMA -- The lemma the normalizes symbolic writer calls
;;;      to a constructor call.
;;;    :NORMALIZE -- Boolean; true to generate NORMALIZATION-LEMMA (default).
|#
;;;    :PREDICATE -- User option.
;;;    :PREDICATE-CALL -- A symbolic call of the predicate.
;;;    :PREDICATE-CONSTRUCTOR-LEMMA -- A lemma that show that how to satisfy
;;;      the predicate given an explicit instance of the constructor.
;;;    :PREDICATE-GUARD-HINTS -- User option.
;;;    :PREDICATE-SLOT-WRITERS-LEMMA -- The lemma that shows when the
;;;      slot-writers satisfy the predicate.
;;;    :PREDICATE-WEAK-PREDICATE-LEMMA -- A lemma that shows that the
;;;      predicate includes the weak predicate.
;;;    :PREFIX -- User option.
;;;    :READ-LEMMA -- A lemma that simplifies reading an explicit constructor.
;;;    :READ-ONLY -- Derived from :SLOT-WRITERS option.
;;;    :READ-WRITE -- Boolean; true to generate READ-WRITE-LEMMA (default).
;;;    :READ-WRITE-LEMMA -- The READ-WRITE lemma.
;;;    :REPRESENTATION -- User option.
;;;    :REQUIRED-SLOT-NAMES -- The slot names for which no :DEFAULT slot
;;;                            option was specified; required on every call
;;;                            of the keyword-constructor.
;;;    :SET-CONC-NAME -- User option.
;;;    :SLOT-NAMES -- List of slot names in the user-defined order.
;;;    :TAG -- Either the structure name or NIL.
;;;    :TEMPLATE -- A representation of the structure (including the optional
;;;       :TAG) used to create the access/update forms.
;;;    :UPDATE-METHOD -- User option.
;;;    :VALUE-VARIABLE -- A variable which is not one of the slot names of the
;;;       structure name, used as the symbolic variable in terms involving
;;;       the slot writers. 
;;;    :VALUE-VARIABLE1 -- Another unique variable.
;;;    :VERIFY-GUARDS -- User option -- T, NIL, or :DEFAULT.
;;;    :WEAK-PREDICATE -- The name of the `weak' predicate on the structure.
;;;    :WEAK-PREDICATE-CALL -- A symbolic call of the weak predicate .
;;;    :WEAK-PREDICATE-CONSTRUCTOR-LEMMA -- The lemma that shows when the
;;;      constructor satisfies the weak predicate.
;;;    :WEAK-PREDICATE-SLOT-WRITERS-LEMMA -- The lemma that shows when the
;;;      slot-writers satisfy the weak predicate.
;;;    :WRITE-LEMMA -- A lemma that simplifies writes to an explicit
;;;      constructor.
;;;    :WRITE-WRITE -- Boolean; true to generate WRITE-WRITE-LEMMA (default).
;;;    :WRITE-WRITE-LEMMA -- A lemma that normalizes multiple writes to a
;;;      structure. 
;;;
;;;    Slot/Keyword entries, accessed by (DB <slot> <keyword>):
;;;
;;;    :ASSERTIONS -- A list of ASSERTION records recording each assertion
;;;                   about the slot.
;;;    :DEFAULT -- User option.
;;;    :DEFAULT-SPECIFIED -- Indicates if the user entered a :DEFAULT option
;;;                          for the slot.
;;;    :READER -- The reader function for the slot.
;;;    :READER-CALL -- A symbolic call of the reader for the slot.
;;;    :READ-ONLY -- User option.
;;;    :WRITER -- The writer function for the slot.
;;;    :WRITER-CALL -- A symbolic call of the writer for the slot.

(defconst *db-fields*
  '(:ACL2-COUNT-LEMMA
    :ASSERTIONS :ASSERTION-LEMMA :ASSERTION-LEMMA-HINTS 
    :CONC-NAME :CONSTRUCTOR-CALL :DEFINITION-THEORY :DOC
    :ELIMINATION-LEMMA :FORCE :GUARDS :INLINE
    :INTRO-MACRO 
    :KEYWORD-CONSTRUCTOR 
    :KEYWORD-SLOT-NAMES 
    :KEYWORD-UPDATER :LEMMA-THEORY :LIFT-IF-LEMMA :MV-INTRO-MACRO
    :NAME #|:NORMALIZATION-LEMMA :NORMALIZE|# :PREDICATE 
    :PREDICATE-CALL
    :PREDICATE-CONSTRUCTOR-LEMMA :PREDICATE-SLOT-WRITERS-LEMMA
    :PREDICATE-GUARD-HINTS
    :PREDICATE-WEAK-PREDICATE-LEMMA 
    :PREFIX :READ-LEMMA :READ-ONLY
    :READ-WRITE :READ-WRITE-LEMMA
    :REPRESENTATION 
    :REQUIRED-SLOT-NAMES 
    :SET-CONC-NAME :SLOT-NAMES
    :TAG :TEMPLATE :UPDATE-METHOD :VALUE-VARIABLE :VALUE-VARIABLE1
    :VERIFY-GUARDS 
    :WEAK-PREDICATE :WEAK-PREDICATE-CALL
    :WEAK-PREDICATE-CONSTRUCTOR-LEMMA :WEAK-PREDICATE-SLOT-WRITERS-LEMMA
    :WRITE-LEMMA 
    :WRITE-WRITE :WRITE-WRITE-LEMMA))

(defconst *db-slot-fields*
  '(:ASSERTIONS
    :DEFAULT :DEFAULT-SPECIFIED :READER :READER-CALL :READ-ONLY
    :WRITER :WRITER-CALL))

(defconst *function-names*
  `(:NAME :PREDICATE :WEAK-PREDICATE))

(defconst *slot-function-names*
  '(:READER :WRITER))

(defconst *macro-names*
  '(:KEYWORD-CONSTRUCTOR :KEYWORD-UPDATER))

(defconst *lemma-names*
  '(:ACL2-COUNT-LEMMA
    :ASSERTION-LEMMA
    :ELIMINATION-LEMMA :LIFT-IF-LEMMA #|:NORMALIZATION-LEMMA|#
    :PREDICATE-CONSTRUCTOR-LEMMA :PREDICATE-SLOT-WRITERS-LEMMA
    :PREDICATE-WEAK-PREDICATE-LEMMA :READ-LEMMA :READ-WRITE-LEMMA
    :WEAK-PREDICATE-CONSTRUCTOR-LEMMA :WEAK-PREDICATE-SLOT-WRITERS-LEMMA
    :WRITE-LEMMA :WRITE-WRITE-LEMMA))

(defun db-fn (key form db)
  (let
    ((pair (assoc key db)))
    (cond
     (pair (cdr pair))
     (t (bomb-from 'DB-FN "Key not present at runtime: ~p0." form)))))

(defun db-slot-fn (slot key form db)
  (let
    ((pair (assoc-equal (cons slot key) db)))
    (cond
     (pair (cdr pair))
     (t (bomb-from 'DB-SLOT-FN "Key not present at runtime: ~p0." form)))))

(defmacro db (&whole form &rest args)
  (case (length args)
    (1 (cond
	((not (member (car args) *DB-FIELDS*))
	 (bomb-from 'DB "Unrecognized field: ~p0" form))
	(t `(DB-FN ,(car args) ',form DB))))
    (2 (cond
	((not (member (cadr args) *DB-SLOT-FIELDS*))
	 (bomb-from 'DB "Unrecognized slot field: ~p0" form))
	(t `(DB-SLOT-FN ,(car args) ,(cadr args) ',form DB))))
    (t (bomb-from "DB coded with wrong # of args: ~p0" form))))

(defmacro acons-db (&rest forms)
  "Acons up a list of (<keyword> <value>) pairs, evaluting each successive
   form in the context of the new DB."
  (cond
   ((null forms) 'DB)
   (t (cond
       ((not (member (caar forms) *DB-FIELDS*))
	(bomb-from 'ACONS-DB "Unrecognized field: ~p0" (caar forms)))
       (t `(LET ((DB (ACONS$ ,(caar forms) ,(cadar forms) DB)))
	     (ACONS-DB ,@(cdr forms))))))))

(defmacro append-db (&rest forms)
  "APPEND new sublists to DB, evaluting each sucessive form in the context of
   the new DB." 
  (cond
   ((null forms) 'DB)
   (t `(LET ((DB (APPEND ,(car forms) DB)))
	 (APPEND-DB ,@(cdr forms))))))

(defmacro extend-db (&rest forms)
  "Evaluate each form in the context of the DB that successive forms
   created."
  (cond
   ((null forms) 'DB)
   (t `(LET ((DB ,(car forms)))
	 (EXTEND-DB ,@(cdr forms))))))

(defloop db-let-fn (fields)
  (for ((field in fields))
    (collect
     (cond
      ((symbolp field) `(,field (DB ,(keywordify field))))
      ((and (consp field) (consp (cdr field)) (symbolp (cadr field)))
       `(,(cadr field) (DB ,(car field) ,(keywordify (cadr field)))))
      (t (bomb-from 'DB-LET-FN "Illegal field: ~p0" field))))))

(defmacro db-let (fields &rest forms)
  "This macro is a shorthand way to bind fields of the DB to the like-named
   variable.  A field can be a field name, or (slot field)."
  `(LET ,(db-let-fn fields) ,@forms))

(defloop map-slots-db (slot-names key db)
  "Return a list in SLOT order of the indicated key."
  (for ((slot in slot-names))
    (collect (db-slot-fn slot key `(MAP-SLOTS-DB ON ,slot ,key) db))))

(defloop map-if-slots-db (slot-names key db)
  "Return a list in SLOT order of the indicated key if non-NIL."
  (for ((slot in slot-names))
    (append
     (let ((val (db-slot-fn slot key `(MAP-IF-SLOTS-DB ON ,slot ,key) db)))
       (if val (list val) nil)))))


;;;****************************************************************************
;;;
;;;    Code Generation
;;;
;;;****************************************************************************
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Records
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

;;  An ASSERTION record records the assertion as provided by the user, the
;;  slots bound by the assertion, the substituted assertion, the slot that
;;  this assertion is associated with (or NIL if a DEFSTRUCTURE assertion),
;;  and a list of RULE records.

(defrec assertion (assertion bound-slots subst-assertion slot rules) nil)

;;  A RULE record contains an ASSERTION record and the ACL2 :RULE-CLASS form
;;  that will implement the rule.

(defrec rule (assertion rule-class) nil)

;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Utilities, and MAKE-ers.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defloop required-slot-names (slot-names db)
  "A slot is required by the constructor macro if no default was specified."
  (for ((slot in slot-names))
    (unless (db slot :DEFAULT-SPECIFIED)
      (collect (keywordify slot)))))

(defun make-corollary (assertion db)
  "Create the :COROLLARY rule for the assertion."
  (let*
    ((force (db :FORCE))
     (predicate-call (db :PREDICATE-CALL))
     (hyp (if force `(FORCE ,predicate-call) predicate-call)))
    `(IMPLIES ,hyp ,(access ASSERTION assertion :SUBST-ASSERTION))))

(defmacro make-prefix-name (&rest names)
  `(PACK-INTERN (DB :NAME) (DB :PREFIX) ,@names))

(defun make-template (db)
  
  "Using the :SLOT-NAMES, :REPRESENTATION, and :TAG, make a template for
   function generation.  If the structure is tagged, the tag is always added
   as the CAR.  We know that the :TAG is a symbol, and that the
   :REPRSENTATION is of the proper form."

  (db-let (representation slot-names tag)

    ;;  Preliminary template.

    (let ((template
	   (case representation
	     ((:MV :LIST) slot-names)
	     (:DOTTED-LIST (dotify slot-names))
	     (:TREE (fold slot-names))
	     (t representation))))

      ;;  The final template.

      (if tag (cons tag template) template))))

(defloop reader-names (slot-names db)
  (for ((slot in slot-names))
    (collect
     (db-let (name conc-name)
       (cons (cons slot :READER)
	     (pack-intern name conc-name slot))))))

(defloop writer-names (slot-names db)
  "Generate the writer name, setting to NIL if either the slot or the
   structure as a whole is :READ-ONLY."
  (for ((slot in slot-names))
    (collect
     (db-let (name set-conc-name (slot read-only))
       (cons (cons slot :WRITER)
	     (if (or read-only (db :READ-ONLY))
		 nil
	       (pack-intern name set-conc-name slot)))))))

(defloop reader-calls (slot-names db)
  "Create a symbolic access form for a slot.  The default access form for
  slot A of structure FOO looks like (FOO-A FOO)."
  (for ((slot in slot-names))
    (collect
     (db-let (name)
       (cons (cons slot :READER-CALL)
	     `(,(db slot :READER) ,name))))))

(defloop writer-calls (slot-names db)
  "Create a symbolic update form for a slot.  The default update form for
  slot A of structure FOO with slots A, B, and C looks like 
  (SET-FOO-A FOOABC FOO)."
  (for ((slot in slot-names))
    (collect
     (db-let (name value-variable (slot writer))
       (cons (cons slot :WRITER-CALL)
	     (if writer
		 `(,writer ,value-variable ,name)
	       nil))))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Macro, Function, and Lemma generators.
;;;
;;;    By convention all of these return a list of forms to be spliced into
;;;    the set of events.  They contain comment strings that will be removed
;;;    by the CAPSULE macro.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defun guard-declaration (guard verifyp db)

  "If :GUARDS was specified, declare a guard and verify based on
  :VERIFY-GUARDS.  Note that the default is :DEFAULT."

  (db-let (guards verify-guards)

    (if guards
	(list
	 `(DECLARE (XARGS :GUARD ,guard
			  ,@(cond
			     ((or (null verifyp) (null verify-guards))
			      '(:VERIFY-GUARDS NIL))
			     ((eq verify-guards t) '(:VERIFY-GUARDS T))))))
      nil)))

;;;  CONSTRUCTOR

(defun constructor-body (template)
  "Use the template to create a large CONS expression that creates the new
   tuple.  The elements of the template are the argument names."
  (cond
   ((atom template) template)
   (t `(CONS ,(constructor-body (car template))
	     ,(constructor-body (cdr template))))))

(defun template-cost (template)
  (cond
   ((atom template) 0)
   (t (+ 1 (template-cost (car template)) (template-cost (cdr template))))))

(defloop acl2-countify-slots (slots)
  (for ((slot in slots))
    (collect `(ACL2-COUNT ,slot))))

(defun constructor (db)

  "If :REPRESENTATION is :MV, create an MV macro.  Else create a function or
   macro under control of the :INLINE option.  For tagged structures the tag
   is in the constructor-body as a free variable, so we need to bind it."

  (db-let (name acl2-count-lemma constructor-call slot-names representation
		tag doc template inline) 

    (cond
     ((eq representation :MV)
      (list
       "
;  The constructor is defined as a macro that expands into an MV form for
;  every slot.
 "
       `(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
	  (CONS 'MV (LIST ,@slot-names)))))
      
     (inline
      (list
       "
;  The constructor is defined as a macro that accepts every slot.
 "
       (if tag
	   `(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
	      (LET ((,tag '',tag))
		(MLAMBDA (,tag ,@slot-names) ,(constructor-body template))))
	 `(DEFMACRO ,name ,slot-names ,@(if doc (list doc) nil)
	    (MLAMBDA ,slot-names ,(constructor-body template))))))

     (t (list
	 "
;  The constructor is defined as a function that accepts every slot.
 "
	 (if tag
	     `(DEFUN ,name ,slot-names ,@(if doc (list doc) nil)
		,@(guard-declaration T t db)
		(LET ((,tag ',tag))
		  ,(constructor-body template)))
	   `(DEFUN ,name ,slot-names ,@(if doc (list doc) nil)
	      ,@(guard-declaration T t db)
	      ,(constructor-body template)))
	 "
;  This lemma justifies recursion on any slot of the structure.  It is
;  unlikely to be used unless the structure is itself recursive.
  "
	 `(DEFTHM ,acl2-count-lemma
	    (EQUAL (ACL2-COUNT ,constructor-call)
		   (+ ,(template-cost template)
		      ,@(acl2-countify-slots slot-names)))))))))

;;;  WEAK-PREDICATE

(defun weak-predicate-body (template tree)
  "Traverse the template, creating CONSP and NULL expressions wherever
   needed.  It is necessary for the read/write lemmas that if the template
   contains a NULL entry, that entry must be NULL in every shell.  This
   is initialized with tree = <structure-name> which is the formal parameter
   of the weak predicate."
  (cond
   ((atom template) (cond ((null template) (list `(NULL ,tree)))))
   (t (append (list `(CONSP ,tree))
	      (weak-predicate-body (car template) `(CAR ,tree))
	      (weak-predicate-body (cdr template) `(CDR ,tree))))))

(defun reader-body (slot template tree)
  "Write a CA/DR form to get slot from a structure.  Tree is initialized with
   the structure name, which is the formal parameter of the reader."
  (declare (xargs :guard (symbolp slot)))
  (cond
   ((atom template) (cond ((eq slot template) tree)))
   (t (or (reader-body slot (car template) `(CAR ,tree))
	  (reader-body slot (cdr template) `(CDR ,tree))))))

(defun weak-predicate (db)

  "This is the predicate on the `structure' of the structure. If the
   structure is named, then we include a test that the CAR of the structure
   is the correct name.  We also write a lemma that shows when the
   constructor function satisfies this predicate."

  (db-let (weak-predicate weak-predicate-constructor-lemma
			  constructor-call name template tag
			  inline)
    
    ;;  Note that an untagged, 0-slot structure is defined to be NIL, and an
    ;;  untagged 1-slot structure is a single object.
    
    (let* ((wp-body (weak-predicate-body template name))
	   (body (cond
		  ((null template) (list `(NULL ,name)))
		  ((atom template) (list `(DECLARE (IGNORE ,name)) T))
		  (tag (list `(AND ,@wp-body (EQ (CAR ,name) ',tag))))
		  (t (list `(AND ,@wp-body))))))
      (list*
       "
;  This predicate defines the `structure' of the structure, and is used as a
;  weak guard on the readers and writers (if defined).
 "

       `(DEFUN ,weak-predicate (,name)
	  ,@(guard-declaration T t db)
	  ,@body)

       (if inline
	   nil
	 (list

	  "
;  The weak-predicate is satisfied by any explicit reference of the
;  constructor.  We also store this information as a :BUILT-IN-CLAUSE
 "
	  `(DEFTHM ,weak-predicate-constructor-lemma
	     (EQUAL (,weak-predicate ,constructor-call)
		    T)
	     :RULE-CLASSES
	     ((:REWRITE)
	      (:BUILT-IN-CLAUSE
	       :COROLLARY
	       (,weak-predicate ,constructor-call))))))))))

;;;  PREDICATE

(defloop map-access-assertion-assertion (assertions)
  (for ((assertion in assertions))
    (collect (access ASSERTION assertion :ASSERTION))))

(defloop slot-assertions (slot-names db)
  (for ((slot in slot-names))
    (append (db-let ((slot assertions))
	      (map-access-assertion-assertion assertions)))))

(defloop map-access-assertion-subst-assertion (assertions)
  (for ((assertion in assertions))
    (collect (access ASSERTION assertion :SUBST-ASSERTION))))

(defloop slot-subst-assertions (slot-names db)
  (for ((slot in slot-names))
    (append (db-let ((slot assertions))
	      (map-access-assertion-subst-assertion assertions)))))

(defun predicate-body (db)
  "The predicate body is a conjunction of the weak predicate, and all
   assertions about the slots."

  (db-let (weak-predicate weak-predicate-call slot-names assertions)
    `(AND ,weak-predicate-call
	  ,@(remove-duplicates-equal
	     (append (slot-subst-assertions slot-names db)
		     (map-access-assertion-subst-assertion assertions)))
	  T)))

(defun predicate-assertions-explicit (db)

  "The predicate, as the set of assertions for explicit instances of the
   constructor."
  
  (db-let (slot-names assertions weak-predicate constructor-call)
    (let ((assertions
	   (remove-duplicates-equal
	    (append (slot-assertions slot-names db)
		    (map-access-assertion-assertion assertions)))))

      ;;  Trying not to introduce redundant conjuncts.

      (cond
       (assertions `(AND ,@assertions T))
       (t 'T)))))

(defun predicate (db)
  (db-let (predicate name predicate-call weak-predicate weak-predicate-call
		     constructor-call predicate-weak-predicate-lemma
		     predicate-constructor-lemma inline)

    (list*
     "
;  This is the predicate, which contains the weak predicate and every
;  assertion made about the slots of the structure.  The final T guarantees
;  that all DEFSTRUCTURE predicates are Boolean.
 "
     `(DEFUN ,predicate (,name)
	,@(guard-declaration T nil db)
	,(predicate-body db))

	 
     (if inline
	 nil

       ;;  At times it is excessive to require that we prove the entire type
       ;;  predicate for a structure just to show that the weak predicate is
       ;;  satisfied, but this is the most generally useful rule to have
       ;;  around. 

       (list
	"
;  This lemma shows that the predicate includes the weak predicate, as
;  :REWRITE, :FORWARD-CHAINING, and :BUILT-IN-CLAUSE rules.  Note that the
;  :REWRITE rule is sometimes implicated in thrashing in conjunction with the
;  normalization lemmas.
 "
	`(DEFTHM ,predicate-weak-predicate-lemma
	   (IMPLIES
	    ,predicate-call
	    ,weak-predicate-call)
	   :RULE-CLASSES (:FORWARD-CHAINING :REWRITE :BUILT-IN-CLAUSE))
	"
;  This lemma rewrites the predicate on an explicit reference of
;  the constructor.
 "
	`(DEFTHM ,predicate-constructor-lemma
	   (EQUAL (,predicate ,constructor-call)
		  ,(predicate-assertions-explicit db))))))))
    
;;;  KEYWORD-CONSTRUCTOR
;;;  
;;;  The function KEYWORD-CONSTRUCTOR-FN is not a code generator per se, but
;;;  is a helper function for all keyword constructors defined by
;;;  DEFSTRUCTURE.  I had thought about generating a unique helper for each
;;;  structure, thinking that it would be possible to eliminate the
;;;  dependency on the STRUCTURES package.  However, I now realize that at
;;;  present any book that does a DEFSTRUCTURE will have to have a non-local
;;;  INCLUDE-BOOK for this book.  Therefore, all keyword constructors share
;;;  the same helper.  The same goes for KEYWORD-UPDATER.

(defloop default-alist (slot-names db)
  (for ((slot in slot-names))
    (collect (cons (keywordify slot) (db slot :DEFAULT)))))

(defloop keyword-constructor-body (args keyword-slot-names default-alist)
  (for ((keyword-slot in keyword-slot-names))
    (collect
     (let ((tail (assoc-keyword keyword-slot args)))
       (if tail (cadr tail) (cdr (assoc keyword-slot default-alist)))))))

(defun keyword-slot-checker (macro-name form args keyword-slot-names)
  "Check keyword argument list for basic syntax and either bomb or return
   NIL."
  (cond
   ((not (keyword-value-listp args))
    (bomb-from macro-name
               "The argument list in the macro invocation ~p0 ~
                does not match the syntax of a keyword argument ~
                list because ~@1."
	       form (reason-for-non-keyword-value-listp args)))
   ((not (subsetp (evens args) keyword-slot-names))
    (bomb-from macro-name
	       "The argument list in the macro invocation ~p0 is not ~
                 a valid keyword argument list because it contains the ~
                 ~#1~[keyword~/keywords~] ~&1, which ~#1~[is~/are~] ~
                 not the keyword ~#1~[form~/forms~] of any of the ~
                 slot names ~&2." 
	       FORM (set-difference-equal (evens args) keyword-slot-names)
	       keyword-slot-names))
   (t nil)))


(defun keyword-constructor-fn (form args name keyword-constructor default-alist
				    keyword-slot-names required-slot-names)
  (cond
   ((keyword-slot-checker keyword-constructor form args keyword-slot-names))
   ((not (subsetp required-slot-names (evens args)))
    (bomb-from keyword-constructor
	       "The argument list in the macro invocation ~p0 is not ~
                 valid does not specify a value for the required ~
                 ~#1~[keyword~/keywords~] ~&1. ~
                 Any slot which has no :DEFAULT option at ~
                 DEFSTRUCTURE time must be specified in every ~
                 invocation of the constructor macro." 
	       form (set-difference-equal
		     required-slot-names (evens args))
	       keyword-slot-names))
   (t `(,name ,@(keyword-constructor-body
		 args keyword-slot-names default-alist)))))

(defun keyword-constructor (db)
  (db-let
   (name keyword-constructor slot-names keyword-slot-names
	 required-slot-names)

   (if keyword-constructor
       (list
	"
;  This is the keyword constructor macro.  It will expand into a call of the
;  constructor, with appropriate defaulting.
 "
	`(DEFMACRO ,keyword-constructor (&WHOLE FORM &REST ARGS)
	   (KEYWORD-CONSTRUCTOR-FN
	    FORM ARGS ',name ',keyword-constructor
	    ',(default-alist slot-names db)
	    ',keyword-slot-names ',required-slot-names)))
     nil)))
   
;;;  READERS

(defloop reader-definitions (slot-names db)
  (for ((slot in slot-names))
    (collect
     (db-let ((slot reader) name weak-predicate-call template inline)
       (if inline
	   `(DEFMACRO ,reader (,name)
	      (MLAMBDA (,name) ,(reader-body slot template name)))
	 `(DEFUN ,reader (,name)
	    ,@(guard-declaration weak-predicate-call t db)
	    ,(reader-body slot template name)))))))

(defun readers (db)
  "Define the reader functions"
  (db-let (slot-names)
    (if slot-names
	(cons
	 "
;  These are the `readers' for the structure.
 "
	 (reader-definitions slot-names db))
      nil)))
    

;;;  WRITERS

(defconst *binding-variable* '|x|)
(defconst *binding-variable1* '|y|)

(defun writer-body (slot template var tree)
  "Write a CONS form to put a new slot into a structure, given the slot,
   the structure template, a variable name (a formal parameter) and the
   `tree'."
  (declare (xargs :guard (symbolp slot)))
  (cond
   ((atom template) (cond ((eq slot template) var)))
   (t (let
	((car-side (writer-body slot (car template) var `(CAR ,tree)))
	 (cdr-side (writer-body slot (cdr template) var `(CDR ,tree))))
	(cond
	 (car-side `(CONS ,car-side ,(cond
				      ((null (cdr template)) nil)
				      (t `(CDR ,tree)))))
	 (cdr-side `(CONS (CAR ,tree) ,cdr-side)))))))

(defun writer-macro-fn (bind slot template value name)
  (if bind
      `(LET ((,*binding-variable*
	      (CHECK-VARS-NOT-FREE (,*binding-variable*) ,name)))
	 ,(writer-body slot template value *binding-variable*))
    (writer-body slot template value name)))

(defloop writer-definitions (slot-names db)
  (for ((slot in slot-names))
    (append
     (db-let ((slot writer) name weak-predicate-call template
	      value-variable inline)
       (if writer
	   (if inline
	       (list
		`(DEFMACRO ,writer (,value-variable ,name)
		   (WRITER-MACRO-FN (NOT (ATOM ,name)) ',slot ',template
				    ,value-variable ,name)))
	     (list
	      `(DEFUN ,writer (,value-variable ,name)
		 ,@(guard-declaration weak-predicate-call t db)
		 ,(writer-body slot template value-variable name))))
	 nil)))))

(defun writers (db)
  "Define the writer functions."
  (db-let (slot-names read-only)
    (if read-only
	nil
      (cons
       "
;  These are the `writers' for the structure.
 "
       (writer-definitions slot-names db)))))


;;;  KEYWORD-UPDATER

(defloop keyword-writer-map (slot-names db)
  (for ((slot in slot-names))
    (collect (db-let ((slot writer))
	       (cons (keywordify slot) writer)))))

(defloop keyword-reader-map (slot-names db)
  (for ((slot in slot-names))
    (collect (db-let ((slot reader))
	       (cons (keywordify slot) reader)))))

(defloop read-only-keyword-slots (slot-names db)
  (for ((slot in slot-names))
    (when (db slot :READ-ONLY)
      (collect (keywordify slot)))))

(defun slot-cost (slot template accum)
  "Compute the cost of reading (CAR/CDR) and writing (CONS) a slot."
  (cond
   ((atom template) (cond
		     ((eq slot template) accum)
		     (t nil)))
   (t (or (slot-cost slot (car template) (1+ accum))
	  (slot-cost slot (cdr template) (1+ accum))))))

(defun set-cost (slots template)
  (cond
   ((atom slots) 0)
   (t (+ (slot-cost (car slots) template 0)
	 (set-cost (cdr slots) template)))))

(defun set-heuristic (keyword-set-slots template)
  (let*
    ((keyword-template (keywordify-tree template))
     (set-cost (set-cost keyword-set-slots keyword-template)))
    (<= set-cost (template-cost keyword-template))))

(defun set-update (args keyword-writer-map struct)
  (cond
   ((atom args) struct)
   (t `(,(cdr (assoc (car args) keyword-writer-map)) ;Writer
	,(cadr args)			;Value
	,(set-update (cddr args) keyword-writer-map struct)))))

(defloop copy-update-fn
  (keyword-slot-names args keyword-reader-map struct check)
  (for ((keyword-slot in keyword-slot-names))
    (collect
     (let ((assigned? (assoc-keyword keyword-slot args)))
       (if assigned?
	   (if check
	       `(CHECK-VARS-NOT-FREE
		 (,*binding-variable*)
		 ,(cadr assigned?))
	     (cadr assigned?))
	 `(,(cdr (assoc keyword-slot keyword-reader-map))
	   ,struct))))))

(defloop all-slots-assigned-p (keyword-slot-names args)
  (for ((keyword-slot in keyword-slot-names))
    (always (assoc-keyword keyword-slot args))))

(defun copy-update (name keyword-slot-names args keyword-reader-map struct)
  "If all slots are assigned (equivalent to a constructor call), or the
   updated thing is an atom (variable symbol), then we can simply do the
   copy. Otherwise, bind the struct to a temp and then do the copy."
  (if (or (atom struct)
	  (all-slots-assigned-p keyword-slot-names args))
      `(,name ,@(copy-update-fn keyword-slot-names args
				keyword-reader-map
				struct nil))
    `(LET ((,*binding-variable* ,struct))
       (,name ,@(copy-update-fn keyword-slot-names args
				keyword-reader-map
				*binding-variable* t)))))

(defun inline-update-fn (args template tree check)
  "Write a CONS form to update slots from args, given the structure template
   and tree."
  (cond
   ((atom template) (cond
		     ((null template) (mv nil nil))
		     (t (let* ((keyword-slot (keywordify template))
			       (found (assoc-keyword keyword-slot args))
			       (val (cadr found)))
			  (cond
			   (found
			    (mv t (cond
				   (check `(CHECK-VARS-NOT-FREE
					    (,*binding-variable*)
					    ,val))
				   (t val))))
			   (t (mv nil tree)))))))
   (t (mv-let (car-found car-result)
	(inline-update-fn args (car template) `(CAR ,tree) check)
	(mv-let (cdr-found cdr-result)
	  (inline-update-fn args (cdr template) `(CDR ,tree) check)
	  (cond
	   ((not (or car-found cdr-found)) (mv nil tree))
	   (t (mv
	       t
	       `(CONS
		 ,(cond
		   (car-found car-result)
		   (t `(CAR ,tree)))
		 ,(cond
		   (cdr-found cdr-result)
		   ((null (cdr template)) nil)
		   (t `(CDR ,tree))))))))))))

(defun inline-update (args template struct keyword-slot-names)
  (let ((bind (and (not (atom struct))
		   (not (all-slots-assigned-p keyword-slot-names args)))))
    (mv-let (found form)
      (inline-update-fn
       args template (if bind *binding-variable* struct) bind)
      (cond
       (bind `(LET ((,*binding-variable* ,struct)) ,form))
       (t form)))))

(defun keyword-updater-fn (form struct args name keyword-updater
				keyword-slot-names read-only-keyword-slots
				update-method template keyword-reader-map
				keyword-writer-map)
  (cond
   ((keyword-slot-checker keyword-updater form args keyword-slot-names))
   ((intersection-eq (evens args) read-only-keyword-slots)
    (bomb-from keyword-updater
	       "The argument list in the macro invocation ~p0 is not ~
                valid because it specifies ~#1~[a~/an~] update for the ~
                ~#1~[slot~/slots~] ~&1 which ~#1~[is a~/are~] ~
                :READ-ONLY ~#1~[slot~/slots~]."
	       form (intersection-eq (evens args) read-only-keyword-slots)))
   (t

    ;;  Determine the kind of update we're going to do. The :HEURISTIC method
    ;;  always chooses either :SET or :COPY.

    (let*
      ((keyword-set-slots (evens args))
       (method (if (eq update-method :HEURISTIC)
		   (if (set-heuristic keyword-set-slots template)
		       :SET
		     :COPY)
		 update-method)))

      (case method
	(:SET (set-update args keyword-writer-map struct))
	(:COPY (copy-update name keyword-slot-names args
			    keyword-reader-map struct))
	(:INLINE (inline-update args template struct keyword-slot-names))
	(t (bomb-from 'KEYWORD-UPDATER-FN "Illegal method: ~p0."
		      method)))))))

(defun keyword-updater (db)
  (db-let (keyword-updater name keyword-slot-names slot-names
		     update-method template)
    (if keyword-updater
	(list
       "
;  This is the macro that provides for updates of multiple slots of a
;  structure. 
 "
       `(DEFMACRO ,keyword-updater (&WHOLE FORM STRUCT &REST ARGS)
	  (KEYWORD-UPDATER-FN
	   FORM STRUCT ARGS ',name ',keyword-updater
	   ',keyword-slot-names ',(read-only-keyword-slots slot-names db)
	   ',update-method ',template ',(keyword-reader-map slot-names db)
	   ',(keyword-writer-map slot-names db))))
      nil)))
			    
;;;  READ-LEMMA

(defloop read-lemma-body (slot-names db)
  (for ((slot in slot-names))
    (collect (db-let ((slot reader) constructor-call)
	       `(EQUAL (,reader ,constructor-call) ,slot)))))

(defun read-lemma (db)
  (db-let (slot-names read-lemma)
    (if read-lemma
	(list
	 "
;  This lemma simplifies reads of an explicit constructor.
 "
	 `(DEFTHM ,read-lemma
	    (AND ,@(read-lemma-body slot-names db))))
      nil)))

;;; WRITE-LEMMA

(defloop write-lemma-body (slot-names db)
  (for ((slot in slot-names))
    (unless (db slot :READ-ONLY)
      (collect
       (db-let ((slot writer) constructor-call value-variable)
	 `(EQUAL (,writer ,value-variable ,constructor-call)
		 ,(subst value-variable slot constructor-call)))))))

(defun write-lemma (db)
  (db-let (slot-names write-lemma)
    (if write-lemma
	(list
       "
;  This lemma simplifies writes of an explicit constructor.
 "
       `(DEFTHM ,write-lemma
	  (AND ,@(write-lemma-body slot-names db))))
      nil)))

;;;  LIFT-IF-LEMMA

#|

The reasons for lifting IF out are as described below, but we always do it
rather than check for the SYNTAXP hyp.  This was important for Alessandro's
work.  Also added IF lifting for the slot writers, in the hope of winning
some simplifications in that way as well ( we do on his examples ).


(defun lift-if-syntaxp (left right constructor)
  ":doc-section lift-if-syntaxp
  Meta heuristic for `lifting' IF through structure accessors.
  ~/~/

The `LIFT-IF' lemma is introduced as a heuristic to speed certain proofs
about specifications involving conditional structure access.  Here is the
idea.  Imagine a generic structure defined by

 (DEFSTRUCTURE FOO A B C).

Now imaging that the term

 (FOO-A (IF test x y))

appears during a proof about a specification involving the structure.  
This will happen because ACL2 does not normally move IF around during
simplification.  Instead, ACL2 simplifies, with IF in place, and then
clausifies out the IFs to produce cases.

Now, if the term above is actually

 (FOO-A (IF test (FOO a b c) (FOO a1 b1 c1))),

i.e., both the left and right branch of the IF are instances of the
constructor, then we can simplify this term to 

 (IF test a a1).

Even though we haven't eliminated the need to clausify away the IF, we have
at least reduced the size of the term, perhaps substantially.  This is
important because if we had clausified away to cases involving

 (FOO-A (FOO a b c)) and (FOO-A (FOO a1 b1 c1))

the prover is obligated to examine all of (FOO a b c) and (FOO a1 b1 c1)
before applying the simple `read lemma' for the structure.  The sizes of
terms can also have a very significant impact on the amount of time spent on
I/O.

If it so happened that a = a1, e.g., this slot is invariant in a
specification, then this would be further simplified to simply

a,

which will potentially result in one less test during clausification.

The heuristic embodied in this lemma is to lift IF through calls of the
accessors if there is some hope that doing so will reduce the size of the
resulting term.  If the left and right hand sides of the IF are both
instances of the constructor, then we know that this will work, thanks to the
`read lemma' for the structure.  We also lift the IFs out if the left or
right hand sides are themselves IF, hoping to win further down.  This
heuristic has been found to result in very significant proof speedups for
certain types of proofs. ~/"

  (declare (xargs :guard t
		  :mode :logic))

  (and (consp left)
       (consp right)
       (symbolp constructor)
       (or (eq (car left) 'IF)
	   (eq (car left) constructor))
       (or (eq (car right) 'IF)
	   (eq (car right) constructor))))
|#

(defloop lift-if-writers (slots test left right db)
  (for ((slot in slots))
    (when (db slot :WRITER)
      (collect
       (db-let (value-variable (slot writer))
	 `(EQUAL (,writer ,value-variable (IF ,test ,left ,right))
		 (IF ,test
		     (,writer ,value-variable ,left)
		   (,writer ,value-variable ,right))))))))

(defloop lift-if-readers (slots test left right db)
  (for ((slot in slots))
    (collect
     (db-let ((slot reader))
       `(EQUAL (,reader (IF ,test ,left ,right))
	       (IF ,test (,reader ,left) (,reader ,right)))))))

(defun lift-if-lemma-fn (slots test left right db)
  (append (lift-if-readers slots test left right db)
	  (lift-if-writers slots test left right db)))

(defun lift-if-lemma (db)
  (db-let (name lift-if-lemma representation slot-names)
    (let ((test (pack-intern name name "-TEST")) ;Makes forms easer to read
	  (left (pack-intern name name "-LEFT")) ;w/o package marks. 
	  (right (pack-intern name name "-RIGHT")))
      (if lift-if-lemma
	  (list
	   "
;  This lemma lifts IF through calls of the slot accessors.
 "
	   `(DEFTHM ,lift-if-lemma
	      (AND ,@(lift-if-lemma-fn slot-names test left right db))))
	nil))))

;;;  ELIMINATION-LEMMA

(defun elimination-lemma (db)
  (db-let (elimination-lemma slot-names name force
			     weak-predicate-call) 
    (if elimination-lemma
	(list
	 "
;  This is the :ELIM lemma for the constructor.
 "
	 `(DEFTHM ,elimination-lemma
	    (IMPLIES
	     ,(if force
		  `(FORCE ,weak-predicate-call)
		weak-predicate-call)
	    (EQUAL (,name ,@(map-slots-db slot-names :READER-CALL db))
		   ,name))
	    :RULE-CLASSES (:REWRITE :ELIM)))
      nil)))

#|
;;;  NORMALIZATION LEMMA

(defloop normalize-equal-conjuncts (slot-names db)
  (for ((slot in slot-names))
    (collect `(EQUAL ,slot ,(db slot :reader-call)))))

(defloop normalization-rhs (slot-names written-slot db)
  (for ((slot in slot-names))
    (collect
     (db-let (value-variable (slot reader) name)
       (cond
	((eq slot written-slot) value-variable)
	(t `(,reader ,name)))))))

(defloop normalization-conjuncts (slot-names all-slot-names db)
  (for ((slot in slot-names))
    (unless (db slot :READ-ONLY)
      (collect
       (db-let ((slot writer) value-variable name)
	 `(EQUAL (,writer ,value-variable ,name)
		 (,name ,@(normalization-rhs all-slot-names slot db))))))))

(defun normalization-lemma (db)
  (db-let (name constructor-call normalization-lemma slot-names force
		weak-predicate-call)  

    ;;  Note: In the first conjunct below (the equality conjunct), if both the
    ;;  LHS and RHS are explicit references of the constructor, then we can
    ;;  rewrite w/o hypotheses.  Rather than introducing 2 lemmas, however, we
    ;;  simply introduce the most general one, assuming that one will be able
    ;;  to relieve the weak predicate hypothesis.

    (if normalization-lemma
	(list
	 "
;  This lemma normalizes symbolic writes by transforming the symbolic
;  structure into an explicit reference of the constructor.  The first
;  conjunct is a lemma that will normalize equality tests for this structure
;  when one of the objects is an explicit reference of the constructor.
 "
	 `(DEFTHM ,normalization-lemma

	    (IMPLIES
	     ,(if force
		  `(FORCE ,weak-predicate-call)
		weak-predicate-call)
	     (AND
	      (EQUAL (EQUAL ,constructor-call ,name)
		     (AND ,@(normalize-equal-conjuncts slot-names db)))
	      ,@(normalization-conjuncts slot-names slot-names db)))))
      nil)))
      
|#

;;;  SLOT-WRITERS-LEMMAS

;  The slot writers always preserve the weak predicate on the structures they
;  write.  A more interesting case concerns the question of whether a write
;  to a slot returns a structure that satisfies the predicate.  In general,
;  the predicate can involve complex relationships between the slots, thus it
;  is necessary to normalize the structure being written to an explicit call
;  of the constructor, and then the `predicate-constructor-lemma' will prove
;  the conjecture.  In the special case [ which is probably the most common ]
;  that there are no complex interrelationships, we can prove the predicate
;  by simply proving the particular assertion(s) about the slot.

(defloop weak-predicate-slot-writers-lemma-fn (weak-predicate writer-calls)
  (for ((call in writer-calls))
    (collect `(,weak-predicate ,call))))

(defloop normalization-rhs (slot-names written-slot db)
  (for ((slot in slot-names))
    (collect
     (db-let (value-variable (slot reader) name)
       (cond
	((eq slot written-slot) value-variable)
	(t `(,reader ,name)))))))

(defloop map-access-assertion-bound-slots (assertions)
  (for ((assertion in assertions))
    (collect (access ASSERTION assertion :BOUND-SLOTS))))

(defloop map-subst-assertions (assertions slot value-variable)
  (for ((assertion in assertions))
    (collect
     (subst-expr-all assertion (list value-variable) (list slot)))))

(defloop all-bound-slots-fn (slot-names db)
  (for ((slot in slot-names))
    (append (map-access-assertion-bound-slots (db slot :ASSERTIONS)))))

(defun all-bound-slots (slot-names db)
  (append (map-access-assertion-bound-slots (db :ASSERTIONS))
	  (all-bound-slots-fn slot-names db)))

(defun simple-slot-p (slot db)
  (db-let ((slot assertions) slot-names)
    (and (equal (remove-duplicates-equal
		 (map-access-assertion-bound-slots assertions))
		(list (list slot)))
	 (not
	  (member slot
		  (flatten (all-bound-slots (remove slot slot-names) db)))))))

(defloop predicate-slot-writers-lemma-fn
  (predicate slot-names all-slot-names db)  
  (for ((slot in slot-names))
    (unless (db slot :READ-ONLY)
      (collect
       (db-let (name assertions predicate-call weak-predicate-call
		     value-variable (slot writer-call))
	 (if (not (simple-slot-p slot db))
	     `(IMPLIES
	       ,weak-predicate-call
	       (EQUAL (,predicate ,writer-call)
		      (,predicate
		       (,name
			,@(normalization-rhs all-slot-names slot db)))))
	   (let* ((slot-assertions-assertions
		   (map-access-assertion-assertion (db slot :ASSERTIONS)))
		  (subst-assertions
		   (map-subst-assertions slot-assertions-assertions
					 slot value-variable)))
	     `(IMPLIES
	       ,predicate-call
	       (IFF (,predicate ,writer-call)
		    ,(if subst-assertions
			 (cond
			  ((cdr subst-assertions)
			   `(AND ,@subst-assertions))
			  (t (car subst-assertions)))
		       'T))))))))))
	   
(defun slot-writers-lemmas (db)
  (db-let (weak-predicate-slot-writers-lemma
	   weak-predicate-call weak-predicate
	   predicate-slot-writers-lemma predicate
	   slot-names)
					     
    (append
     (if weak-predicate-slot-writers-lemma
	 (list
	  "
;  This lemma backchains the weak predicate through the slot writers.
  "
	  `(DEFTHM ,weak-predicate-slot-writers-lemma
	     (IMPLIES
	      ,weak-predicate-call
	      (AND ,@(weak-predicate-slot-writers-lemma-fn
		      weak-predicate (map-if-slots-db slot-names :WRITER-CALL
						   db)))))) 
       nil)
     (if predicate-slot-writers-lemma
	 (list
	      "
;  This lemma proves the predicate on a slot writer call.  For simple slots
;  whose assertions (if any) only mention the slot itself one need only prove
;  the assertion about the new slot.  For more complex slot assertions, or if
;  the structure as a whole has an assertion, it is necessary to normalize
;  the slot writer call to an explicit instance of the constructor.
  "
	      `(DEFTHM ,predicate-slot-writers-lemma
		 (AND ,@(predicate-slot-writers-lemma-fn
			 predicate slot-names slot-names db))))
       nil))))

;;;  READ-WRITE-LEMMA 

(defloop read-write-conjuncts1 (slot-names write-slot db)
  (for ((read-slot in slot-names))
    (collect
     (db-let (value-variable (read-slot reader) (write-slot writer) name) 
       (cond
	((eq read-slot write-slot)
	 `(EQUAL (,reader (,writer ,value-variable ,name))
		 ,value-variable))
	(t `(EQUAL (,reader (,writer ,value-variable ,name))
		   (,reader ,name))))))))

(defloop read-write-conjuncts (slot-names all-slot-names db)
    (for ((write-slot in slot-names))
      (unless (db write-slot :READ-ONLY)
	(append (read-write-conjuncts1 all-slot-names write-slot db)))))
	
(defun read-write-lemma (db)
  (db-let (read-write-lemma slot-names force weak-predicate-call)
    (if read-write-lemma
	(list
	 "
;  This lemma normalizes symbolic reads of symbolic writes by `pushing'
;  reads though nested writes until either 1) a symbolic write of the read
;  slot is detected, or 2) something unrecognized is found.
 "
	 `(DEFTHM ,read-write-lemma
	    (AND ,@(read-write-conjuncts slot-names slot-names db))))
      nil)))

;;;  WRITE-WRITE-LEMMA

(defloop write-write-conjuncts1 (deep-slot template db)
  (for ((shallow-slot in template))
    (unless (db shallow-slot :READ-ONLY)
      (collect
       (db-let (value-variable value-variable1 name)
	 (let ((deep-writer (db deep-slot :WRITER))
	       (shallow-writer (db shallow-slot :WRITER)))
	   (if (eq deep-slot shallow-slot)
	       `(EQUAL (,deep-writer ,value-variable
				     (,deep-writer ,value-variable1 ,name))
		       (,deep-writer ,value-variable ,name))
	     `(EQUAL (,deep-writer ,value-variable
				   (,shallow-writer ,value-variable1 ,name))
		     (,shallow-writer ,value-variable1
				      (,deep-writer ,value-variable ,name))))))))))

(defloop write-write-conjuncts (template db)
  (for ((slot in template))
    (unless (db slot :READ-ONLY)
      (append (write-write-conjuncts1 slot template db)))))

(defun write-write-lemma (db)
  (db-let (write-write-lemma template tag)
    (if write-write-lemma
	(let ((template (reverse (flatten (if tag (cdr template) template)))))
	  (list
	   "
;  This lemma normalizes multiple nested writes of a structure by pushing
;  writes for `deep' slots through writes to `shallow' slots, and reducing
;  redundant writes to the same slot to a single write. 
  "
	   `(DEFTHM ,write-write-lemma
	      (AND ,@(write-write-conjuncts  template db)))))
      nil)))

;;;  NAKED-PROOFS

(defloop map-rules-for-rule-classes (rules)
  (for ((rule in rules)) (collect (access RULE rule :RULE-CLASS))))

(defloop map-assertions-for-rule-classes (assertions)
  (for ((assertion in assertions))
    (append (map-rules-for-rule-classes (access ASSERTION assertion :RULES)))))

(defloop map-slot-assertions-for-rule-classes (slot-names db)
  (for ((slot in slot-names))
    (append (db-let ((slot assertions))
	      (map-assertions-for-rule-classes assertions)))))

(defun all-rule-classes (db)
  (db-let (assertions slot-names)
    (append (map-slot-assertions-for-rule-classes slot-names db)
	    (map-assertions-for-rule-classes assertions))))

(defun naked-proofs (db)
  (db-let (assertion-lemma predicate predicate-call 
			   predicate-guard-hints
			   assertion-lemma-hints guards verify-guards)
    (if (or assertion-lemma (and guards verify-guards))
	(append
	 (list `(LOCAL (IN-THEORY (ENABLE ,predicate))))
	 (and guards verify-guards
	      (list
	       "
;  The guard verification for the predicate is performed here since it may
;  need the current environment.  If it does not prove then you may need some
;  hints.  Any :PREDICATE-GUARD-HINTS option to DEFSTRUCTURE will be attached
;  to this lemma.
 "
	       `(VERIFY-GUARDS ,predicate
			       ,@(and predicate-guard-hints
				      (list :HINTS predicate-guard-hints)))))
	 (and assertion-lemma
	      (list
	       "
;  This lemma captures all assertions about the structure.  This lemma is not
;  guaranteed to prove.  If it does not prove than you may have to provide
;  some :HINTS.  Any :ASSERTION-LEMMA-HINTS option to DEFSTRUCTURE will be
;  attached to this lemma.  Be sure that you have not specified
;  unsatisfiable assertions. 
 "

	       `(DEFTHM ,assertion-lemma
		  (IMPLIES
		   ,predicate-call
		   ,(predicate-body db))
		  :RULE-CLASSES
		  ,(all-rule-classes db)
		  ,@(and assertion-lemma-hints
			 (list :HINTS assertion-lemma-hints))))))
      nil)))
	    
;;;  MV-INTRO-MACRO

(defun mv-intro-macro-case-body (readers form n)
  (cond
   ((atom readers) ())
   (t (cons `(,n (,(car readers) ,form))
	    (mv-intro-macro-case-body (cdr readers) form (1+ n))))))

(defun mv-intro-macro-fn (name form event-name readers)
  (let*
    ((event-name (if event-name
		     event-name
		   (pack-intern (car form) name "-MV-INTRO-" (car form))))
     (n (car (unique-symbols 1 'MV-INTRO-MACRO-N (flatten form))))
     (mv-nth-form `(MV-NTH ,n ,form)))
     
    `(DEFTHM ,event-name
       (EQUAL ,mv-nth-form
	      (CASE ,n
		,@(MV-intro-macro-case-body readers form 0)
		(T (HIDE ,mv-nth-form))))
       :HINTS
       (("Goal"
	 :IN-THEORY '(ZP OPEN-MV-NTH ,@readers)
	 :EXPAND (HIDE ,mv-nth-form))))))
	 
(defun mv-intro-macro (db)
  (db-let (name slot-names mv-intro-macro)
    (if mv-intro-macro
      (list
       "
;  This macro generates a lemma that will rewrite MV-NTH applied to any form
;  as a call of the appropriate reader for this MV structure.
"
       `(DEFMACRO ,mv-intro-macro (FORM &KEY EVENT-NAME)
	  (DECLARE (XARGS :GUARD (AND FORM
				      (SYMBOL-LISTP FORM)
				      (SYMBOLP EVENT-NAME))))
	  (MV-INTRO-MACRO-FN ',name FORM EVENT-NAME
			  ',(map-slots-db slot-names :READER db))))
      nil)))

;;;  DEFINITION-THEORY

; At one time we DISABLEd all :TYPE-PRESCRIPTION runes, just to make the theory
; as abstract as possible.  However a user had an example where it was
; advantageous to use the type information.  They had a spec that returned
; either a structure or a symbol that represeted a `meta-error'.  One can now
; prove that specifications like this don't return non-structure values by type
; reasoning.   I suppose that people might also want to use a structure as a
; template that they may also access by CAR and CDR for example, so they'll
; need the type info.

; At one time we also had DISABLEd the executable counterpart of the
; constructor.  This lead to problems when trying to compare constant
; structures defined with DEFCONST, which always evaluates, to constant
; structures generated during a proof.

#|

(defloop r/w-type-prescriptions-fn (fns)
  (for ((fn in fns))
    (collect `(:TYPE-PRESCRIPTION ,fn))))

(defun r/w-type-prescriptions (db)
  (db-let (slot-names)
    (r/w-type-prescriptions-fn
     (append (map-if-slots-db slot-names :READER db)
	     (map-if-slots-db slot-names :WRITER db)))))
|#

(defun definition-theory (db)
  (db-let (name weak-predicate predicate definition-theory slot-names
		representation inline) 
    (if inline
	nil
      (list
       "
;  This theory consists of all :DEFINITION runes associated with the
;  constructor, predicates, and slot readers/writers.  Only the
;  :TYPE-PRESCRIPTIONS and :EXECUTABLE-COUNTERPARTS remain ENABLEd.
 "
       `(DEFTHEORY ,definition-theory
	  '(

	    ;;  Note that for :MV structures the constructor is a macro.

	    ,@(if (eq representation :MV)
		  nil
		(list name))
	    ,weak-predicate
	    ,predicate
	    ,@(map-if-slots-db slot-names :READER db)
	    ,@(map-if-slots-db slot-names :WRITER db)))
       `(IN-THEORY (DISABLE ,definition-theory))))))

;;;  LEMMA-THEORY

(defloop lemma-theory-names (lemma-names db)
  (for ((lemma-key in lemma-names))
    (append
     (let ((lemma-name (db-fn lemma-key `(LEMMA-THEORY ,lemma-key) db)))
       (if lemma-name (list lemma-name) nil)))))

(defun lemma-theory (db)
  (db-let (lemma-theory inline)
    (if inline
	nil
      (list
       "
;  This theory lists every lemma generated by this DEFSTRUCTURE.  These are
;  normally to remain ENABLEd.
 "
       `(DEFTHEORY ,lemma-theory
	  '(,@(lemma-theory-names *lemma-names* db)))))))


;;;****************************************************************************
;;;
;;;    Parsing
;;;
;;;****************************************************************************
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Constants
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defconst *update-methods* '(:HEURISTIC :SET :COPY))

(defconst *keyword-representations* '(:LIST :MV :DOTTED-LIST :TREE))

(defconst *options*
  '(:ASSERT :ASSERTION-LEMMA-HINTS :CONC-NAME :DO-NOT
	    :FORCE :GUARDS :MV-INTRO-MACRO :KEYWORD-CONSTRUCTOR
	    :KEYWORD-UPDATER :PREDICATE :PREDICATE-GUARD-HINTS :PREFIX
	    :INLINE :READ-WRITE-LEMMA :REPRESENTATION :SET-CONC-NAME
	    :SLOT-WRITERS :WEAK-PREDICATE :UPDATE-METHOD :VERIFY-GUARDS
	    :WRITE-WRITE-LEMMA) 
  "The valid options for DEFSTRUCTURE options.")

(defconst *duplicate-options*
  '(:ASSERT :DO-NOT)
  "Only these options may be duplicated.")

(defconst *do-not-options* '(:TAG #|:NORMALIZE|# :READ-WRITE :WRITE-WRITE)
  "Things done by default, they can be undone by a :DO-NOT option.")

(defconst *slot-options*
  '(:DEFAULT :READ-ONLY :ASSERT)
  "The valid options for DEFSTRUCTURE <slot-and-options>.")

(defconst *duplicate-slot-options*
  '(:ASSERT)
  "Options for DEFSTRUCTURE <slot-and-options> that can be duplicated.")

(defconst *rule-tokens*
  '(:BUILT-IN-CLAUSE :COMPOUND-RECOGNIZER :CONGRUENCE :DEFINITION :ELIM
		     :EQUIVALENCE :FORWARD-CHAINING :GENERALIZE :INDUCTION
		     :LINEAR :LINEAR-ALIAS :META NIL :REFINEMENT :REWRITE
		     :TYPE-PRESCRIPTION :TYPE-SET-INVERTER
		     :WELL-FOUNDED-RELATION)
  "The valid Acl2 rule-tokens. These may need to be updated from time to
   time.")


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Assertion and Rule Checking
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defun check-assertion (assertion slot context db)
  "Check the assertion for syntax, and return an ASSERTION record containing
   the assertion, its bound slots, its substitution, and its associated slot."
  (db-let (slot-names)
    (cond

     ;;  If not a LAMBDA, make sure that it is at least a `vanilla' term.

     ((not (assertion-termp assertion))
      (bomb "Assertions are required to satisfy STRUCTURES::ASSERTION-TERMP, ~
             and ~p0 does not because ~@1."
	    assertion (reason-for-not-assertion-termp assertion)))

     ;;  This is an assertion term whose free variables are (hopefully!)
     ;;  indicated by FREE-VARS.

     (t (let*
	  ((bound-slots (free-vars assertion))
	   (err
	    (cond
	     ((not (subsetp bound-slots slot-names))
	      (msg "is not a subset of the slot names ~p0." slot-names))
	     ((and slot (not (member slot bound-slots)))
	      (msg "does not contain the current slot ~p0." slot)))))
	  (if err
	      (bomb "The putative assertion ~p0 in the context ~p1 is not ~
                   a valid assertion because the free variable list of the ~
                   assertion (as defined by STRUCTURES::FREE-VARS), ~p2, ~
                   ~@3  If you feel that this message is incorrect, ~
                   then restate your assertion as a LAMBDA function ~
                   and try again." assertion context bound-slots err)

	    ;;  Here, the `subst-assertion' is made by substitution of the
	    ;;  access forms for the free variables.
	  
	    (make ASSERTION
		  :assertion assertion
		  :bound-slots bound-slots
		  :subst-assertion
		  (subst-expr-all assertion
				  (map-slots-db bound-slots :READER-CALL db)
				  bound-slots)
		  :slot slot
		  :rules NIL)))))))
		

(defun parse-rule (rule default-assertion context slot db)
  "Check rule syntax and return a RULE record."

  (let ((rule-token (if (atom rule) rule (car rule))))
    
    (if (or (not (symbolp rule-token))
	    (not (member rule-token *rule-tokens*)))
	
	(bomb "The putative rule descriptor ~p0 in the context ~
               ~p1 is not valid because ~#2~[it~/its CAR~] ~
               is not one of the allowable rule tokens ~v3."
	      rule context (if (equal rule rule-token) 0 1) *rule-tokens*)
      
      (cond

       ;;  A symbolic rule inherits everything from the default-assertion.
    
       ((or (atom rule) (null (cdr rule)))
	(make RULE
	      :assertion default-assertion
	      :rule-class
	      `(,rule-token
		:COROLLARY
		,(make-corollary default-assertion db))))

       ((not (true-listp rule))
	(bomb "The putative atomic rule descriptor ~p0 in the context ~
           ~p1 is not valid because it is not a true list."
	      rule context))

       ;;  This is (rule-token assertion . other-rule-stuff).  We parse the
       ;;  assertion and append the other-rule-stuff to make the rule-class.

       (t (let
	    ((assertion (check-assertion (second rule) slot rule db)))

	    (make RULE
		  :assertion assertion
		  :rule-class
		  (append
		   `(,rule-token
		     :COROLLARY ,(make-corollary assertion db))
		   (rest (rest rule))))))))))

(defloop parse-rule-list (rule-list default-assertion context slot db)
  (for ((rule in rule-list))
    (collect (parse-rule rule default-assertion context slot db))))


(defloop parse-assert-options (assert-options slot db)
  "Traverse the assert-options (which *only* consist of :ASSERT options),
  and check the syntax and collect a list of ASSERTION records."

  (for ((option in assert-options))
    (collect
     (if (or (atom option)
	     (atom (rest option))
	     (not (true-listp option)))

	 (bomb "The :ASSERT option ~p0 needs an assertion and optional ~
           rule-descriptors, or it is not a true list.")

       (let*
	 ((assertion (check-assertion (second option) slot option db))
	  (rule-list
	   (parse-rule-list
	    (rest (rest option))	;The rules.
	    assertion			;The default assertion.
	    option			;Context
	    slot			;Required slot.
	    db)))

	 (change ASSERTION assertion :RULES rule-list))))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  PARSE-SLOT-OPTIONS
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defloop parse-slot-options (slots db)
  "We know that the slot is either a valid symbol, or a CONS whose CAR is a
  valid symbol.  Check all of the rest of the syntax and return an extension
  to be APPENDed to the DB."

  (for ((slot-and-options in slots))
    (append
     (let*
       ((slot-name (if (symbolp slot-and-options)
		       slot-and-options
		     (car slot-and-options)))

	(options (if (symbolp slot-and-options) nil (cdr slot-and-options)))
     
	(option-err
	 (get-option-check-syntax 'DEFSTRUCTURE options *slot-options*
				  *duplicate-slot-options* nil)))

       (acons-up
	((cons slot-name :READ-ONLY)
	 (get-option-as-flag 'DEFSTRUCTURE :READ-ONLY options))

	((cons slot-name :DEFAULT-SPECIFIED)
	 (get-option-entry :DEFAULT options))

	((cons slot-name :DEFAULT)
	 (get-option-argument 'DEFSTRUCTURE :DEFAULT options
			      :FORM nil nil))

	((cons slot-name :ASSERTIONS)
	 (parse-assert-options
	  (get-option-entries :ASSERT options) slot-name db)))))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  PARSE-DEFSTRUCTURE
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(defun get-string-designator (key options default)
  (designated-string
   (get-option-argument 'DEFSTRUCTURE key options :STRING-DESIGNATOR
			default default)))

(defun get-symbol (key options default)
  (get-option-argument 'DEFSTRUCTURE key options :SYMBOL default default))

(defloop parse-do-not-options (do-not-options)
  "We allow any number of :DO-NOT options.  We return an alist to append to
   the DB that resets the defaults."
  (for ((options on do-not-options))
    (append
     (let
       ((do-nots (get-option-subset 'DEFSTRUCTURE :DO-NOT options
				    *do-not-options* nil)))
       (pairlis$ do-nots (make-list (length do-nots) :initial-element
				    nil))))))

(defun get-representation (options slot-names)
  "The :REPRESENTATION has a special syntax."
  (let ((opt (get-option-entry :REPRESENTATION options))
	(default :LIST))
    (cond
     (opt (cond
	   ((consp opt)
	    (cond
	     ((null (cdr opt)) default)
	     (t (if (and (true-listp opt)
			 (null (cddr opt))
			 (or (member (cadr opt) *keyword-representations*)
			     (let ((l (flatten (cadr opt))))
			       (and (subsetp l slot-names)
				    (subsetp slot-names l)
				    (equal (length l)
					   (length slot-names))))))
		    (cadr opt)
		  (bomb "The :REPRESENTATION option descriptor must be either ~
                         :REPRESENTATION, (:REPRESENTATION), ~
                         or (:REPRESENTATION representation), where ~
                         representation is either one of ~v0, or a CONS ~
                         tree which when flattened according to ~
                         STRUCTURES::FLATTEN yields a permutation of the ~
                         slot names ~p1, but ~p2 is not."
			*keyword-representations* slot-names opt)))))
	   (t default)))
     (t default))))

(defun parse-defstructure (name doc-and-slots)
  "Parse the DEFSTRUCTURE arguments, returning the DB"

  (let*
    ((name
      (if (and name (symbolp name))
	  name
	(bomb "The <name> argument of DEFSTRUCTURE must be a ~
               non-NIL symbol, but ~p0 is not." name)))

     ;; Since doc-and-slots is an &REST arg, we know it's TRUE-LISTP.

     (doc (if (stringp (car doc-and-slots)) (car doc-and-slots) nil))
     (slots-and-options (if doc (cdr doc-and-slots) doc-and-slots))
     (last-car (car (last slots-and-options)))
     (options? (and (consp last-car) (eq (car last-car) :OPTIONS)))
     (options (if options? (cdr last-car) nil))
     (slots (if options? (butlast slots-and-options 1) slots-and-options))
     
     (option-err
      (get-option-check-syntax 'DEFSTRUCTURE options *options*
			       *duplicate-options* nil))

     (slot-names (map-x-or-car-x slots))

     (check-slot-names
      (or (null slot-names)
	  (let
	    ((err
	      (cond
	       ((not (arglistp slot-names))
		(msg "must be a valid argument list as defined by ~
                      ACL2::ARGLISTP, but ~p0 is not." slot-names))
	       ((member name slot-names)
		(msg "may not contain the structure name, ~p0, but ~
                      ~p1 does." name slot-names))
	       ((duplicates-equal (map-string slot-names))
		(msg "~p0 apparently contains symbols in different packages ~
                      that have the same print name, which is illegal."
		     slot-names)))))
	    (if err
		(bomb "The implied list of slot names ~@0" err)
	      T)))))

    ;;  Build and return the DB.  First, the user options.

    (extend-db
     ()					;Initialize
     (acons-db
      (:NAME name)
      (:DOC doc)
      (:SLOT-NAMES slot-names)
      (:GUARDS (get-option-as-flag 'DEFSTRUCTURE :GUARDS options))
      (:VERIFY-GUARDS
       (get-option-member 'DEFSTRUCTURE :VERIFY-GUARDS options
			  '(T NIL) :DEFAULT :DEFAULT))
      (:INLINE (get-option-as-flag 'DEFSTRUCTURE :INLINE options))
      (:CONC-NAME
       (get-string-designator
	:CONC-NAME options (concatenate 'STRING (string name) "-")))
      (:SET-CONC-NAME
       (get-string-designator
	:SET-CONC-NAME options (concatenate 'STRING "SET-" (string name) "-")))
      (:KEYWORD-CONSTRUCTOR
       (get-symbol
	:KEYWORD-CONSTRUCTOR options (pack-intern name "MAKE-" name)))
      (:KEYWORD-UPDATER
       (get-symbol :KEYWORD-UPDATER options (pack-intern name "UPDATE-" name)))
      (:PREDICATE
       (get-symbol :PREDICATE options (pack-intern name name "-P")))
      (:WEAK-PREDICATE
       (get-symbol :WEAK-PREDICATE options
		   (pack-intern name "WEAK-" name "-P")))
      (:FORCE
       (get-option-as-flag 'DEFSTRUCTURE :FORCE options))
      (:REPRESENTATION (get-representation options slot-names))
      ;;  Note: The original default was to always generate :SLOT-WRITERS,
      ;;  but this was changed, so the code is all written in terms of a
      ;;  :READ-ONLY flag.
      (:READ-ONLY
       (let ((slot-writers
	      (get-option-as-flag 'DEFSTRUCTURE :SLOT-WRITERS options)))
	 (cond
	  ((and slot-writers (eq (db :REPRESENTATION) :MV))
	   (bomb ":MV structures can't have :SLOT-WRITERS."))
	  (t (not slot-writers)))))
      (:MV-INTRO-MACRO 
       (if (eq (db :REPRESENTATION) :MV)
	   (get-symbol :MV-INTRO-MACRO options
		       (pack-intern name name "-INTRO"))
	 (let ((entry (get-option-entry :MV-INTRO-MACRO options)))
	   (if (and entry (or (atom entry) (atom (cdr entry)) (cadr entry)))
	     (bomb "The :MV-INTRO-MACRO option is illegal unless the ~
                    (:REPRESENTATION :MV) option is chosen.")
	     NIL))))
      (:UPDATE-METHOD
       (let* ((default (if (db :READ-ONLY) :COPY :HEURISTIC))
	      (method (get-option-member 'DEFSTRUCTURE :UPDATE-METHOD options 
				   *update-methods* default default)))
	 (if (and (db :READ-ONLY) (not (eq method :COPY)))
	     (bomb "The only valid :UPDATE-METHOD for structures without ~
                    :SLOT-WRITERS is :COPY.")
	   (if (db :INLINE)
	       :INLINE
	     method))))
      (:ASSERTION-LEMMA-HINTS
       (get-option-argument 'DEFSTRUCTURE :ASSERTION-LEMMA-HINTS options
			    :FORM nil nil))
      (:PREDICATE-GUARD-HINTS
       (get-option-argument 'DEFSTRUCTURE :PREDICATE-GUARD-HINTS options
			    :FORM nil nil))
      (:PREFIX (get-string-designator :PREFIX options "DEFS-"))

      ;;  Set defaults to possibly be overidden.

      (:TAG name)
      #|(:NORMALIZE T)|#
      (:READ-WRITE T)
      (:WRITE-WRITE t))

     ;;  Override defaults.

     (append-db
      (parse-do-not-options (get-option-entries :DO-NOT options)))

     ;; Still extending we add the forms necessary to complete parsing, and
     ;; parsing the :ASSERT options and the slot descriptors, returning the
     ;; DB. 

     (acons-db
      (:VALUE-VARIABLE (car (unique-symbols 2 (pack-intern name "VALUE")
					    (cons name slot-names))))
      (:VALUE-VARIABLE1 (cadr (unique-symbols 2 (pack-intern name "VALUE")
					      (cons name slot-names))))
      (:PREDICATE-CALL `(,(db :PREDICATE) ,name)))
     (append-db
      (reader-names slot-names db)
      (reader-calls slot-names db))
     (acons-db
      (:ASSERTIONS (parse-assert-options
		    (get-option-entries :ASSERT options) nil db)))
     (append-db (parse-slot-options slots db)))))



;;;****************************************************************************
;;;
;;;    DEFSTRUCTURE
;;;
;;;****************************************************************************

(defloop nullify-lemmas (lemma-names)
  (for ((lemma in lemma-names))
    (collect (cons lemma nil))))

(defun prepare-for-code-gen (db)

  (db-let (slot-names representation name predicate read-only tag
                      #|normalize|# read-write write-write mv-intro-macro
		      weak-predicate inline set-conc-name)
    (cond
     
     ;;  A few error checks.

     ((and (eq representation :MV)
           (< (len slot-names) 2)
           (bomb "An :MV structure must have at least 2 slots in order ~
                  to be valid according to the syntax of Acl2, but ~
                  the current structure has ~#0~[one slot~/no slots~]."
                 slot-names)))

     ((not weak-predicate)
      (bomb "You have apparently tried to suppress the generation of the 
             weak predicate on the structure, which is currently illegal."))

     ((not predicate)
      (bomb "You have apparently tried to suppress the generation of the 
             predicate on the structure, which is currently illegal."))
     
     (t

      (extend-db
       (acons-db
        (:KEYWORD-SLOT-NAMES (keywordify-list slot-names))
        (:REQUIRED-SLOT-NAMES (required-slot-names slot-names db))

        ;;  We force :READ-ONLY if all slots were :READ-ONLY, or the
        ;;  representation is :MV

        (:READ-ONLY (or read-only
                        (equal (read-only-keyword-slots slot-names db)
                               (db :KEYWORD-SLOT-NAMES))
                        (eq representation :MV)))

        ;;  We force :MV records to be untagged.  After settling the :TAG
        ;;  question we can build the template.

        (:TAG (if (eq representation :MV) nil tag))
        (:TEMPLATE (make-template db)))

       (db-let (read-only keyword-updater)
         (extend-db
          (acons-db

           ;;  Define function,macro, and lemma names, and code fragments. We
           ;;  use the convention that if a name is NIL, then it is a flag to
           ;;  the appropriate code generator not to generate that thing.

           (:CONSTRUCTOR-CALL `(,name ,@slot-names))
	   (:ACL2-COUNT-LEMMA (if (eq representation :mv)
				  nil
				(make-prefix-name "ACL2-COUNT-" name)))

           ;;  Weak Predicate. 

           (:WEAK-PREDICATE-CALL `(,weak-predicate ,name))
           (:WEAK-PREDICATE-CONSTRUCTOR-LEMMA
	    (make-prefix-name weak-predicate "-" name))

	   ;;  Predicate.

           (:PREDICATE-WEAK-PREDICATE-LEMMA
            (make-prefix-name predicate "-INCLUDES-" weak-predicate))
	   
           (:PREDICATE-CONSTRUCTOR-LEMMA (make-prefix-name predicate "-" name))

           ;;  We suppress the keyword-updater if it's an :MV or there
           ;;  aren't any slots. 

           (:KEYWORD-UPDATER (if (or (eq representation :MV) (not slot-names))
                                 nil
                               keyword-updater))

           (:READ-LEMMA (if slot-names (make-prefix-name "READ-" name) nil))
           (:WRITE-LEMMA (if (or read-only (not slot-names))
                             nil
                           (make-prefix-name "WRITE-" name)))

	   (:LIFT-IF-LEMMA (if slot-names
			       (make-prefix-name name "-LIFT-IF")
			     nil))

           (:ELIMINATION-LEMMA (if (or (eq representation :MV)
				       (not slot-names))
				   nil
				 (make-prefix-name "ELIMINATE-" name)))
	   #|
           (:NORMALIZATION-LEMMA (if (and normalize slot-names (not read-only))
                                     (make-prefix-name "NORMALIZE-" name)
                                   nil))
	   |#
           (:WEAK-PREDICATE-SLOT-WRITERS-LEMMA
	    (if (and slot-names (not read-only))
		(make-prefix-name weak-predicate "-" set-conc-name)
	      nil))
	   (:PREDICATE-SLOT-WRITERS-LEMMA
	    (if (and slot-names (not read-only))
		(make-prefix-name predicate "-" set-conc-name)
	      nil))
           (:READ-WRITE-LEMMA (if (and read-write
                                       (not read-only)
                                       slot-names)
                                  (make-prefix-name "READ-WRITE-" name)
                                nil))
           (:WRITE-WRITE-LEMMA (if (and write-write
					(not read-only)
					slot-names)
				   (make-prefix-name "WRITE-WRITE-" name)
                                nil))
           (:ASSERTION-LEMMA (if (and predicate (all-rule-classes db))
                                 (make-prefix-name name "-ASSERTIONS")
                               nil))

           (:DEFINITION-THEORY (make-prefix-name name "-DEFINITION-THEORY"))
           (:LEMMA-THEORY (make-prefix-name name "-LEMMA-THEORY")))

	  ;;  In :INLINE mode we simply NULL out all lemma names to suppress
	  ;;  their generation.  This could be done more cleanly perhaps,
	  ;;  i.e., there was no reason to even generate them above, but
	  ;;  this simple and is guaranteed to work.

          (append-db
           (writer-names slot-names db)
           (writer-calls slot-names db)
	   (if inline
	       (nullify-lemmas *lemma-names*)
	     nil)))))))))


#|
For debugging.

(defmacro capsule (&rest args)
  `(QUOTE ,args))

(defmacro defstructure (name-and-options &rest doc-and-slots)
  (let ((db (prepare-for-code-gen
             (parse-defstructure name-and-options doc-and-slots))))
    `(QUOTE ,db)))


|#

(defmacro capsule (&rest args)
  "Remove documentation strings and recast as an ENCAPSULATE."
  `(ENCAPSULATE () ,@(remove-strings args)))

(encapsulate ()
  (logic)
  (deftheory minimal-theory-for-defstructure
    (append *EXPANDABLE-BOOT-STRAP-NON-REC-FNS*
	    (list-all *BUILT-IN-EXECUTABLE-COUNTERPARTS*)
	    '(IFF CAR-CONS CDR-CONS CAR-CDR-ELIM EQLABLEP MV-NTH ZP TRUE-LISTP
		  OPEN-MV-NTH O< ACL2-COUNT
		  (:TYPE-PRESCRIPTION ACL2-COUNT) INTEGER-ABS))))

(defmacro defstructure (name &rest doc-and-slots)

  (let ((db (prepare-for-code-gen (parse-defstructure name doc-and-slots))))
    (db-let (inline guards)
    
      `(PROGN

	(CAPSULE
	 "
;  We define the structure and all of the events (except the assertion theory)
;  in the absoulte minimum theory possible in order to expedite the proofs
;  and guarantee that they will always work.  If you ever find a case where
;  one of these proof fails (except due to user syntax errors) please
;  report it as a bug in DEFSTRUCTURE.
 "

	 (LOCAL (IN-THEORY (THEORY 'MINIMAL-THEORY-FOR-DEFSTRUCTURE)))

	 ,@(constructor db)
	 ,@(weak-predicate db)
	 ,@(readers db)
	 ,@(writers db)
	 ,@(predicate db)
	 ,@(keyword-constructor db)
	 ,@(keyword-updater db)
	 #|,@(normalization-lemma db)|#
	 ,@(slot-writers-lemmas db)
	 ,@(read-write-lemma db)
	 ,@(write-write-lemma db)
	 ,@(read-lemma db)
	 ,@(write-lemma db)
	 ,@(lift-if-lemma db)
	 ,@(elimination-lemma db)
	 ,@(mv-intro-macro db)
	 ,@(definition-theory db))

	,@(if (and inline (not guards))
	      nil
	    (list
	     `(CAPSULE
	       ,@(naked-proofs db)
	       ,@(lemma-theory db))))))))