File: logops-definitions.lisp

package info (click to toggle)
acl2 3.1-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 36,712 kB
  • ctags: 38,396
  • sloc: lisp: 464,023; makefile: 5,470; sh: 86; csh: 47; cpp: 25; ansic: 22
file content (2701 lines) | stat: -rwxr-xr-x 84,398 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
; logops-definitions.lisp  --  extensions to Common Lisp logical operations
; Copyright (C) 1997  Computational Logic, Inc.

; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.

; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    "logops-definitions.lisp"
;;;
;;;    This book, along with "logops-lemmas", includes a theory of the Common
;;;    Lisp logical operations on numbers, a portable implementation of the
;;;    Common Lisp byte operations, extensions to those theories, and some
;;;    useful macros.  This book contains only definitions, lemmas
;;;    necessary to admit those definitions, and selected type lemmas.
;;;
;;;    Large parts of this work were inspired by Yuan Yu's Nqthm
;;;    specification of the Motorola MC68020.
;;;
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West Sixth Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    brock@cli.com
;;;
;;;    Modified for ACL2 Version_2.6 by: 
;;;    Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;    Modified for ACL2 Version_2.7 by: 
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(in-package "ACL2")

(deflabel logops
  :doc ":doc-section logops

   Definitions and lemmas about logical operations on integers.~/~/

   The books \"logops-definitions\" and \"logops-lemmas\" contain a theory of
   the logical operations on numbers defined by CLTL (Section 12.7), and a
   portable implementation of the CLTL byte manipulation functions (Section
   12.8).  These books also extend the CLTL logical operations and byte
   manipulation theory with a few new definitions, lemmas supporting
   those definitions, and useful macros.

   These books were developed as a basis for the formal specification and
   verification of hardware, where integers are used to represent binary
   signals and busses.  These books should be general enough, however, to be
   used as a basis for reasoning about packed data structures, bit-encoded
   sets, and other applications of logical operations on integers.~/")

(deflabel logops-definitions
  :doc ":doc-section logops
  A book a definitions of logical operations on numbers.
  ~/

  This book, along with \"logops-lemmas\", includes a theory of the Common Lisp
  logical operations on numbers, a portable implementation of the Common Lisp
  byte operations, extensions to those theories, and some useful macros.
  This book contains only definitions, lemmas necessary to admit those
  definitions, and selected type lemmas.  By `type lemmas' we mean any lemmas
  about the logical operations that we have found necessary to admit
  functions that use these operations as GOLD.  We have separated these `type
  lemmas' from the large body of other lemmas in \"logops-lemmas\" to allow a
  user to use this book to define GOLD functions without having to also
  include the extensive theory in \"logops-lemmas\".
  ~/

  The standard Common Lisp logical operations on numbers are defined on the
  signed integers, and return signed integers as appropriate.  This allows a
  high level, signed interpretation of hardware operations if that is
  appropriate for the specification at hand.  We also provide unsigned
  versions of several of the standard logical operations for use in
  specifications where fixed-length unsigned integers are used to model
  hardware registers and busses.  This view of hardware is used, for example,
  in Yuan Yu's Nqthm specification of the Motorola MC68020.~/")


;;;****************************************************************************
;;;
;;;    Environment.
;;;
;;;****************************************************************************

;;;  Global rules.

(include-book "ihs-init")
(include-book "ihs-theories")

(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))

(local (in-theory nil))

; From ihs-theories
(local (in-theory (enable basic-boot-strap)))

; From math-lemmas
(local (in-theory (enable ihs-math)))

; From integer-quotient-lemmas
(local (in-theory (enable quotient-remainder-rules)))


;;;****************************************************************************
;;;
;;;    Local Lemmas.
;;;
;;;****************************************************************************


(local
 (defthm x*y->-1
   (implies
    (and (force (real/rationalp x))
         (force (real/rationalp y))
         (or (and (> x 1) (>= y 1))
             (and (>= x 1) (> y 1))))
    (> (* x y) 1))
   :rule-classes :linear
   :hints (("Goal" :in-theory (enable x*y>1-positive)
	    :cases ((equal y 1)
		    (equal x 1))))))

(local
 (defthm x*y->=-1
   (implies (and (force (real/rationalp x))
		 (force (real/rationalp y))
		 (>= x 1)
		 (>= y 1))
	    (>= (* x y) 1))
   :rule-classes :linear
   :hints (("Goal" :in-theory (disable <-*-left-cancel)
     :use ((:instance <-*-left-cancel (z y) (x 1) (y x)))))))

(local
 (defthm x-<-y*z
   (implies (and (force (real/rationalp x))
		 (force (real/rationalp y))
		 (force (real/rationalp z))
		 (or (and (<= 0 y) (< x y) (<= 1 z))
		     (and (< 0 y) (<= x y) (< 1 z))))
	    (and (< x (* y z))
		 (< x (* z y))))
   :hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
	    :use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))

(local
 (defthm x-<=-y*z
   (implies (and (force (real/rationalp x))
		 (force (real/rationalp y))
		 (force (real/rationalp z))
		 (<= x y)
		 (<= 0 y)
		 (<= 1 z))
	    (and (<= x (* y z))
		 (<= x (* z y))))
   :hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
	    :use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))


;;;****************************************************************************
;;;
;;;    Basic type lemmas for built-ins:
;;;
;;;  LOGAND i j
;;;  LOGANDC1 i j
;;;  LOGANDC2 i j
;;;
;;;  Note that these functions are all DISABLED at this point
;;;
;;;****************************************************************************

(deflabel begin-logops-definitions)

;;;  The system can't guess that LOGAND is always an integer, and thus
;;;  LOGANDC1 and LOGANDC2 don't have good type precriptions either.

(defthm logand-type
  (integerp (logand i j))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable logand)))
  :doc ":doc-section logand-type
  Type-Prescription: (INTEGERP (LOGAND I J)).
  ~/~/~/")

(defthm logandc1-type
  (integerp (logandc1 i j))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable logandc1)))
  :doc ":doc-section logandc1-type
  Type-Prescription: (INTEGERP (LOGANDC1 I J)).
  ~/~/~/")

(defthm logandc2-type
  (integerp (logandc2 i j))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable logandc2)))
  :doc ":doc-section logandc2-type
  Type-Prescription: (INTEGERP (LOGANDC2 I J)).
  ~/~/~/")


;;;****************************************************************************
;;;
;;;    Definitions -- Round 1.
;;;
;;;  Type predicates and functions.
;;;
;;;  BITP b
;;;  BFIX b
;;;  ZBP x
;;;  UNSIGNED-BYTE-P bits i
;;;  SIGNED-BYTE-P bits i
;;;
;;;****************************************************************************

(defun bitp (b)
  ":doc-section logops-definitions
  A predicate form of the type declaration (TYPE BIT b).
  ~/~/~/"
  (declare (xargs :guard t))
  (or (equal b 0) (equal b 1)))

(defun bfix (b)
  ":doc-section logops-definitions
  (BFIX b) coerces any object to a bit (0 or 1) by coercing non-1 objects to 0.
  ~/~/~/"
  (declare (xargs :guard t))
  (if (equal b 1) 1 0))

(defun zbp (x)
  ":doc-section logops-definitions
  (ZBP x) tests for `zero bits'.  Any object other than 1 is considered a
  zero bit.
  ~/~/~/"
  (declare (xargs :guard (bitp x)))
  (equal (bfix x) 0))

#| Deleted by Matt K. for v2-7 as unsigned-byte-p becomes built-in in ACL2.
   Note that the documentation for unsigned-byte-p will be missing in
   a small image, so we instead introduce a new :doc-section just below.
   Also, we locally enable this function and also its subfunction,
   integer-range-p, in order for this book to certify much as it did before.
(defun unsigned-byte-p (bits i)
  ":doc-section logops-definitions
  A predicate form of the type declaration (TYPE (UNSIGNED-BYTE bits) i).
  ~/~/~/"
  (declare (xargs :guard t))
  (and (integerp bits)
       (>= bits 0)
       (integerp i)
       (>= i 0)
       (< i (expt 2 bits))))
|#

(defdoc unsigned-byte-p-lemmas
  ":doc-section logops-definitions
  Lemmas about unsigned-byte-p.
  ~/~/~/")

#| Deleted by Matt K. for v2-7 as signed-byte-p becomes built-in in ACL2.
   Note that the documentation for signed-byte-p will be missing in
   a small image, so we instead introduce a new :doc-section just below.
   Also, we locally enable this function and also its subfunction,
   integer-range-p, in order for this book to certify much as it did before.
(defun signed-byte-p (bits i)
  ":doc-section logops-definitions
  A predicate form of the type declaration (TYPE (SIGNED-BYTE bits) i).
  ~/~/~/"
  (declare (xargs :guard t))
  (and (integerp bits)
       (> bits 0)
       (integerp i)
       (>= i (- (expt 2 (- bits 1))))
       (< i (expt 2 (- bits 1)))))
|#

(defdoc signed-byte-p-lemmas
  ":doc-section logops-definitions
  Lemmas about signed-byte-p.
  ~/~/~/")

(local (in-theory (enable unsigned-byte-p signed-byte-p integer-range-p)))

;;;  Type rules for BITP.

(defthm bitp-forward
  (implies
   (bitp i)
   (and (integerp i)
        (>= i 0)
        (< i 2)))
  :rule-classes :forward-chaining
  :doc ":doc-section bitp
  Forward: (BITP i) implies i is an integer and 0 <= i < 2.
  ~/~/~/")

(defthm bitp-bfix
  (bitp (bfix b))
  :doc ":doc-section bitp
  Rewrite: (BITP (BFIX b)).
  ~/~/~/")

(defthm bitp-mod-2
  (implies
   (integerp i)
   (bitp (mod i 2)))
  :rule-classes
  ((:rewrite)
   (:generalize
    :corollary
    (implies
     (integerp i)
     (or (equal (mod i 2) 0)
	 (equal (mod i 2) 1)))))
  :hints
  (("Goal" :in-theory (enable linearize-mod)))
  :doc ":doc-section bitp
  Rewrite: (BITP (MOD i 2)).
  ~/
  This rule is also stored as a :GENERALIZE rule for MOD.~/~/")

(local (in-theory (disable bitp)))

;;;  Type rules for BFIX

(defthm bfix-bitp
  (implies
   (bitp b)
   (equal (bfix b) b))
  :hints
  (("Goal"
    :in-theory (enable bitp)))
  :doc ":doc-section bfix
  Rewrite: (BFIX b) = b, when b is a bit.
  ~/~/~/")

(local (in-theory (disable bfix)))

;;;  Type rules for UNSIGNED-BYTE-P

(defthm unsigned-byte-p-forward
  (implies
   (unsigned-byte-p bits i)
   (and (integerp i)
        (>= i 0)
        (< i (expt 2 bits))))
  :rule-classes :forward-chaining
  :doc ":doc-section unsigned-byte-p-lemmas
  Forward: (UNSIGNED-BYTE-P bits i) implies 0 <= i < 2**bits.
  ~/~/~/")

(defthm unsigned-byte-p-unsigned-byte-p
  (implies
   (and (unsigned-byte-p size i)
	(integerp size1)
	(>= size1 size))
   (unsigned-byte-p size1 i))
  :rule-classes nil
  :hints
  (("Goal" :in-theory (disable expt-is-weakly-increasing-for-base>1)
    :use ((:instance expt-is-weakly-increasing-for-base>1
		     (r 2) (i size) (j size1)))))
  :doc ":doc-section logops-definitions
  NIL: (UNSIGNED-BYTE-P size i) implies (UNSIGNED-BYTE-P size1 i), 
  when size1 >= size.
  ~/~/~/")

(local (in-theory (disable unsigned-byte-p)))

;;;  SIGNED-BYTE-P-FORWARD

(defthm signed-byte-p-forward
  (implies
   (signed-byte-p bits i)
   (and (integerp i)
        (>= i (- (expt 2 (- bits 1))))
        (< i (expt 2 (- bits 1)))))
  :rule-classes :forward-chaining
  :doc ":doc-section logops-definitions
  Forward: (SIGNED-BYTE-P bits i) -(2**(bits - 1)) <= i < 2**(bits - 1).
  ~/~/~/")

(local (in-theory (disable signed-byte-p)))

;;;****************************************************************************
;;;
;;;  Definition -- Round 2.
;;;
;;;  Extensions to the CLTL logical operations and byte functions.
;;;
;;;  IFLOOR i j
;;;  IMOD i j
;;;  EXPT2 n
;;;
;;;  LOGCAR i
;;;  LOGCDR i
;;;  LOGCONS b i
;;;  LOGBIT pos i
;;;  LOGMASK size
;;;  LOGMASKP i
;;;  LOGHEAD size i
;;;  LOGTAIL pos i
;;;  LOGAPP size i j
;;;  LOGRPL size i j
;;;  LOGEXT size i
;;;  LOGREV size i
;;;  LOGSAT size i
;;;
;;;  LOGEXTU final-size ext-size i
;;;  LOGNOTU size i
;;;  ASHU size i cnt
;;;  LSHU size i cnt
;;;
;;;  After the definitions, we define a guard macro for each that has a
;;;  non-trivial guard, and then define :TYPE-PRESCRIPTIONS for them.  We
;;;  always define our own :TYPE-PRESCRIPTIONS in insure that we always have
;;;  the strongest ones possible when this book is loaded.  Note that we
;;;  consider IFLOOR, IMOD, and EXPT2 to be abbreviations.
;;;  
;;;****************************************************************************

(defun ifloor (i j)
  ":doc-section logops-definitions
  (IFLOOR i j) is the same as floor, except that it coerces its
  arguments to integers.
  ~/~/~/"
  (declare (xargs :guard (and (integerp i)
                              (integerp j)
                              (not (= 0 j)))))
  (floor (ifix i) (ifix j)))

(defun imod (i j)
  ":doc-section logops-definitions
  (IMOD i j) is the same as mod, except that it coerces its
  arguments to integers.
  ~/~/~/"
  (declare (xargs :guard (and (integerp i)
                              (integerp j)
                              (not (= 0 j)))))
  (mod (ifix i) (ifix j)))

(defun expt2 (n)
  ":doc-section logops-definitions
  (EXPT2 n) is the same as 2^n, except that it coerces its
  argument to a natural.
  ~/~/~/"
  (declare (xargs :guard (and (integerp n)
                              (<= 0 n))))
  (expt 2 (nfix n)))

(defun logcar (i)
  ":doc-section logops-definitions
  (LOGCAR i) is the CAR of an integer conceptualized as a bit-vector.
  ~/~/~/"
  (declare (xargs :guard (integerp i)))
  (imod i 2))

(defun logcdr (i)
  ":doc-section logops-definitions
  (LOGCDR i) is the CDR of an integer conceptualized as a bit-vector.
  ~/~/~/"
  (declare (xargs :guard (integerp i)))
  (ifloor i 2))

(defun logcons (b i)
  ":doc-section logops-definitions
  (LOGCONS b i) is the CONS operation for integers conceptualized as
  bit-vectors.
  ~/
  For clarity and efficiency, b is required to be BITP.~/~/"
  (declare (xargs :guard (and (bitp b)
                              (integerp i))))
  (let ((b (bfix b))
	(i (ifix i)))
    (+ b (* 2 i))))

(defun logbit (pos i)
  ":doc-section logops-definitions
  (LOGBIT pos i) returns the bit of i at bit-position pos.
  ~/
  This is a binary equivalent to the Common Lisp function (LOGBITP pos i).~/~/"
  (declare (xargs :guard (and (integerp pos)
                              (>= pos 0)
                              (integerp i))))
  (if (logbitp pos i) 1 0))

(defun logmask (size)
  ":doc-section logops-definitions
  (LOGMASK size) creates a low-order, size-bit mask.
  ~/~/~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0))))
  (- (expt2 size) 1))

(defun logmaskp (i)
  ":doc-section logops-definitions
  (LOGMASKP i) recognizes positive masks.
  ~/~/~/"
  (declare (xargs :guard t))
  (and (integerp i)
       (>= i 0)
       (equal i (- (expt2 (integer-length i)) 1))))

(defun loghead (size i)
  ":doc-section logops-definitions
  (LOGHEAD size i) returns the size low-order bits of i.
  ~/~/
  By convention we define (LOGHEAD 0 i) as 0, but this definition is a bit
  arbitrary.~/"   
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i))))
  (imod i (expt2 size)))

(defun logtail (pos i)
  ":doc-section logops-definitions
  (LOGTAIL pos i) returns the high-order part of i starting at bit position
  pos.
  ~/~/~/"
  (declare (xargs :guard (and (integerp pos)
                              (>= pos 0)
                              (integerp i))))
  (ifloor i (expt2 pos)))

(defun logapp (size i j) 
  ":doc-section logops-definitions
  (LOGAPP size i j) is a binary append of i to j.
  ~/~/
  LOGAPP is a specification for merging integers.  Note that i is truncated 
  to size bits before merging with j.~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i)
                              (integerp j))))
  (let ((j (ifix j)))
    (+ (loghead size i) (* j (expt2 size)))))

(defun logrpl (size i j) 
  ":doc-section logops-definitions
  (LOGRPL size i j) replaces the size low-order bits of j with the size
  low-order bits of i.
  ~/
  LOGRPL is a common specification for the result of storing short values into
  long words, i.e., the short value simply replaces the head of the long
  word.  This function is equivalent to (WRB i (BSP size 0) j).~/~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i)
                              (integerp j))))
  (logapp size i (logtail size j)))

(defun logext (size i)
  ":doc-section logops-definitions
  (LOGEXT size i) \"sign-extends\" i to an integer with size - 1 significant
  bits. 
  ~/
  LOGEXT coerces any integer i into a signed integer by `sign extending'
  the bit at size - 1 to infinity.  We specify LOGEXT in terms of the `size'
  of the result instead of as a bit position because we normally specify
  integer subranges by the number of significant (including sign) bits.

  Note that for consistency with SIGNED-BYTE-P, size must be strictly greater
  than 0.~/~/"
  (declare (xargs :guard (and (integerp size)
                              (> size 0)
                              (integerp i))))
  (logapp (1- size) i (if (logbitp (1- size) i) -1 0)))

(defun logrev1 (size i j)
  ":doc-section logrev1
  Helper function for LOGREV.
  ~/~/~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i)
                              (integerp j))))
  (if (zp size)
      (ifix j)
      (logrev1 (- size 1) (logcdr i) (logcons (logcar i) j))))

(defun logrev (size i)
  ":doc-section logops-definitions
  (LOGREV size i) bit-reverses the size low-order bits of i, discarding the
  high-order bits.
  ~/~/
  Normally we don't think of bit-reversing as a logical operation,
  even though its hardware implementation is trivial: simply reverse the
  wires leading from the source to the destination.  LOGREV is included as a
  logical operation to support the specification of DSPs, which may 
  provide bit-reversing in their address generators to improve the
  performance of the FFT.

  LOGREV entails a recursive definition of bit-reversing via the helper
  function LOGREV1.~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i))))
  (logrev1 size i 0))

(defun logsat (size i)
  ":doc-section logops-definitions
  (LOGSAT size i) coerces i to a size-bit signed integer by saturation.
  ~/~/
  If i can be represented as a size-bit signed integer, then i is returned.
  Otherwise, (LOGSAT size i) returns the size-bit signed integer closest to
  i. For positive i, this will be 2^(size-1) - 1.  For negative i, this will
  be -(2^(size - 1)).

  Note that for consistency with SIGNED-BYTE-P, size must be strictly
  greater than 0.~/"

  (declare (xargs :guard (and (integerp size)
			      (< 0 size)
			      (integerp i))))

  (let* ((i (ifix i))			;?
	 (val (expt2 (1- size)))
	 (maxval (1- val))
	 (minval (- val)))

    (if (>= i maxval)
	maxval
      (if (<= i minval)
	  minval
	i))))

(defun logextu (final-size ext-size i)
  ":doc-section logops-definitions
  (LOGEXTU final-size ext-size i) \"sign-extends\" i with (LOGEXT ext-size i),
  then truncates the result to final-size bits, creating an unsigned integer.
  ~/~/~/"
  (declare (xargs :guard (and (integerp final-size)
                              (>= final-size 0)
                              (integerp ext-size)
                              (> ext-size 0)
                              (integerp i))
		  :guard-hints (("Goal" :in-theory (disable exponents-add)))))
  (loghead final-size (logext ext-size i)))

(defun lognotu (size i)
  ":doc-section logops-definitions
  (LOGNOTU size i) is an unsigned logical NOT, truncating (LOGNOT i) to size
  bits. 
  ~/~/~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i))))
  (loghead size (lognot i)))

(defun ashu (size i cnt)
  ":doc-section logops-definitions
  (ASHU size i cnt) is an unsigned version of ASH.
  ~/
  ASHU is a fixed-width version of ASH. The integer i is first coerced to a
  signed integer by sign-extension, then shifted with ASH, and finally
  truncated back to a size-bit unsigned integer.~/~/"
  (declare (xargs :guard (and (integerp size)
                              (> size 0)
                              (integerp i)
                              (integerp cnt))
		  :guard-hints (("Goal" :in-theory (disable exponents-add)))))
  (loghead size (ash (logext size i) cnt)))

(defun lshu (size i cnt)
  ":doc-section logops-definitions
  (LSHU size i cnt) is an unsigned logical shift.
  ~/
  LSHU shifts i by cnt bits by first coercing i to an unsigned integer,
  performing the shift, and coercing the result to an unsigned integer.
  For cnt >= 0, (LSHU size i cnt) = (ASHU size i cnt).  This is a model
  of a size-bit logical shift register.~/~/"
  (declare (xargs :guard (and (integerp size)
                              (>= size 0)
                              (integerp i)
                              (integerp cnt))))
  (loghead size (ash (loghead size i) cnt)))

;;;Matt: You will find instances of these throughout "logops-lemmas". These
;;;should all be redundant now, but in case they aren't I'll leave them in.


;;;  Guard macros

(defmacro logbit-guard (pos i)
  ":doc-section logops-definitions
   (LOGBIT-GUARD pos i) is a macro form of the guards for LOGBIT.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,pos))
        (FORCE (>= ,pos 0))
        (FORCE (INTEGERP ,i))))

(defmacro logmask-guard (size)
  ":doc-section logops-definitions
  (LOGMASK-GUARD size) is a macro form of the guards for LOGMASK.
  ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))))

(defmacro loghead-guard (size i)
  ":doc-section logops-definitions
   (LOGHEAD-GUARD size i) is a macro form of the guards for LOGHEAD.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))))

(defmacro logtail-guard (pos i)
  ":doc-section logops-definitions
   (LOGTAIL-GUARD pos i) is a macro form of the guards for LOGTAIL.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,pos))
        (FORCE (>= ,pos 0))
        (FORCE (INTEGERP ,i))))

(defmacro logapp-guard (size i j)
  ":doc-section logops-definitions
   (LOGAPP-GUARD size i j) is a macro form of the guards for LOGAPP.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))
        (FORCE (INTEGERP ,j))))

(defmacro logrpl-guard (size i j)
  ":doc-section logops-definitions
   (LOGRPL-GUARD size i j) is a macro form of the guards for LOGRPL.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))
        (FORCE (INTEGERP ,j))))

(defmacro logext-guard (size i)
  ":doc-section logops-definitions
   (LOGEXT-GUARD size i) is a macro form of the guards for LOGEXT.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (> ,size 0))
        (FORCE (INTEGERP ,i))))

(defmacro logrev-guard (size i)
  ":doc-section logops-definitions
  (LOGREV-GUARD size i) is a macro form of the guards for LOGREV.
  ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))))

(defmacro logextu-guard (final-size ext-size i)
  ":doc-section logops-definitions
   (LOGEXTU-GUARD final-size ext-size i) is a macro form of the guards for
   LOGEXTU.~/~/~/"
  `(AND (FORCE (INTEGERP ,final-size))
        (FORCE (>= ,final-size 0))
        (FORCE (INTEGERP ,ext-size))
        (FORCE (> ,ext-size 0))
        (FORCE (INTEGERP ,i))))

(defmacro lognotu-guard (size i)
  ":doc-section logops-definitions
   (LOGNOTU-GUARD size i) is a macro form of the guards for LOGNOTU.
   ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))))

(defmacro ashu-guard (size i cnt)
  ":doc-section logops-definitions
  (ASHU-GUARD size i cnt) is a macro form of the guards for ASHU.
  ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (> ,size 0))
        (FORCE (INTEGERP ,i))
        (FORCE (INTEGERP ,cnt))))

(defmacro lshu-guard (size i cnt)
  ":doc-section logops-definitions
  (LSHU-GUARD size i cnt) is a macro form of the guards for LSHU.
  ~/~/~/"
  `(AND (FORCE (INTEGERP ,size))
        (FORCE (>= ,size 0))
        (FORCE (INTEGERP ,i))
        (FORCE (INTEGERP ,cnt))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Type Lemmas for the new LOGOPS.  Each function is DISABLEd after we
;;;    have enough information about it (except for IFLOOR, IMOD, and EXPT2,
;;;    which are considered abbreviations).  We prove even the most obvious
;;;    type lemmas because you never know what theory this book will be
;;;    loaded into, and unless the theory is strong enough you may not get
;;;    everthing you need.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

;;; IFLOOR

(defthm ifloor-type
  (integerp (ifloor i j))
  :rule-classes :type-prescription
  :doc ":doc-section ifloor
  Type-prescription: (INTEGERP (IFLOOR I J)).
  ~/~/~/")

;;; IMOD

(defthm imod-type
  (integerp (imod i j))
  :rule-classes :type-prescription
  :doc ":doc-section imod
  Type-prescription: (INTEGERP (IMOD I J)).
  ~/~/~/")

;;; EXPT2

(defthm expt2-type
  (and (integerp (expt2 n))
       (< 0 (expt2 n)))
  :rule-classes :type-prescription
  :doc ":doc-section expt2
  Type-prescription: (AND (INTEGERP (EXPT2 N)) (< 0 (EXPT2 N))).
  ~/~/~/")

;;; LOGCAR

(defthm logcar-type
  (bitp (logcar i))
  :rule-classes
  ((:rewrite)
   (:type-prescription
    :corollary
    (and (integerp (logcar i))
	 (<= 0 (logcar i))))
   (:generalize
    :corollary
    (or (equal (logcar i) 0) (equal (logcar i) 1))))
  :doc ":doc-section logcar
  Rewrite: (BITP (LOGCAR i)).
  ~/
  This rule is also stored as appropriate :TYPE-PRESCRIPTION and
  :GENERALIZE rules.~/~/")

(local (in-theory (disable logcar)))

;;;  LOGCDR

(defthm logcdr-type
  (integerp (logcdr i))
  :rule-classes :type-prescription
  :doc ":doc-section logcdr
  Type-Prescription: (INTEGERP (LOGCDR I)).
  ~/~/~/")

(defthm logcdr-<-0
  (equal (< (logcdr i) 0)
	 (and (integerp i)
	      (< i 0)))
  :doc ":doc-section logcdr
  Rewrite: (LOGCDR i) < 0  EQUAL  i is an integer < 0.
  ~/~/~/")

(defthm justify-logcdr-induction
  (and (implies (> i 0)
		(< (logcdr i) i))
       (implies (< i -1)
		(< i (logcdr i))))
  :hints
  (("Goal"
    :in-theory (enable logcdr)))
  :doc ":doc-section logcdr
  Rewrite: (LOGCDR i) < i, when i > 0; (LOGCDR i) > i, when i < -1.
  ~/~/~/")

(local (in-theory (disable logcdr)))

;;;  LOGCONS

(defthm logcons-type
  (integerp (logcons b i))
  :rule-classes :type-prescription
  :doc ":doc-section logcons
  Type-prescription: (INTEGERP (LOGCONS b i)).
  ~/~/~/")

(defthm logcons-<-0
  (equal (< (logcons b i) 0)
	 (and (integerp i)
	      (< i 0)))
  :hints
  (("Goal"
    :in-theory (enable bfix))))

(local (in-theory (disable logcons)))

;;;  LOGBIT

(defthm logbit-type
  (bitp (logbit pos i))
  :rule-classes
  ((:rewrite)
   (:type-prescription
    :corollary
    (and (integerp (logbit pos i))
	 (>= (logbit pos i) 0))))
  :doc ":doc-section logbit
  Rewrite: (BITP (LOGBIT pos i)).
  ~/
  This rule is also stored as an appropriate :TYPE-PRESCRIPTION.~/~/")

(local (in-theory (disable logbit)))

;;;  LOGMASK

(defthm logmask-type
  (and (integerp (logmask i))
       (>= (logmask i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section logmask
  Type-Prescription: (LOGMASK i) >= 0.
  ~/~/~/")

(local (in-theory (disable logmask)))

;;;  LOGMASKP

(local (in-theory (disable logmaskp)))          ;An obvious predicate.

;;;  LOGHEAD

(defthm loghead-type
  (and (integerp (loghead size i))
       (>= (loghead size i) 0))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable imod)))
  :doc ":doc-section loghead
  Type-prescription: (LOGHEAD size i) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-loghead
  (implies
   (and (>= size1 size)
	(integerp size)
	(>= size 0)
	(integerp size1))
   (unsigned-byte-p size1 (loghead size i)))
  :hints
  (("Goal"
    :in-theory (e/d (unsigned-byte-p) (expt-is-weakly-increasing-for-base>1))
    :use ((:instance expt-is-weakly-increasing-for-base>1
		     (r 2) (i size) (j size1)))))
  :doc ":doc-section loghead
  Rewrite: (UNSIGNED-BYTE-P size1 (LOGHEAD size i)), when size1 >= size.
  ~/~/~/")

(defthm loghead-upper-bound
   (< (loghead size i) (expt 2 size))
  :rule-classes (:linear :rewrite)
  :doc ":doc-section loghead
  Linear: (LOGHEAD size i) < 2**size.
  ~/~/~/")

(local (in-theory (disable loghead)))

;;;  LOGTAIL

(defthm logtail-type
  (integerp (logtail pos i))
  :rule-classes :type-prescription
  :doc ":doc-section logcons
  Type-prescription: (INTEGERP (LOGTAIL POS I)).
  ~/~/~/")

(local (in-theory (disable logtail)))

;;;  LOGAPP

(defthm logapp-type
  (integerp (logapp size i j))
  :rule-classes :type-prescription
  :doc ":doc-section logcons
  Type-prescription: (INTEGERP (LOGAPP SIZE I J)).
  ~/~/~/")

(defthm logapp-<-0
  (implies
   (logapp-guard size i j)
   (equal (< (logapp size i j) 0)
	  (< j 0)))
  :hints
  (("Goal"
    :in-theory (e/d (loghead) (x-<-y*z))
    :use ((:instance x-<-y*z
                     (x (mod i (expt 2 size)))
                     (y (expt 2 size)) (z (abs j))))))
  :doc ":doc-section logapp
  Rewrite: (LOGAPP size i j) < 0 EQUAL j < 0.
  ~/~/~/")

(local (in-theory (disable logapp)))

;;;  LOGRPL

(defthm logrpl-type
  (integerp (logrpl size i j))
  :rule-classes :type-prescription
  :doc ":doc-section logcons
  Type-prescription: (INTEGERP (LOGRPL SIZE I J)).
  ~/~/~/")

(local (in-theory (disable logrpl)))

;;;  LOGEXT

(defthm logext-type
  (integerp (logext size i))
  :rule-classes :type-prescription
  :doc ":doc-section logext
  Type-Prescription: (INTEGERP (LOGEXT size i)).
  ~/~/~/")

;;;4 Misplaced Lemmas
(defthm expt-with-violated-guards
  (and
   (implies
    (not (integerp i))
    (equal (expt r i) 1))
   (implies
    (not (acl2-numberp r))
    (equal (expt r i)
	   (expt 0 i))))
  :hints
  (("Goal"
    :in-theory (enable expt))))

(defthm reduce-integerp-+-constant
  (implies
   (and (syntaxp (constant-syntaxp i))
	(integerp i))
   (iff (integerp (+ i j))
	(integerp (fix j)))))

(defthm how-could-this-have-been-left-out??
  (equal (* 0 x) 0)) 

(defthm this-needs-to-be-added-to-quotient-remainder-lemmas
  (implies
   (zerop y)
   (equal (mod x y)
	  (fix x)))
  :hints
  (("Goal"
    :in-theory (enable mod))))

(defthm logext-bounds
  (implies
   (< 0 size)
   (and
    (>= (logext size i) (- (expt 2 size)))
    (< (logext size i) (expt 2 size))))
  :rule-classes
  ((:linear :trigger-terms ((logext size i)))
   (:rewrite))
  :hints
  (("Goal"
    :in-theory (e/d (logapp loghead)
		    (expt-is-increasing-for-base>1 exponents-add))
    :use ((:instance expt-is-increasing-for-base>1
		     (r 2) (i (1- size)) (j size)))))
  :doc ":doc-section logext
  Linear: -(2**size) <= (LOGEXT size i) < 2**size.
  ~/~/~/")

(defthm signed-byte-p-logext
  (implies
   (and (>= size1 size)
	(> size 0)
        (integerp size1)
	(integerp size))
   (signed-byte-p size1 (logext size i)))
  :hints
  (("Goal"
    :in-theory (e/d (signed-byte-p logapp loghead)
                    (expt-is-weakly-increasing-for-base>1 exponents-add))
    :do-not '(eliminate-destructors)
    :use ((:instance expt-is-weakly-increasing-for-base>1
                     (r 2) (i (1- size)) (j (1- size1))))))
  :doc ":doc-section logext
  Rewrite: (SIGNED-BYTE-P size1 (LOGEXT size i)), when size1 >= size.
  ~/~/~/")

(local (in-theory (disable logext)))

;;;  LOGREV

(local
 (defthm logrev1-type
  (implies
   (>= j 0)
   (and (integerp (logrev1 size i j))
	(>= (logrev1 size i j) 0)))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable logcons)))))

(defthm logrev-type
  (and (integerp (logrev size i))
       (>= (logrev size i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section logrev
  Type-prescription: (LOGREV size i) >= 0.
  ~/~/~/")

(encapsulate ()

  (local
   (defun crock-induction (size size1 i j)
     (cond
      ((zp size) (+ size1 i j))		;To avoid irrelevance
      (t (crock-induction (1- size) (1+ size1) (logcdr i)
			  (logcons (logcar i) j))))))

  ;; This lemma could have used one of the deleted Type-Prescriptions, I
  ;; think the one for LOGCDR.

  (local
   (defthm unsigned-byte-p-logrev1
     (implies
      (and (unsigned-byte-p size1 j)
	   (integerp size)
	   (>= size 0))
      (unsigned-byte-p (+ size size1) (logrev1 size i j)))
     :rule-classes nil
     :hints
     (("Goal"
       :in-theory (e/d (expt logcar logcons unsigned-byte-p) (exponents-add))
       :induct (crock-induction size size1 i j)))))

  (defthm unsigned-byte-p-logrev
    (implies
     (and (>= size1 size)
	  (>= size 0)
	  (integerp size)
	  (integerp size1))
     (unsigned-byte-p size1 (logrev size i)))
    :hints
    (("Goal"
      :use ((:instance unsigned-byte-p-logrev1
		       (size size) (size1 0) (i i) (j 0))
	    (:instance unsigned-byte-p-unsigned-byte-p
		       (size size) (size1 size1) (i (logrev size i))))))
    :doc ":doc-section logrev
  Rewrite: (UNSIGNED-BYTE-P size1 (LOGREV size i)), when size1 >= size.
  ~/~/~/"))

(local (in-theory (disable logrev)))

;;;  LOGSAT

(defthm logsat-type
  (integerp (logsat size i))
  :rule-classes :type-prescription
  :doc ":doc-section logsat
  Type-Prescription: (INTEGERP (LOGSAT size i)).
  ~/~/~/")

; Added for Version_2.6.  Without it the following defthm appears to loop,
; though not within a single goal -- rather, by creating subgoal after subgoal
; after ....
(local (in-theory (enable exponents-add-unrestricted)))

(defthm logsat-bounds
  (implies
   (< 0 size)
   (and
    (>= (logsat size i) (- (expt 2 size)))
    (< (logsat size i) (expt 2 size))))
  :rule-classes
  ((:linear :trigger-terms ((logsat size i)))
   (:rewrite))
  :doc ":doc-section logsat
  Linear: -(2**size) <= (LOGSAT size i) < 2**size.
  ~/~/~/")

; Now we disable this rule; necessary for signed-byte-p-logsat.
(local (in-theory (disable exponents-add-unrestricted)))

(defthm signed-byte-p-logsat
  (implies
   (and (>= size1 size)
	(> size 0)
        (integerp size1)
	(integerp size))
   (signed-byte-p size1 (logsat size i)))
  :hints
  (("Goal"
    :in-theory (e/d (signed-byte-p)
                    (expt-is-weakly-increasing-for-base>1 exponents-add))
    :do-not '(eliminate-destructors)
    :use ((:instance expt-is-weakly-increasing-for-base>1
                     (r 2) (i (1- size)) (j (1- size1))))))
  :doc ":doc-section logsat
  Rewrite: (SIGNED-BYTE-P size1 (LOGSAT size i)), when size1 >= size.
  ~/~/~/")

(local (in-theory (disable logsat)))

;;;  LOGEXTU

(defthm logextu-type
  (and (integerp (logextu final-size ext-size i))
       (>= (logextu final-size ext-size i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section logextu
  Type-prescription: (LOGEXTU final-size ext-size i) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-logextu
  (implies
   (and (>= size1 final-size)
	(>= final-size 0)
	(integerp final-size)
        (integerp size1))
   (unsigned-byte-p size1 (logextu final-size ext-size i)))
  :doc ":doc-section logextu
  Rewrite: (UNSIGNED-BYTE-P size1 (LOGEXTU final-size ext-size i)), 
           when size1 >= final-size.
  ~/~/~/")

(local (in-theory (disable logextu)))

;;;  LOGNOTU

(defthm lognotu-type
  (and (integerp (lognotu size i))
       (>= (lognotu size i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section lognotu
  Type-prescription: (LOGNOTU size i) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-lognotu
  (implies
   (and (>= size1 size)
	(>= size 0)
	(integerp size)
        (integerp size1))
   (unsigned-byte-p size1 (lognotu size i)))
  :doc ":doc-section lognotu
  Rewrite: (UNSIGNED-BYTE-P size1 (LOGNOTU size i)), when size1 >= size.
  ~/~/~/")

(local (in-theory (disable lognotu)))

;;;  ASHU

(defthm ashu-type
  (and (integerp (ashu size i cnt))
       (>= (ashu size i cnt) 0))
  :rule-classes :type-prescription
  :doc ":doc-section ashu
  Type-prescription: (ASHU size i cnt) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-ashu
  (implies
   (and (>= size1 size)
	(>= size 0)
	(integerp size)
        (integerp size1))
   (unsigned-byte-p size1 (ashu size i cnt)))
  :doc ":doc-section ashu
  Rewrite: (UNSIGNED-BYTE-P size1 (ASHU size i cnt)), when size1 >= size.
  ~/~/~/")

(local (in-theory (disable ashu)))

;;;  LSHU

(defthm lshu-type
  (and (integerp (lshu size i cnt))
       (>= (lshu size i cnt) 0))
  :rule-classes :type-prescription
  :doc ":doc-section lshu
  Type-prescription: (LSHU size i cnt) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-lshu
  (implies
   (and (>= size1 size)
	(>= size 0)
	(integerp size)
        (integerp size1))
   (unsigned-byte-p size1 (lshu size i cnt)))
  :doc ":doc-section lshu
  Rewrite: (UNSIGNED-BYTE-P size1 (LSHU size i cnt)), when size1 >= size.
  ~/~/~/")

(local (in-theory (disable lshu)))


;;;****************************************************************************
;;;
;;;    DEFINITIONS -- Round 3.
;;;
;;;    A portable implementation and extension of the CLTL byte operations.
;;;    After the function definitions, we introduce a guard macro for those
;;;    with non-trivial guards.
;;;
;;;  BSP size pos
;;;  BSPP bsp
;;;  BSP-SIZE bsp
;;;  BSP-POS bsp
;;;  RDB bsp i
;;;  WRB i bsp j
;;;  RDB-TEST bsp i
;;;  RDB-FIELD bsp i
;;;  WRB-FIELD i bsp j
;;;  
;;;****************************************************************************

(deflabel logops-byte-functions
  :doc ":doc-section logops-definitions

  A portable implementation and extension of Common Lisp byte functions.
  ~/~/ 

  The proposed Common Lisp standard [X3J13 Draft 14.10] defines a number of
  functions that operate on subfields of integers.  These subfields are
  specified by (BYTE size position), which \"indicates a byte of width size
  and whose bits have weights 2^{position+size-1} through 2^{pos}, and whose
  representation is implementation dependent\".  Unfortunately, the standard
  does not specify what BYTE returns, only that whatever is returned is
  understood by the byte manipulation functions LDB, DPB, etc.

  This lack of complete specification makes it impossible for ACL2 to specify
  the byte manipulation functions of Common Lisp in a portable way.  For
  example AKCL uses (CONS size position) as a byte specifier, whereas another
  implementation might use a special data structure to represent (BYTE size
  position).  Since any theorem about the ACL2 built-ins is meant to be a
  theorem for all Common Lisp implementations, Acl2 cannot define BYTE.

  Therefore, we have provided a portable implementation of the byte
  operations specified by the draft standard.  This behavior of this
  implementation should be consistent with every Common Lisp that provides
  the standard byte operations.  Our byte specifier (BSP size pos) is
  analogous to CLTL's (BYTE size pos), where size and pos are nonnegative
  integers.  Note that the standard indicates that reading a byte of size 0
  returns 0, and writing a byte of size 0 leaves the destination unchanged.

  This table indicates the correspondance between the Common Lisp byte
  operations and our portable implementation:

  Common Lisp                               This Implementation
  ------ ----                               ---- --------------

  (BYTE size position)                      (BSP size position)
  (BYTE-SIZE bytespec)                      (BSP-SIZE bsp)
  (BYTE-POSITION bytespec)                  (BSP-POSITION bsp)
  (LDB bytespec integer)                    (RDB bsp integer)
  (DPB newbyte bytespec integer)            (WRB newbyte bsp integer)
  (LDB-TEST bytespec integer)               (RDB-TEST bsp integer)
  (MASK-FIELD bytespec integer)             (RDB-FIELD bsp integer)
  (DEPOSIT-FIELD newbyte bytespec integer)  (WRB-FIELD newbyte bsp integer)

  For more information, see the :DOC entries for the functions listed above.
  If you are concerned about the efficiency of this implementation, see 
  :DOC LOGOPS-EFFICIENCY-HACK.~/")

(defmacro bsp (size pos)
  ":doc-section logops-byte-functions
  (BSP size pos) returns a byte-specifier.
  ~/
  This specifier designates a byte whose width is size and whose bits have
  weights 2^(pos) through 2^(pos+size-1). Both size and pos must be
  nonnegative integers.
  ~/
  BSP is mnemonic for Byte SPecifier or Byte Size and Position, and is
  analogous to Common Lisp's (BYTE size position).

  BSP is implemented as a macro for simplicity and convenience.  One should
  always use BSP in preference to CONS, however, to ensure compatibility with
  future releases.~/" 
  `(CONS ,size ,pos))

(defun bspp (bsp)
  ":doc-section logops-byte-functions
  (BSPP bsp) recognizes objects produced by (BSP size pos).
  ~/~/~/"
  (declare (xargs :guard t))
  (and (consp bsp)
       (integerp (car bsp))
       (>= (car bsp) 0)
       (integerp (cdr bsp))
       (>= (cdr bsp) 0)))

(defun bsp-size (bsp)
 ":doc-section logops-byte-functions
  (BSP-SIZE (BSP size pos)) = size.
  ~/~/
  (BSP-SIZE bsp) is analogous to Common Lisp's (BYTE-SIZE bytespec).~/"
 (declare (xargs :guard (bspp bsp)))
 (car bsp))

(defun bsp-position (bsp) 
  ":doc-section logops-byte-functions
  (BSP-POSITION (BSP size pos)) = pos.
  ~/~/
  (BSP-POSITION bsp) is analogous to Common Lisp's (BYTE-POSITION bytespec).~/"
  (declare (xargs :guard (bspp bsp)))
  (cdr bsp))

(defun rdb (bsp i)
  ":doc-section logops-byte-functions
  (RDB bsp i) returns the byte of i specified by bsp.
  ~/~/
  (RDB bsp i) is analogous to Common Lisp's (LDB bytespec integer).~/"
  (declare (xargs :guard (and (bspp bsp)
                              (integerp i))))
  (loghead (bsp-size bsp) (logtail (bsp-position bsp) i)))

(defun wrb (i bsp j)
  ":doc-section logops-byte-functions
  (WRB i bsp j) writes the (BSP-SIZE bsp) low-order bits of i into the byte
  of j specified by bsp.
  ~/
  WRB is mnemonic for WRite Byte.~/
  (WRB i bsp j) is analogous to Common Lisp's (DPB newbyte bytespec integer).~/"
  (declare (xargs :guard (and (integerp i)
                              (bspp bsp)
                              (integerp j))))
  (logapp (bsp-position bsp)
          (loghead (bsp-position bsp) j)
          (logapp (bsp-size bsp)
                  i
                  (logtail (+ (bsp-size bsp) (bsp-position bsp)) j))))

(defun rdb-test (bsp i)
  ":doc-section logops-byte-functions
  (RDB-TEST bsp i) is true iff the field of i specified by bsp is nonzero.
  ~/~/
  (RDB-TEST bsp i) is analogous to Common Lisp's (LDB-TEST bytespec integer).~/"
  
  (declare (xargs :guard (and (bspp bsp)
                              (integerp i))))
  (not (equal (rdb bsp i) 0)))

(defun rdb-field (bsp i)
  ":doc-section logops-byte-functions
  (RDB-FIELD bsp i) is analogous to Common Lisp's (MASK-FIELD bytespec integer).
  ~/~/~/"
  (declare (xargs :guard (and (bspp bsp)
                              (integerp i))))
  (logand i (wrb -1 bsp 0)))

(defun wrb-field (i bsp j)
  ":doc-section logops-byte-functions
  (WRB-FIELD i bsp j) is analogous to Common Lisp's
  (DEPOSIT-FIELD newbyte bytespec integer).
  ~/~/~/"
  (declare (xargs :guard (and (integerp i)
                              (bspp bsp)
                              (integerp j))))
  (wrb (rdb bsp i) bsp j))

;;;Matt:  These should be redundant now.

;  Guard macros. 

(defmacro rdb-guard (bsp i)
  ":doc-section logops-byte-functions
  (RDB-GUARD bsp i) is a macro form of the guards for RDB, RDB-TEST, and
  RDB-FIELD.
  ~/~/~/"
  `(AND (FORCE (BSPP ,bsp))
        (FORCE (INTEGERP ,i))))

(defmacro wrb-guard (i bsp j)
  ":doc-section logops-byte-functions
  (WRB-GUARD i bsp j) is a macro form of the guards for WRB and WRB-FIELD.
  ~/~/~/"
  `(AND (FORCE (INTEGERP ,i))
        (FORCE (BSPP ,bsp))
        (FORCE (INTEGERP ,j))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  Type lemmas for the byte functions.  Each function is DISABLED after we
;;;  have enough information about it.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

;;;  BSPP

(defthm bspp-bsp
  (implies
   (and (integerp size)
	(>= size 0)
	(integerp pos)
	(>= pos 0))
   (bspp (bsp size pos)))
  :hints
  (("Goal"
    :in-theory (enable bspp)))
  :doc ":doc-section bsp
  Rewrite: (BSPP (BSP size pos)).
  ~/~/~/")

(local (in-theory (disable bspp)))              ;An obvious Boolean.

;;;  BSP-SIZE

(defthm bsp-size-type
  (implies
   (bspp bsp)
   (and (integerp (bsp-size bsp))
        (>= (bsp-size bsp) 0)))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable bspp)))
  :doc ":doc-section bsp-size
  Type-prescription: (BSP-SIZE bsp) > 0.
  ~/~/~/")

(local (in-theory (disable bsp-size)))

;;;  BSP-POSITION

(defthm bsp-position-type
  (implies
   (bspp bsp)
   (and (integerp (bsp-position bsp))
        (>= (bsp-position bsp) 0)))
  :rule-classes :type-prescription
  :hints
  (("Goal"
    :in-theory (enable bspp)))
  :doc ":doc-section bsp-position
  Type-prescription: (BSP-POSITION bsp) >= 0.
  ~/~/~/")

(local (in-theory (disable bsp-position)))

;;;  RDB

(defthm rdb-type
  (and (integerp (rdb bsp i))
       (>= (rdb bsp i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section rdb
  Type-prescription: (RDB bsp i) >= 0.
  ~/~/~/")

(defthm unsigned-byte-p-rdb
  (implies
   (and (>= size (bsp-size bsp))
        (force (>= size 0))
        (force (integerp size))
	(force (bspp bsp)))
   (unsigned-byte-p size (rdb bsp i)))
  :doc ":doc-section rdb
  Rewrite: (UNSIGNED-BYTE-P size (RDB bsp i)), when size >= (BSP-SIZE bsp).
  ~/~/~/")

(defthm rdb-upper-bound
  (implies
   (force (bspp bsp))
   (< (rdb bsp i) (expt 2 (bsp-size bsp))))
  :rule-classes (:linear :rewrite)
  :doc ":doc-section rdb
  Linear: (RDB bsp i) < 2**(bsp-size bsp).
  ~/~/~/")

(defthm bitp-rdb-bsp-1
  (implies
   (equal (bsp-size bsp) 1)
   (bitp (rdb bsp i)))
  :hints
  (("Goal"
    :in-theory (enable bitp loghead)))
  :doc ":doc-section rdb
  Rewrite: (BITP (RDB bsp i)), when (BSP-SIZE bsp) = 1.
  ~/~/~/")

(local (in-theory (disable rdb)))

;;; WRB

(defthm wrb-type
  (integerp (wrb i bsp j))
  :rule-classes :type-prescription
  :doc ":doc-section wrb
  Type-Prescription: (INTEGERP (WRB i bsp j)).
  ~/~/~/")

(local (in-theory (disable wrb)))

;;;  RDB-TEST

(local (in-theory (disable rdb-test)))          ;An obvious predicate.

;;;  RDB-FIELD

#|

Need Type-Prescriptions to prove this.  I don't think we ever use this
function. 

(defthm rdb-field-type
  (and (integerp (rdb-field bsp i))
       (>= (rdb-field bsp i) 0))
  :rule-classes :type-prescription
  :doc ":doc-section rdb-field
  Type-prescription: (RDB-FIELD bsp i) >= 0.
  ~/~/~/")

|#

(local (in-theory (disable rdb-field)))

;;;  WRB-FIELD

(defthm wrb-field-type
  (integerp (wrb-field i bsp j))
  :rule-classes :type-prescription
  :doc ":doc-section wrb-field
  Type-Prescription: (INTEGERP (WRB-FIELD i bsp j)).
  ~/~/~/")

(local (in-theory (disable wrb-field)))


;;;****************************************************************************
;;;
;;;   Definitions -- Round 4.
;;;
;;;  Logical operations on single bits.
;;;
;;;  B-NOT i
;;;  B-AND i j
;;;  B-IOR i j
;;;  B-XOR i j
;;;  B-EQV i j
;;;  B-NAND i j
;;;  B-NOR i j
;;;  B-ANDC1 i j
;;;  B-ANDC2 i j
;;;  B-ORC1 i j
;;;  B-ORC2 i j
;;;
;;;****************************************************************************

(deflabel logops-bit-functions
 :doc ":doc-section logops-definitions
 Versions of the standard logical operations that operate on single bits.
 ~/~/

 We provide versions of the non-trivial standard logical operations that
 operate on single bits.  The reason that it is necessary to introduce these
 operations separate from the standard operations is the fact that LOGNOT
 applied to a BITP object never returns a BITP.  All arguments to these
 functions must be BITP, and we prove that each returns a BITP integer.  We
 define each function explicitly in terms of 0 and 1 to simplify
 reasoning.~/")

(defun b-not (i)
  ":doc-section logops-bit-functions
  B-NOT ~/~/~/"
  (declare (xargs :guard (bitp i)))
  (if (zbp i) 1 0))

(defun b-and (i j)
  ":doc-section logops-bit-functions
  B-AND ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) 0 (if (zbp j) 0 1)))

(defun b-ior (i j)
  ":doc-section logops-bit-functions
  B-IOR ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 0 1) 1))

(defun b-xor (i j)
  ":doc-section logops-bit-functions
  B-XOR ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 0 1) (if (zbp j) 1 0)))

(defun b-eqv (i j)
  ":doc-section logops-bit-functions
  B-EQV ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 1 0) (if (zbp j) 0 1)))

(defun b-nand (i j)
  ":doc-section logops-bit-functions
  B-NAND ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) 1 (if (zbp j) 1 0)))

(defun b-nor (i j)
  ":doc-section logops-bit-functions
  B-NOR ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 1 0) 0))

(defun b-andc1 (i j)
  ":doc-section logops-bit-functions
  B-ANDC1 ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 0 1) 0))

(defun b-andc2 (i j)
  ":doc-section logops-bit-functions
  B-ANDC2 ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) 0 (if (zbp j) 1 0)))

(defun b-orc1 (i j)
  ":doc-section logops-bit-functions
  B-ORC1 ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) 1 (if (zbp j) 0 1)))

(defun b-orc2 (i j)
  ":doc-section logops-bit-functions
  B-ORC2 ~/~/~/"
  (declare (xargs :guard (and (bitp i) (bitp j))))
  (if (zbp i) (if (zbp j) 1 0) 1))

(defthm bit-functions-type
  (and (bitp (b-not i))
       (bitp (b-and i j))
       (bitp (b-ior i j))
       (bitp (b-xor i j))
       (bitp (b-eqv i j))
       (bitp (b-nand i j))
       (bitp (b-nor i j))
       (bitp (b-andc1 i j))
       (bitp (b-andc2 i j))
       (bitp (b-orc1 i j))
       (bitp (b-orc2 i j)))
  :rule-classes
  ((:rewrite)
   (:type-prescription :corollary (and (integerp (b-not i))
				       (>= (b-not i) 0)))
   (:type-prescription :corollary (and (integerp (b-and i j))
				       (>= (b-and i j) 0)))
   (:type-prescription :corollary (and (integerp (b-ior i j))
				       (>= (b-ior i j) 0)))
   (:type-prescription :corollary (and (integerp (b-xor i j))
				       (>= (b-xor i j) 0)))
   (:type-prescription :corollary (and (integerp (b-eqv i j))
				       (>= (b-eqv i j) 0)))
   (:type-prescription :corollary (and (integerp (b-nand i j))
				       (>= (b-nand i j) 0)))
   (:type-prescription :corollary (and (integerp (b-nor i j))
				       (>= (b-nor i j) 0)))
   (:type-prescription :corollary (and (integerp (b-andc1 i j))
				       (>= (b-andc1 i j) 0)))
   (:type-prescription :corollary (and (integerp (b-andc2 i j))
				       (>= (b-andc2 i j) 0)))
   (:type-prescription :corollary (and (integerp (b-orc1 i j))
				       (>= (b-orc1 i j) 0)))
   (:type-prescription :corollary (and (integerp (b-orc2 i j))
				       (>= (b-orc2 i j) 0))))
  :doc ":doc-section logops-bit-functions
  Rewrite: All of the bit functions return BITP integers
  ~/
  We also prove an appropriate :TYPE-PRESCRIPTION for each.~/~/")


;;;****************************************************************************
;;;
;;;    Theories
;;;
;;;****************************************************************************

(defconst *logops-functions*
  '(binary-LOGIOR
    binary-LOGXOR binary-LOGAND binary-LOGEQV LOGNAND LOGNOR LOGANDC1
    LOGANDC2 LOGORC1 LOGORC2 LOGNOT LOGTEST LOGBITP ASH
    LOGCOUNT INTEGER-LENGTH
    BITP SIGNED-BYTE-P UNSIGNED-BYTE-P
    LOGCAR LOGCDR LOGCONS LOGBIT LOGMASK LOGMASKP LOGHEAD LOGTAIL
    LOGAPP LOGRPL LOGEXT LOGREV1 LOGREV LOGSAT
    LOGNOTU LOGEXTU ASHU LSHU
    BSPP BSP-SIZE BSP-POSITION RDB WRB RDB-TEST RDB-FIELD WRB-FIELD
    B-NOT B-AND B-IOR B-XOR B-EQV B-NAND B-NOR B-ANDC1 B-ANDC2 B-ORC1 B-ORC2)
  ":doc-section logops-definitions
  A list of all functions considered to be part of the theory of logical
  operations on numbers.
  ~/~/~/")

(deftheory logops-functions *logops-functions*
  :doc ":doc-section logops-definitions
  A theory consisting of all function names of functions considered to be
  logical operations on numbers.
  ~/~/

  If you are using the book \"logops-lemmas\", you will need to DISABLE this
  theory in order to use the lemmas contained therein, as most of the logical
  operations on numbers are non-recursive.~/")

(deftheory logops-definitions-theory
  (union-theories
   (set-difference-theories
    (set-difference-theories            ;Everything in this book ...
     (universal-theory :here)
     (universal-theory 'begin-logops-definitions))
    *logops-functions*)                 ;Minus all of the definitions.
    (defun-type/exec-theory *logops-functions*))        ;Plus basic type info
                                                        ;and executables. 
  :doc ":doc-section logops-definitions
  The `minimal' theory for the book \"logops-definitions\".
  ~/~/

  This theory contains the DEFUN-TYPE/EXEC-THEORY (which see) of all
  functions considered to be logical operations on numbers, and all lemmas
  (predominately `type lemmas') proved in this book.  All functions in the
  list *LOGOPS-FUNCTIONS* are DISABLEd.~/")



;;;****************************************************************************
;;;
;;;  DEFBYTETYPE name size s/u &key saturating-coercion doc.
;;;
;;;****************************************************************************

(defmacro defbytetype (name size s/u &key saturating-coercion doc)
  ":doc-section logops-definitions
  A macro for defining integer subrange types.
  ~/

  The \"byte types\" defined by DEFBYTETYPE correspond to the Common LISP
  concept of a \"byte\", that is, an integer with a fixed number of
  bits.  We extend the Common LISP concept to allow signed bytes.

  Example:

  (DEFBYTETYPE WORD 32 :SIGNED)

  Defines a new integer type of 32-bit signed integers, recognized by
  (WORD-P i).
  ~/

  General Form:

  (DEFBYTETYPE name size s/u &key saturating-coercion doc)

  The argument name should be a symbol, size should be a constant expression
  (suitable for DEFCONST) for an integer > 0, s/u is either :SIGNED or
  :UNSIGNED, saturating-coercion should be a symbol (default NIL) and doc
  should be a string.

  Each data type defined by DEFBYTETYPE produces a number of events:

  o  A constant *<name>-MAX*, set to the maximum value of the type.

  o  A constant *<name>-MIN*, set to the minimum value of the type.

  o  A predicate, (<pred> x), that recognizes either (UNSIGNED-BYTE-P size x)
     or (SIGNED-BYTE-P size x), depending on whether s/u was :UNSIGNED or
     :SIGNED respectively. This predicate is DISABLED.  The name of the
     predicate will be <name>-P.

  o  A coercion function, (<name> i), that coerces any object i to the correct
     type by LOGHEAD and LOGEXT for unsigned and signed integers
     respectively.  This function is DISABLED.  Any :DOC string provided will
     be placed with this function.

  o  A lemma showing that the coercion function actually does the correct
     coercion.

  o  A lemma that reduces calls of the coercion function when its argument
     satisfies the predicate.

  o  A forward chaining lemma from the predicate to the appropriate type
     information.

  o If :SATURATING-COERCION is specified, the value of this keyword argument
  should be a symbol.  A function of this name will be defined to provide a
  saturating coercion.  `Saturation' in this context means that values
  outside of the legal range for the type are coerced to the type by setting
  them to the nearest legal value, which will be either the minimum or
  maximum value of the type. This function will be DISABLEd, and a lemma will
  be generated that proves that this function returns the correct type.  Note
  that the :SATURATING-COERCION option is only valid for :SIGNED types.

  o  A theory named <name>-THEORY that includes the lemmas and the
  DEFUN-TYPE/EXEC-THEORY of the functions.~/"

  (declare (xargs :guard (and (symbolp name)
                              ;; How to say that SIZE is a constant expression?
                              (or (eq s/u :SIGNED) (eq s/u :UNSIGNED))
                              (implies saturating-coercion
				       (and (symbolp saturating-coercion)
					    (eq s/u :SIGNED)))
                              (implies doc (stringp doc)))))

  (let*
    ((max-constant (pack-intern name "*" name "-MAX*"))
     (min-constant (pack-intern name "*" name "-MIN*"))
     (predicate (pack-intern name name "-P"))
     (predicate-lemma (pack-intern name predicate "-" name))
     (coercion-lemma (pack-intern name "REDUCE-" name))
     (forward-lemma (pack-intern predicate predicate "-FORWARD"))
     (sat-lemma (pack-intern name predicate "-" saturating-coercion))
     (theory (pack-intern name name "-THEORY")))
  
    `(ENCAPSULATE ()
       (LOCAL (IN-THEORY (THEORY 'BASIC-BOOT-STRAP)))
       (LOCAL (IN-THEORY (ENABLE LOGOPS-DEFINITIONS-THEORY)))

       ;;  NB! These two ENABLEs mean that we have to have "logops-lemmas"
       ;;  loaded to do a DEFBYTETYPE.

       (LOCAL (IN-THEORY (ENABLE LOGHEAD-IDENTITY LOGEXT-IDENTITY)))

       (DEFCONST ,max-constant ,(case s/u
                                  (:SIGNED `(- (EXPT2 (- ,size 1)) 1))
                                  (:UNSIGNED `(- (EXPT2 ,size) 1))))
       (DEFCONST ,min-constant ,(case s/u
                                  (:SIGNED `(- (EXPT2 (- ,size 1))))
                                  (:UNSIGNED 0)))
       (DEFUN ,predicate (X)
	 (DECLARE (XARGS :GUARD T))
         ,(case s/u
            (:SIGNED `(SIGNED-BYTE-P ,size X))
            (:UNSIGNED `(UNSIGNED-BYTE-P ,size X))))
       (DEFUN ,name (I)
         ,@(when$ doc (list doc))
         (DECLARE (XARGS :GUARD (INTEGERP I)))
         ,(case s/u
            (:SIGNED `(LOGEXT ,size I))
            (:UNSIGNED `(LOGHEAD ,size I))))
       (DEFTHM ,predicate-lemma
	 (,predicate (,name I)))
       (DEFTHM ,coercion-lemma
	 (IMPLIES
	  (,predicate I)
	  (EQUAL (,name I) I)))
       (DEFTHM ,forward-lemma
         (IMPLIES
          (,predicate X)
          ,(case s/u
             (:SIGNED `(INTEGERP X))
             (:UNSIGNED `(AND (INTEGERP X)
			      (>= X 0)))))
         :RULE-CLASSES :FORWARD-CHAINING)
       ,@(when$ saturating-coercion
           (list
            `(DEFUN ,saturating-coercion (I)
               (DECLARE (XARGS :GUARD (INTEGERP I)))
	       (LOGSAT ,size I))
            `(DEFTHM ,sat-lemma
	       (,predicate (,saturating-coercion I)))))
       (IN-THEORY (DISABLE ,predicate ,name ,@(when$ saturating-coercion
                                                (list saturating-coercion))))
       (DEFTHEORY ,theory
         (UNION-THEORIES
          (DEFUN-TYPE/EXEC-THEORY
            '(,predicate ,name ,@(when$ saturating-coercion
                                   (list saturating-coercion))))
          '(,predicate-lemma ,coercion-lemma ,forward-lemma
			     ,@(when$ saturating-coercion
				 (list sat-lemma))))))))


;;;****************************************************************************
;;;
;;;  DEFWORD
;;;
;;;****************************************************************************

;;;  Recognizers for valid structure definitions and code generators.  See
;;;  the grammar in the :DOC for DEFWORD.

(defun defword-tuple-p (tuple)
  (or (and (true-listp tuple)
	   (or (equal (length tuple) 3)
	       (equal (length tuple) 4))
	   (symbolp (first tuple))
	   (integerp (second tuple))
	   (> (second tuple) 0)
	   (integerp (third tuple))
	   (>= (third tuple) 0)
	   (implies (fourth tuple) (stringp (fourth tuple))))
      (er hard 'defword
	  "A field designator for DEFWORD must be a list, the first ~
             element of which is a symbol, the second a positive integer, ~
             and the third a non-negative integer.  If a fouth element is ~
             provided it must be a string.  This object violates these ~
             constraints: ~p0" tuple)))

(defun defword-tuple-p-listp (struct)
  (cond
   ((null struct) t)
   (t (and (defword-tuple-p (car struct))
	   (defword-tuple-p-listp (cdr struct))))))

(defun defword-struct-p (struct)
  (cond
   ((true-listp struct) (defword-tuple-p-listp struct))
   (t (er hard 'defword
	  "The second argument of DEFWORD must be a true list. ~
           This object is not a true list: ~p0" struct))))

(defun defword-guards (name struct conc-name set-conc-name keyword-updater
			    doc) 
  (and
   (or (symbolp name)
       (er hard 'defword
	   "The name must be a symbol.  This is not a symbol: ~p0" name))
   (defword-struct-p struct)
   (or (symbolp conc-name)
       (er hard 'defword
	   "The :CONC-NAME must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (symbolp set-conc-name)
       (er hard 'defword
	   "The :SET-CONC-NAME must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (symbolp keyword-updater)
       (er hard 'defword
	   "The :KEYWORD-UPDATER must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (implies doc (stringp doc))
       (er hard 'defword
	   "The :DOC must be a string.  This is not a string: ~p0" doc))))

(defun defword-accessor-name (name conc-name field)
  (pack-intern name conc-name field))

(defun defword-updater-name (name set-conc-name field)
  (pack-intern name set-conc-name field))

(defun defword-accessor-definitions (rdb name conc-name tuples)
  (cond ((consp tuples)
	 (let*
	   ((tuple (car tuples))
	    (field (first tuple))
	    (size (second tuple))
	    (pos (third tuple))
	    (doc (fourth tuple))
	    (accessor (defword-accessor-name name conc-name field)))
	   (cons
	    `(DEFMACRO ,accessor (WORD)
	       ,@(if doc (list doc) nil)
	       (LIST ',rdb (LIST 'BSP ,size ,pos) WORD))
	    (defword-accessor-definitions rdb name conc-name (cdr tuples)))))
	(t ())))

(defun defword-updater-definitions (wrb name set-conc-name tuples)
  (cond ((consp tuples)
	 (let*
	   ((tuple (car tuples))
	    (field (first tuple))
	    (size (second tuple))
	    (pos (third tuple))
	    (updater (defword-updater-name name set-conc-name field)))
	   (cons
	    `(DEFMACRO ,updater (VAL WORD)
	       (LIST ',wrb VAL (LIST 'BSP ,size ,pos) WORD))
	    (defword-updater-definitions wrb name set-conc-name
	      (cdr tuples))))) 
	(t ())))

(defloop defword-keyword-field-alist (name set-conc-name field-names)
  (for ((field-name in field-names))
    (collect (cons (intern-in-package-of-symbol (string field-name) :keyword)
		   (defword-updater-name name set-conc-name field-name)))))

(defun defword-keyword-updater-body (val args keyword-field-alist)
  (cond
   ((atom args) val)
   (t `(,(cdr (assoc (car args) keyword-field-alist)) ,(cadr args)
	,(defword-keyword-updater-body val (cddr args) keyword-field-alist)))))

(defun defword-keyword-updater-fn (form val args keyword-updater
					keyword-field-alist)
  (declare (xargs :mode :program))
  (let*
    ((keyword-field-names (strip-cars keyword-field-alist)))
    (cond
     ((not (keyword-value-listp args))
      (er hard keyword-updater
	  "The argument list in the macro invocation ~p0 ~
           does not match the syntax of a keyword argument ~
           list because ~@1."
	  form (reason-for-non-keyword-value-listp args)))
     ((not (subsetp (evens args) keyword-field-names))
      (er hard keyword-updater
	  "The argument list in the macro invocation ~p0 is not ~
           a valid keyword argument list because it contains the ~
           ~#1~[keyword~/keywords~] ~&1, which ~#1~[is~/are~] ~
            not the keyword ~#1~[form~/forms~] of any of the ~
            field names ~&2." 
	  FORM (set-difference-equal (evens args) keyword-field-names)
	  keyword-field-names))
     (t (defword-keyword-updater-body val args keyword-field-alist)))))

(defun defword-keyword-updater (name keyword-updater set-conc-name
				     field-names)
  `(DEFMACRO ,keyword-updater (&WHOLE FORM VAL &REST ARGS)
     (DEFWORD-KEYWORD-UPDATER-FN
       FORM VAL ARGS ',keyword-updater
       ',(defword-keyword-field-alist name set-conc-name field-names))))


(defmacro defword (name struct &key conc-name set-conc-name keyword-updater
			 doc) 
  ":doc-section logops-definitions
  A macro to define packed integer data structures.
  ~/

  Example:

  (DEFWORD FM9001-INSTRUCTION-WORD
    ((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
     (RN-B 4 10) (MODE-B 2 14)
     (SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
    :CONC-NAME ||
    :SET-CONC-NAME SET-
    :DOC \"Instruction word layout for the FM9001.\")

  The above example defines the instruction word layout for the FM9001.  The
  macro defines accessing macros (RN-A i), ... ,(OP-CODE i),
  updating macros (SET-RN-A val i), ... ,(SET-OP-CODE val i), and a keyword
  updating macro (UPDATE-FM9001-INSTRUCTION-WORD val &rest args).
  ~/

  General form:

  (DEFWORD name struct &key conc-name set-conc-name keyword-updater doc)

  The DEFWORD macro defines a packed integer data structure, for example an
  instruction word for a programmable processor or a status word.  DEFWORD is
  a simple macro that defines accessing and updating macros for the fields of
  the data structure. The utility of DEFWORD is mainly to simplify the
  specification of packed integer data structures, and to improve the
  readability of code manipulating these data structures without affecting
  performance. As long as the book \"logops-lemmas\" is loaded all of the
  important facts about the macro expansions should be available to the
  theorem prover.

  Arguments 

  name:  The name of the data structure, a symbol.

  struct : The field structure of the word. The form of this argument is
  given by the following grammar: 

  <tuple>  := (<field> <size> <pos> [ <doc> ])
  <struct> := () | (<tuple> . <struct>)

  where:

  (SYMBOLP <field>)
  (AND (INTEGERP <size>) (> <size> 0))
  (AND (INTEGERP <pos>) (>= <pos> 0))
  (STRINGP <doc>)

  In other words, a list of tuples, the first element being a symbol, the 
  second a positive integer, the third a nonnegative integer, and the
  optional fourth a string.

  Note that there are few other requirements on the <struct> other than the
  syntactic ones above.  For example, the FM9001 DEFWORD shows that a word
  may have more than one possible structure - the first 9 bits of the FM9001
  instruction word are either an immediate value, or they include the RN-A
  and MODE-A fields.  

  conc-name, set-conc-name: These are symbols whose print names will be
  concatenated with the field names to produce the name of the accessors and
  updaters respectively.  The default is <name>- and SET-<name>- respectively.
  The access and update macro names will be interned in the package of
  name.

  keyword-updater:  This is a symbol, and specifies the name of the keyword
  updating macro (see below).  The default is UPDATE-<name>.

  doc:  An optional documentation string.  If supplied, it will be attached
  to the label (see below).

  Interpretation

  DEFWORD creates an ACL2 DEFLABEL event named <name>, and attaches the <doc>
  to that label if it is supplied.

  Each tuple (<field> <size> <pos> [ <doc> ]) represents a <size>-bit field
  of a word at the bit position indicated.  Each field tuple produces an
  accessor macro 

  (<accessor> word) 

  where <accessor> is computed from the :conc-name (see above).  This
  accessor will expand into: 

  (RDB (BSP <size> <pos>) word).

  If the optional <doc> string is provided it will be attached to the
  accessor. 

  DEFWORD also generates an updating macro 

  (<updater> val word),

   where <updater> is computed from the :set-conc-name (see above).  This
  macro will expand to

  (WRB val (BSP <size> <pos>) word).

  The keyword updater

  (<keyword-updater> word &rest args)

  is equivalent to multiple nested calls of the updaters on the initial word.
  For example,

  (UPDATE-FM9001-INSTRUCTION-WORD WORD :RN-A 10 :RN-B 12)

  is the same as (SET-RN-A 10 (SET-RN-B 12 WORD)).~/"

  (cond
   ((not
     (defword-guards name struct conc-name set-conc-name keyword-updater doc)))
   (t
    (let*
      ((conc-name (if conc-name
                      conc-name
                    (pack-intern name name "-")))
       (set-conc-name (if set-conc-name
                          set-conc-name
                        (pack-intern name "SET-" name "-")))
       (keyword-updater (if keyword-updater
			    keyword-updater
			  (pack-intern name "UPDATE-" name)))
       (accessor-definitions
        (defword-accessor-definitions 'RDB name conc-name struct))
       (updater-definitions
        (defword-updater-definitions 'WRB name set-conc-name struct))
       (field-names (strip-cars struct)))

      `(ENCAPSULATE ()                  ;Only to make macroexpansion pretty.
         (DEFLABEL ,name ,@(if doc `(:DOC ,doc) nil))
         ,@accessor-definitions
         ,@updater-definitions
         ,(defword-keyword-updater
	    name keyword-updater set-conc-name field-names))))))

#|
Example:

(DEFWORD FM9001-INSTRUCTION
  ((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
   (RN-B 4 10) (MODE-B 2 14)
   (SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
  :CONC-NAME ||
  :SET-CONC-NAME SET-
  :DOC "Instruction word layout for the FM9001.")

|#


;;;****************************************************************************
;;;
;;;  Word/Bit Macros
;;;
;;;****************************************************************************

(deflabel word/bit-macros
  :doc ":doc-section logops-definitions
  Macros for manipulating integer words defined as contguous bits.
  ~/~/
  These macros were defined to support the functions produced by translating
  SPW .eqn files to ACL2 functions.~/")

(defun bind-word-to-bits-fn (bit-names n word)
  (cond
   ((endp bit-names) ())
   (t (cons `(,(car bit-names) (LOGBIT ,n ,word))
	    (bind-word-to-bits-fn (cdr bit-names) (1+ n) word)))))

(defmacro bind-word-to-bits (bit-names word &rest forms)
  ":doc-section word/bit-macros
  Bind variables to the contiguous low-order bits of word.
  ~/
  Example:

  (BIND-WORD-TO-BITS (A B C) I (B-AND A (B-IOR B C)))

  The above macro call will bind A, B, and C to the 0th, 1st, and 2nd bit
  of I, and then evaluate the logical expression under those bindings.
  The list of bit names is always intrepreted from low to high order.~/~/"

  (declare (xargs :guard (and (symbol-listp bit-names)
			      (no-duplicatesp bit-names))))

  `(LET ,(bind-word-to-bits-fn bit-names 0 word) ,@forms))

(defmacro make-word-from-bits (&rest bits)
  ":doc-section word/bit-macros
  Update the low-order bits of word with the indicated values.
  ~/
  Example:

  (MAKE-WORD-FROM-BITS A B C)

  The above macro call will build an unsigned integer from the bits A
  B, and C.  The list of bits is always intrepreted from low to high
  order. Note that the expression generated by this macro will coerce the
  values to bits before building the word.~/~/" 

  (cond
   ((endp bits) 0)
   (t `(LOGAPP 1 ,(car bits) (MAKE-WORD-FROM-BITS ,@(cdr bits))))))



;;;****************************************************************************
;;;
;;;    Efficiency Hack
;;;
;;;****************************************************************************

(deflabel logops-efficiency-hack
  :doc ":doc-section logops
  A hack that may increase the efficiency of logical operations and byte
  operations.~/

  WARNING: USING THIS HACK MAY RENDER ACL2 UNSOUND AND/OR CAUSE HARD LISP
  ERRORS.  Note that this warning only applies if we have made a mistake
  in programming this hack, or if you are calling these functions on values
  that do not satisfy their guards.~/

  Our extensions to the CLTL logical operations, and the portable
  implementations of byte functions are coded to simplify formal reasoning.
  Thus they are specified in terms of +, -, *, FLOOR, MOD, and EXPT.  One would
  not expect that these definitions provide the most efficient implementations
  of these functions, however.  Therefore, we have provided the following hack,
  which may decrease the runtime for large applications written in terms of the
  functions defined in this library.
  
  The hack consists of redefining the logical operations and byte
  functions \"behind the back\" of ACL2.  There is no guarantee that using
  this hack will improve efficiency.  There is also no formal guarantee that
  these new definitions are equivalent to those formally defined in the
  \"logops-definitions\" book, or that the guards are satisfied for these new
  definitions.  Thus, using this hack may render ACL2 unsound, or cause hard
  lisp errors if we have coded this hack incorrectly.  The hack consists of
  a set of definitions which are commented out in the source code for the
  book \"logops-definitions.lisp\".  To use this hack, do the following:

  1.  Locate the source code for \"logops-definitions.lisp\".
  
  2.  Look at the very end of the file.

  3.  Copy the hack definitions into another file.

  4.  Leave the ACL2 command loop and enter the Common Lisp ACL2 package.
  
  5.  Compile the hack definitions file and load the object code just created
      into an ACL2 session. 
  ")

#|
;;  Begin Efficiency Hack Definitions

;;  The heuristic behind this hack is that logical operations are faster than
;;  arithmetic operations (esp. FLOOR and MOD), and the idea that it is
;;  faster to look up a value from a table than to create new integers.  We
;;  believe that for typical hardware specification applications that many of
;;  the integers presented to LOGHEAD and LOGEXT will already be in their
;;  normalized forms.
;;
;;  We define macros, e.g., |logmask|, that represent a simple efficient
;;  definition of the functions for use when the second heuristic fails.  We
;;  define macros, e. g., |fast-logmask| that define the table
;;  lookup-versions given certain preconditions.

#+monitor-logops (defvar |*loghead-monitor*| #(0 0 0 0))
#+monitor-logops (defvar |*logext-monitor*| #(0 0 0 0))
#+monitor-logops (defvar |*rdb-monitor*| #(0 0 0 0 0 0 0))
#+monitor-logops (defvar |*wrb-monitor*| #(0 0 0 0 0 0 0))

#+monitor-logops
(defun |reset-logops-monitors| ()
  (setf |*loghead-monitor*| #(0 0 0 0))
  (setf |*logext-monitor*| #(0 0 0 0))
  (setf |*rdb-monitor*| #(0 0 0 0 0 0 0))
  (setf |*wrb-monitor*| #(0 0 0 0 0 0 0)))

#+monitor-logops
(defun |print-logops-monitors| ()
  (|print-size-monitor| 'LOGHEAD |*loghead-monitor*|)
  (|print-size-monitor| 'LOGEXT |*logext-monitor*|)
  (|print-bsp-monitor| 'RDB |*rdb-monitor*|)
  (|print-bsp-monitor| 'WRB |*wrb-monitor*|))

#+monitor-logops
(defun |size-monitor| (monitor size i)
  (incf (aref monitor 0))		
  (if (eq (type-of i) 'BIGNUM) (incf (aref monitor 1)))
  (if (< i 0) (incf (aref monitor 2))) 
  (if (< size 32) (incf (aref monitor 3))))

#+monitor-logops
(defun |print-size-monitor| (fn monitor)
  (format t "~s was called: ~d times, on ~d BIGNUMS, on ~d negative ~
	       numbers,~%and ~d times with size < 32.~%~%"
	    fn (aref monitor 0) (aref monitor 1) (aref monitor 2)
	    (aref monitor 3)))

#+monitor-logops
(defun |bsp-monitor| (monitor bsp i)
  (let ((size (car bsp))
	  (pos (cdr bsp)))
    (incf (aref monitor 0))		
    (if (eq (type-of i) 'BIGNUM) (incf (aref monitor 1)))
    (if (< i 0) (incf (aref monitor 2))) 
    (if (< size 32) (incf (aref monitor 3)))
    (if (< pos 32) (incf (aref monitor 4)))
    (if (< (+ size pos) 32) (incf (aref monitor 5)))
    (if (= size 1) (incf (aref monitor 6)))))
  
#+monitor-logops
(defun |print-bsp-monitor| (fn monitor)
  (format t "~s was called: ~d times, on ~d BIGNUMS, on ~d negative ~
	       numbers,~%~
	       ~d times with size < 32, ~d times with pos < 32, ~%~
	       ~d times with size+pos < 32, and ~d times with size = 1.~%~%"
	    fn (aref monitor 0) (aref monitor 1) (aref monitor 2)
	    (aref monitor 3) (aref monitor 4) (aref monitor 5)
	    (aref monitor 6)))


(defconstant *logops-efficiency-hack-mask-table*
  #(#x00000000 #x00000001 #x00000003 #x00000007
	#x0000000F #x0000001F #x0000003F #x0000007F
	#x000000FF #x000001FF #x000003FF #x000007FF
	#x00000FFF #x00001FFF #x00003FFF #x00007FFF
	#x0000FFFF #x0001FFFF #x0003FFFF #x0007FFFF
	#x000FFFFF #x001FFFFF #x003FFFFF #x007FFFFF
	#x00FFFFFF #x01FFFFFF #x03FFFFFF #x07FFFFFF
	#x0FFFFFFF #x1FFFFFFF #x3FFFFFFF #x7FFFFFFF))

(defconstant *logops-efficiency-hack-mask-bar-table*
  #(#x-00000001 #x-00000002 #x-00000004 #x-00000008
	#x-00000010 #x-00000020 #x-00000040 #x-00000080
	#x-00000100 #x-00000200 #x-00000400 #x-00000800
	#x-00001000 #x-00002000 #x-00004000 #x-00008000
	#x-00010000 #x-00020000 #x-00040000 #x-00080000
	#x-00100000 #x-00200000 #x-00400000 #x-00800000
	#x-01000000 #x-02000000 #x-04000000 #x-08000000
	#x-10000000 #x-20000000 #x-40000000 #x-80000000))

(defconstant *logops-efficiency-hack-bit-mask-table*
  #(#x00000001 #x00000002 #x00000004 #x00000008
	#x00000010 #x00000020 #x00000040 #x00000080
	#x00000100 #x00000200 #x00000400 #x00000800
	#x00001000 #x00002000 #x00004000 #x00008000
	#x00010000 #x00020000 #x00040000 #x00080000
	#x00100000 #x00200000 #x00400000 #x00800000
	#x01000000 #x02000000 #x04000000 #x08000000
	#x10000000 #x20000000 #x40000000 #x80000000))

(defconstant *logops-efficiency-hack-bit-mask-bar-table*
  #(#x-00000002 #x-00000003 #x-00000005 #x-00000009
	#x-00000011 #x-00000021 #x-00000041 #x-00000081
	#x-00000101 #x-00000201 #x-00000401 #x-00000801
	#x-00001001 #x-00002001 #x-00004001 #x-00008001
	#x-00010001 #x-00020001 #x-00040001 #x-00080001
	#x-00100001 #x-00200001 #x-00400001 #x-00800001
	#x-01000001 #x-02000001 #x-04000001 #x-08000001
	#x-10000001 #x-20000001 #x-40000001 #x-80000001))

(defmacro |mask| (size)
  ;; size < 32
  `(AREF *LOGOPS-EFFICIENCY-HACK-MASK-TABLE* ,size))

(defmacro |mask-bar| (size)
  ;; size < 32
  `(AREF *LOGOPS-EFFICIENCY-HACK-MASK-BAR-TABLE* ,size))

(defmacro |bit-mask| (pos)
  ;; pos < 32
  `(AREF *LOGOPS-EFFICIENCY-HACK-BIT-MASK-TABLE* ,pos))

(defmacro |bit-mask-bar| (pos)
  ;; pos < 32
  `(AREF *LOGOPS-EFFICIENCY-HACK-BIT-MASK-BAR-TABLE* ,pos))

(defun logcar (i)
  (declare (type integer i))
  (if (oddp i) 1 0))

(defun logcdr (i)
  (declare (type integer i))
  (ash i -1))

(defun logcons (b i)
  (declare (type (integer 0 1) b) (type integer i))
  (logior b (ash i 1)))

(defmacro |logmask-bar| (size)
  `(ASH -1 ,size)))

(defmacro |logmask| (size)
  `(LOGNOT (|logmask-bar| ,size)))

(defun logmask (size)
  (declare (type (integer 0 *) size))
  (if (< size 32)
	  (|mask| size)
	(|logmask| size)))

(defmacro |loghead| (size i)
  (let ((mask (gensym)))
	`(LET ((,mask (IF (< ,size 32) (|mask| ,size) (|logmask| ,size))))
	   (IF (AND (>= ,i 0) (<= ,i ,mask))
	       ,i				;i already normalized.
	     (LOGAND ,i ,mask)))))

(defun loghead (size i)
  (declare (type (integer 0 *) size) (type integer i))
  #+monitor-logops (|size-monitor| |*loghead-monitor*| size i)
  (|loghead| size i))

(defmacro |logtail| (pos i)
  `(ASH ,i (- ,pos)))

(defun logtail (pos i)
  (declare (type (integer 0 *) pos) (type integer i))
  (|logtail| pos i))

(defmacro |logapp| (size i j)
  `(LOGIOR (LOGHEAD ,size ,i) (ASH ,j ,size)))

(defun logapp (size i j) 
  (declare (type (integer 0 *) size) (type integer i j))
  (|logapp| size i j))

(defparameter *logops-efficiency-hack-logrpl-bsp* '(0 . 0))

(defun logrpl (size i j)
  (declare (type (integer 0 *) size) (type integer i j))
  (setf (car *logops-efficiency-hack-logrpl-bsp*) size)
  (wrb i *logops-efficiency-hack-logrpl-bsp* j))

(defun logext (size i)
  (declare (type (integer 0 *) size) (type integer i))
  #+monitor-logops (|size-monitor| |*logext-monitor*| size i)
  (if (<= size 32)
	  (if (= (the fixnum size) 0)
	      0
	    (let ((pos (the fixnum (- (the fixnum size) 1))))
	      (if (<= 0 i)
		  (let ((mask (|mask| pos)))
		    (if (<= i mask)
			i
		      (if (logbitp pos i)
			  (logorc2 i mask)
			(logand i mask))))
		(let ((mask (|mask-bar| pos)))
		  (if (<= mask i)
		      i
		    (if (logbitp pos i)
			(logior i mask)
		      (logandc2 i mask)))))))
	(let ((pos (1- size)))
	  (if (<= 0 i)
	      (let ((mask (|logmask| pos)))
		(if (<= i mask)
		    i
		  (if (logbitp pos i)
		      (logorc2 i mask)
		    (logand i mask))))
	    (let ((mask (|logmask-bar| pos)))
	      (if (<= mask i)
		  i
		(if (logbitp pos i)
		    (logior i mask)
		  (logandc2 i mask))))))))
	      
;; In GCL, (BYTE size pos) = (CONS size pos) = (BSP size pos).
;;
;; Reading/writing single bits are an important use of RDB/WRB so we handle
;; them specially.  If the byte position is 0 we can also save a few
;; operations.

(defun rdb (bsp i)
  (declare (type cons bsp) (type integer i))
  #+monitor-logops (|bsp-monitor| |*rdb-monitor*| bsp i)
  (let ((size (car bsp))
	    (pos (cdr bsp)))
	(if (< size 32)
	    (if (= size 1)
		(if (logbitp pos i) 1 0)
	      (if (= pos 0)
		  (logand i (|mask| size))
		(logand (|logtail| pos i) (|mask| size))))
	  (if (= pos 0)
	      (logandc2 i (|logmask-bar| size))
	    (logandc2 (|logtail| pos i) (|logmask-bar| size))))))

(defun wrb (i bsp j)
  (declare (type cons bsp) (type integer i j))
  #+monitor-logops (|bsp-monitor| |*wrb-monitor*| bsp i)
  (let ((size (car bsp))
	    (pos (cdr bsp)))
	(if (< size 32)
	    (if (= size 1)
		(if (< pos 32)
		    (cond
		     ((= i 0) (logand j (|bit-mask-bar| pos)))
		     ((or (= i 1) (oddp i)) (logior j (|bit-mask| pos)))
		     (t (logand j (|bit-mask-bar| pos))))
		  (cond
		   ((= i 0) (logandc2 j (ash 1 pos)))
		   ((or (= i 1) (oddp i)) (logior j (ash 1 pos)))
		   (t (logandc2 j (ash 1 pos)))))
	      (if (= pos 0)
		  (logior (logand j (|mask-bar| size))
			  (|loghead| size i))
		(logior (logandc2 j (ash (|mask| size) pos))
			(ash (|loghead| size i) pos))))
	  (if (= pos 0)
	      (logior (logand j (|logmask-bar| size))
		      (|loghead| size i))
	    (logior (logandc2 j (ash (|logmask| size) pos))
		    (ash (|loghead| size i) pos))))))

(defun rdb-test (bsp i)
	(declare (type cons bsp) (type integer i))
	#+gcl
	(ldb-test bsp i)
	#-gcl
	(ldb-test (byte (car bsp) (cdr bsp)) i))

(defun rdb-field (bsp i)
	(declare (type cons bsp) (type integer i))
	#+gcl
	(mask-field bsp i)
	#-gcl
	(mask-field (byte (car bsp) (cdr bap)) i))

(defun wrb-field (i bsp j)
	(declare (type cons bsp) (type integer i j))
	#+gcl
	(deposit-field i bsp j)
	#-gcl
	(deposit-field i (byte (car bsp) (cdr bsp)) j))

;  MERGE-BYTE is optimized for merging bits.  This definition depends on
;  the strong guards from ACL2.

(defun merge-byte (i size pos j)
	(if (= i 0)
	    j
	  (+ j (if (= size 1)
		   (if (< pos 32)
		       (|bit-mask| pos)
		     (ash 1 pos))
		 (ash i pos)))))
 
;;  End Efficiency Hack Definitions
|#