File: fibonacci.lisp

package info (click to toggle)
acl2 3.1-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 36,712 kB
  • ctags: 38,396
  • sloc: lisp: 464,023; makefile: 5,470; sh: 86; csh: 47; cpp: 25; ansic: 22
file content (202 lines) | stat: -rwxr-xr-x 5,855 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
;  Book           fibonacci
;  Contributed by Matyas Sustik
;  Date created   2000-05-08
;  $Id: fibonacci.lisp,v 1.3 2001/09/05 19:12:21 matyas Exp $
;
;  Matt Kaufmann has simplified and rearranged several proofs.  Thank
;  you!  See his comments inserted before the theorems.


(in-package "ACL2")
(include-book "int-division")
(include-book "grcd")

(defmacro np (x)
  (list 'and (list 'integerp x) (list '<= 0 x)))

(defmacro pintp (x)
  (list 'and (list 'integerp x) (list '< 0 x)))

; This is the efficient definition.
(defun fib-general (x y n)
  (cond ((zp n) 0)
	((equal n 0) 0)
	((equal n 1) x)
	((equal n 2) y)
	((< 2 n) (fib-general y (+ x y) (+ -1 n)))
	(t nil)))

; This is better for proofs.
(defun fib (n)
  (cond ((zp n) 0)
	((equal n 0) 0)
	((equal n 1) 1)
	(t (+ (fib (- n 1)) (fib (- n 2))))))

(defthm fib-general-at-3
  (equal (fib-general x y 3) (+ x y))
  :hints (("Goal" :expand (fib-general x y 3))))

(defthm fib-general-recursive-equation ; requires top-with-meta
  (implies (and (integerp n)
		(< 2 n))
	   (equal (+ (fib-general x y (+ -1 n))
		     (fib-general x y (+ -2 n)))
		  (fib-general x y n))))

; The function fib is really a special case of fib-general:

(defthm fib-is-special-case-of-fib-general
  (equal (fib n)
	 (fib-general 1 1 n))
  :hints (("Goal" :induct (fib n)))
  :rule-classes nil)

; The fib-general is more efficient but proofs are easier on fib.
; We use fib from now on.

(defthm fib-identity-base-case ; This is needed for the next theorem.
  (implies (and (integerp n) (< 1 n))
	   (equal (fib n)
		  (+ (fib (- n 1))
		     (fib (- n 2))))))

(defthm fib-identity
  (implies (and (pintp n)
		(pintp k)
		(< k n))
	   (equal (fib n)
		  (+ (* (fib k)
			(fib (+ n (- k) 1)))
		     (* (fib (+ k -1))
			(fib (+ n (- k)))))))
  :rule-classes nil)

; MattK: Moved fib-identity-base-case below the proof of fib-neighbours-lemma
; in order to avoid the need for one of the :use hints.
(in-theory (disable fib))

(defthm fib-neighbours-lemma
  (implies (and (integerp k)
		(< 1 k))
	   (equal (grcd (fib k)
			(fib (+ -1 k)))
		  (grcd (fib (+ -1 k))
			(fib (+ -2 k)))))
  :hints (("Goal"
	   :use ((:instance grcd-addition-lemma
			    (a (fib (+ -1 k)))
			    (b (fib (+ -2 k)))
			    (c 1))))))

(in-theory (disable fib-identity-base-case))

; MattK: Trivial mod, probably unnecessary, but result is simpler.
(local
 (defun ind-int->=-2 (n)
   (if (and (integerp n)
	    (<= 2 n))
       (ind-int->=-2 (+ -1 n))
     t)))

(defthm fib-neighbours-are-relative-primes
  (implies (pintp k)
	   (equal (grcd (fib k)
			(fib (+ -1 k)))
		  1))
  :hints (("Goal"
	   :induct (ind-int->=-2 k))))

; (F(k); F(n-k)*F(k-1)) = (F(k); F(n-k))
; MattK: I rearranged the terms of the following in order to make it a better
; rewrite rule.  In order for the left side to match, we need to be sure it's
; in a form that is likely to be matched during the proof of the next lemma.
; The documentation for loop-stopper hints that (- x) and x are ordered the
; same when directly under a call of +, and that variables closer to the start
; of the alphabet are ordered before those later in the alphabet.  Those facts
; are relevant below since there are rewrite rules for commutativity of + and *
; that have loop stoppers.  This is all pretty subtle, and of course there is
; nothing really wrong with just giving a :use hint, as was done originally.
(defthm grcd-fib-recursion-lemma-1
  (implies (and (pintp n)
		(pintp k)
		(<= k n))
	   (equal (grcd (fib k)
			(* (fib (+ -1 k))
			   (fib (+ (- k) n))))
		  (grcd (fib k)
			(fib (- n k)))))
  :hints (("Goal"
	   :use ((:instance grcd-multiplication-with-relative-prime
			    (a (fib k))
			    (b (fib (- n k)))
			    (c (fib (+ -1 k))))))))

; (F(k); F(n-k)*F(k-1)+F(n-k+1)*F(k)) = (F(k); F(n-k))
; MattK: Just for fun, I restated this lemma in a form that would apply in the
; proof of grcd-fib-recursion.  I came up with this restatement by looking at
; the failed proof of grcd-fib-recursion. when this lemma was not supplied ina
; :use hint.
(defthm grcd-fib-recursion-lemma-2
  (implies (and (pintp n)
		(pintp k)
		(<= k n)
                (equal (fib n)
                       (+ (* (fib k)
                             (fib (+ 1 (- k) n)))
                          (* (fib (+ -1 k))
                             (fib (+ (- k) n))))))
	   (equal (grcd (fib k)
			(fib n))
		  (grcd (fib k)
			(fib (- n k)))))
  :hints (("Goal"
	   :use ((:instance grcd-addition-lemma
			    (a (fib k))
			    (b (* (fib (- n k))
				  (fib (+ -1 k))))
			    (c (fib (+ 1 n (- k)))))))))

; MattK: The following is used automatically in grcd-fib-recursion and
; main-grcd-fib, thus saving two :use hints.  Except, we also need grcd-0 for
; the proof of grcd-fib-recursion, which is OK since we will need it in
; main-grcd-fib, anyhow.
(defthm grcd-subtract
  (implies (and (integerp k) (integerp n))
           (equal (grcd k (+ (- k) n))
                  (grcd k n)))
  :hints (("Goal"
	   :use ((:instance grcd-addition-lemma
			    (a k)
			    (b n)
			    (c (- 1)))))))

; We already have a similar grcd-with-0 but that has (grcd a 0) in it.
; ACL2 does not seem to use commutativity with constants in this case.
(defthm grcd-0
  (implies (np a)
	   (equal (grcd 0 a) a))
  :hints (("Goal" :in-theory (enable grcd euclid-alg-nat))))

; This says that the Euclidean algorithm for Fibonacci numbers can be
; thought of as operating on the indices.
(defthm grcd-fib-recursion
  (implies (and (pintp n)
		(pintp k)
		(<= k n))
	   (equal (grcd (fib k)
			(fib n))
		  (grcd (fib k)
			(fib (- n k)))))
  :hints (("Goal" :use fib-identity)))

(in-theory (enable Euclid-alg-nat))

(defthm main-grcd-fib
  (implies (and (pintp n)
		(pintp k))
	   (equal (grcd (fib k)
			(fib n))
		  (fib (grcd k n))))
  :hints (("Goal"
	   :induct (Euclid-alg-nat k n))))