1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
<html>
<head><title>DEFUN-SK.html -- ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h2>DEFUN-SK</h2>define a function whose body has an outermost quantifier
<pre>Major Section: <a href="EVENTS.html">EVENTS</a>
</pre><p>
<pre>
Examples:
(defun-sk exists-x-p0-and-q0 (y z)
(exists x
(and (p0 x y z)
(q0 x y z))))<p>
(defun-sk exists-x-p0-and-q0 (y z) ; equivalent to the above
(exists (x)
(and (p0 x y z)
(q0 x y z))))<p>
(defun-sk forall-x-y-p0-and-q0 (z)
(forall (x y)
(and (p0 x y z)
(q0 x y z))))
<p>
<ul>
<li><h3><a href="DEFUN-SK-EXAMPLE.html">DEFUN-SK-EXAMPLE</a> -- a simple example using <code><a href="DEFUN-SK.html">defun-sk</a></code>
</h3>
</li>
<li><h3><a href="EXISTS.html">EXISTS</a> -- existential quantifier
</h3>
</li>
<li><h3><a href="FORALL.html">FORALL</a> -- universal quantifier
</h3>
</li>
<li><h3><a href="QUANTIFIERS.html">QUANTIFIERS</a> -- issues about quantification in ACL2
</h3>
</li>
</ul>
General Form:
(defun-sk fn (var1 ... varn) body
&key rewrite doc quant-ok skolem-name thm-name witness-dcls)
</pre>
where <code>fn</code> is the symbol you wish to define and is a new symbolic
name (see <a href="NAME.html">name</a>), <code>(var1 ... varn)</code> is its list of formal
parameters (see <a href="NAME.html">name</a>), and <code>body</code> is its body, which must be
quantified as described below. The <code>&key</code> argument <code><a href="DOC.html">doc</a></code> is an optional
<a href="DOCUMENTATION.html">documentation</a> string to be associated with <code>fn</code>; for a description
of its form, see <a href="DOC-STRING.html">doc-string</a>. In the case that <code>n</code> is 1, the list
<code>(var1)</code> may be replaced by simply <code>var1</code>. The other arguments are
explained below.<p>
For a simple example, see <a href="DEFUN-SK-EXAMPLE.html">defun-sk-example</a>. For a more elaborate example,
see <a href="TUTORIAL4-DEFUN-SK-EXAMPLE.html">Tutorial4-Defun-Sk-Example</a>. Also see <a href="QUANTIFIERS.html">quantifiers</a> for an example
illustrating how the use of recursion, rather than explicit quantification
with <code>defun-sk</code>, may be preferable.<p>
Below we describe the <code>defun-sk</code> event precisely. First, let us
consider the examples above. The first example, again, is:
<pre>
(defun-sk exists-x-p0-and-q0 (y z)
(exists x
(and (p0 x y z)
(q0 x y z))))
</pre>
It is intended to represent the predicate with formal parameters <code>y</code>
and <code>z</code> that holds when for some <code>x</code>, <code>(and (p0 x y z) (q0 x y z))</code>
holds. In fact <code>defun-sk</code> is a macro that adds the following two
<a href="EVENTS.html">events</a>, as shown just below. The first event guarantees that if
this new predicate holds of <code>y</code> and <code>z</code>, then the term shown,
<code>(exists-x-p0-and-q0-witness y z)</code>, is an example of the <code>x</code> that is
therefore supposed to exist. (Intuitively, we are axiomatizing
<code>exists-x-p0-and-q0-witness</code> to pick a witness if there is one.)
Conversely, the second event below guarantees that if there is any
<code>x</code> for which the term in question holds, then the new predicate does
indeed hold of <code>y</code> and <code>z</code>.
<pre>
(defun exists-x-p0-and-q0 (y z)
(declare (xargs :non-executable t))
(let ((x (exists-x-p0-and-q0-witness y z)))
(and (p0 x y z) (q0 x y z))))
(defthm exists-x-p0-and-q0-suff
(implies (and (p0 x y z) (q0 x y z))
(exists-x-p0-and-q0 y z)))
</pre>
Now let us look at the third example from the introduction above:
<pre>
(defun-sk forall-x-y-p0-and-q0 (z)
(forall (x y)
(and (p0 x y z)
(q0 x y z))))
</pre>
The intention is to introduce a new predicate
<code>(forall-x-y-p0-and-q0 z)</code> which states that the indicated conjunction
holds of all <code>x</code> and all <code>y</code> together with the given <code>z</code>. This time, the
axioms introduced are as shown below. The first event guarantees
that if the application of function <code>forall-x-y-p0-and-q0-witness</code> to
<code>z</code> picks out values <code>x</code> and <code>y</code> for which the given term
<code>(and (p0 x y z) (q0 x y z))</code> holds, then the new predicate
<code>forall-x-y-p0-and-q0</code> holds of <code>z</code>. Conversely, the (contrapositive
of) the second axiom guarantees that if the new predicate holds of
<code>z</code>, then the given term holds for all choices of <code>x</code> and <code>y</code> (and that
same <code>z</code>).
<pre>
(defun forall-x-y-p0-and-q0 (z)
(declare (xargs :non-executable t))
(mv-let (x y)
(forall-x-y-p0-and-q0-witness z)
(and (p0 x y z) (q0 x y z))))
(defthm forall-x-y-p0-and-q0-necc
(implies (not (and (p0 x y z) (q0 x y z)))
(not (forall-x-y-p0-and-q0 z))))
</pre>
The examples above suggest the critical property of <code>defun-sk</code>: it
indeed does introduce the quantified notions that it claims to
introduce.<p>
Notice that the <code><a href="DEFTHM.html">defthm</a></code> event just above, <code>forall-x-y-p0-and-q0-necc</code>,
may not be of optimal form as a rewrite rule. Users sometimes find that when
the quantifier is <code>forall</code>, it is useful to state this rule in a form where
the new quantified predicate is a hypothesis instead. In this case that form
would be as follows:
<pre>
(defthm forall-x-y-p0-and-q0-necc
(implies (forall-x-y-p0-and-q0 z)
(and (p0 x y z) (q0 x y z))))
</pre>
ACL2 will turn this into one <code>:</code><code><a href="REWRITE.html">rewrite</a></code> rule for each conjunct,
<code>(p0 x y z)</code> and <code>(q0 x y z)</code>, with hypothesis
<code>(forall-x-y-p0-and-q0 z)</code> in each case. In order to get this effect, use
<code>:rewrite :direct</code>, in this case as follows.
<pre>
(defun-sk forall-x-y-p0-and-q0 (z)
(forall (x y)
(and (p0 x y z)
(q0 x y z)))
:rewrite :direct)
</pre>
<p>
We now turn to a detailed description <code>defun-sk</code>, starting with a
discussion of its arguments as shown in the "General Form" above.<p>
The third argument, <code>body</code>, must be of the form
<pre>
(Q bound-vars term)
</pre>
where: <code>Q</code> is the symbol <code><a href="FORALL.html">forall</a></code> or <code><a href="EXISTS.html">exists</a></code> (in the "ACL2"
package), <code>bound-vars</code> is a variable or true list of variables
disjoint from <code>(var1 ... varn)</code> and not including <code><a href="STATE.html">state</a></code>, and
<code>term</code> is a term. The case that <code>bound-vars</code> is a single variable
<code>v</code> is treated exactly the same as the case that <code>bound-vars</code> is
<code>(v)</code>.<p>
The result of this event is to introduce a ``Skolem function,'' whose name is
the keyword argument <code>skolem-name</code> if that is supplied, and otherwise is
the result of modifying <code>fn</code> by suffixing "-WITNESS" to its name. The
following definition and one of the following two theorems (as indicated) are
introduced for <code>skolem-name</code> and <code>fn</code> in the case that <code>bound-vars</code>
(see above) is a single variable <code>v</code>. The name of the <code><a href="DEFTHM.html">defthm</a></code> event
may be supplied as the value of the keyword argument <code>:thm-name</code>; if it is
not supplied, then it is the result of modifying <code>fn</code> by suffixing
"-SUFF" to its name in the case that the quantifier is <code><a href="EXISTS.html">exists</a></code>, and
"-NECC" in the case that the quantifier is <code><a href="FORALL.html">forall</a></code>.
<pre>
(defun fn (var1 ... varn)
(declare (xargs :non-executable t))
(let ((v (skolem-name var1 ... varn)))
term))<p>
(defthm fn-suff ;in case the quantifier is EXISTS
(implies term
(fn var1 ... varn)))<p>
(defthm fn-necc ;in case the quantifier is FORALL
(implies (not term)
(not (fn var1 ... varn))))
</pre>
<p>
In the <code>forall</code> case, however, the keyword pair <code>:rewrite :direct</code> may be
supplied after the body of the <code>defun-sk</code> form, in which case the
contrapositive of the above form is used instead:
<pre>
(defthm fn-necc ;in case the quantifier is FORALL
(implies (fn var1 ... varn)
term))
</pre>
This is often a better choice for the "-NECC" rule, provided ACL2 can parse
<code>term</code> as a <code>:</code><code><a href="REWRITE.html">rewrite</a></code> rule. A second possible value of the
<code>:rewrite</code> argument of <code>defun-sk</code> is <code>:default</code>, which gives the same
behavior as when <code>:rewrite</code> is omitted. Otherwise, the value of
<code>:rewrite</code> should be the term to use as the body of the <code>fn-necc</code> theorem
shown above; ACL2 will attempt to do the requisite proof in this case. If
that term is weaker than the default, the properties introduced by
<code>defun-sk</code> may of course be weaker than they would be otherwise. Finally,
note that the <code>:rewrite</code> keyword argument for <code>defun-sk</code> only makes sense
if the quantifier is <code>forall</code>; it is thus illegal if the quantifier is
<code>exists</code>. Enough said about <code>:rewrite</code>!<p>
In the case that <code>bound-vars</code> is a list of at least two variables, say
<code>(bv1 ... bvk)</code>, the definition above (with no keywords) is the following
instead, but the theorem remains unchanged.
<pre>
(defun fn (var1 ... varn)
(declare (xargs :non-executable t))
(mv-let (bv1 ... bvk)
(skolem-name var1 ... varn)
term))
</pre>
<p>
In order to emphasize that the last element of the list, <code>body</code>, is a
term, <code>defun-sk</code> checks that the symbols <code><a href="FORALL.html">forall</a></code> and <code><a href="EXISTS.html">exists</a></code> do
not appear anywhere in it. However, on rare occasions one might
deliberately choose to violate this convention, presumably because
<code><a href="FORALL.html">forall</a></code> or <code><a href="EXISTS.html">exists</a></code> is being used as a variable or because a
macro call will be eliminating ``calls of'' <code><a href="FORALL.html">forall</a></code> and <code><a href="EXISTS.html">exists</a></code>.
In these cases, the keyword argument <code>quant-ok</code> may be supplied a
non-<code>nil</code> value. Then <code>defun-sk</code> will permit <code><a href="FORALL.html">forall</a></code> and
<code><a href="EXISTS.html">exists</a></code> in the body, but it will still cause an error if there is
a real attempt to use these symbols as quantifiers.<p>
Note the form <code>(declare (xargs :non-executable t))</code> that appears in each
<code><a href="DEFUN.html">defun</a></code> above. These forms disable certain checks that are required for
execution, in particular the single-threaded use of <code><a href="STOBJ.html">stobj</a></code>s. However,
there is a price: calls of these defined functions cannot be evaluated.
Normally that is not a problem, since these notions involve quantifiers. But
you are welcome to replace this <code><a href="DECLARE.html">declare</a></code> form with your own, as follows:
if you supply a list of <code>declare</code> forms to keyword argument
<code>:witness-dcls</code>, these will become the declare forms in the generated
<code><a href="DEFUN.html">defun</a></code>.<p>
<code>Defun-sk</code> is a macro implemented using <code><a href="DEFCHOOSE.html">defchoose</a></code>, and hence should
only be executed in <a href="DEFUN-MODE.html">defun-mode</a> <code>:</code><code><a href="LOGIC.html">logic</a></code>; see <a href="DEFUN-MODE.html">defun-mode</a> and
see <a href="DEFCHOOSE.html">defchoose</a>.<p>
If you find that the rewrite rules introduced with a particular use of
<code>defun-sk</code> are not ideal, even when using the <code>:rewrite</code> keyword
discussed above (in the <code>forall</code> case), then at least two reasonable
courses of action are available for you. Perhaps the best option is to prove
the <code><a href="REWRITE.html">rewrite</a></code> rules you want. If you see a pattern for creating rewrite
rules from your <code>defun-sk</code> events, you might want to write a macro that
executes a <code>defun-sk</code> followed by one or more <code><a href="DEFTHM.html">defthm</a></code> events. Another
option is to write your own variant of the <code>defun-sk</code> macro, say,
<code>my-defun-sk</code>, for example by modifying a copy of the definition of
<code>defun-sk</code> from the ACL2 sources.<p>
If you want to represent nested quantifiers, you can use more than one
<code>defun-sk</code> event. For example, in order to represent
<pre>
(forall x (exists y (p x y z)))
</pre>
you can use <code>defun-sk</code> twice, for example as follows.
<pre>
(defun-sk exists-y-p (x z)
(exists y (p x y z)))<p>
(defun-sk forall-x-exists-y-p (z)
(forall x (exists-y-p x z)))
</pre>
<p>
Some distracting and unimportant warnings are inhibited during
<code>defun-sk</code>.<p>
Note that this way of implementing quantifiers is not a new idea. Hilbert
was certainly aware of it 60 years ago! Also
see <a href="CONSERVATIVITY-OF-DEFCHOOSE.html">conservativity-of-defchoose</a> for a technical argument that justifies the
logical conservativity of the <code><a href="DEFCHOOSE.html">defchoose</a></code> event in the sense of the paper
by Kaufmann and Moore entitled ``Structured Theory Development for a
Mechanized Logic'' (Journal of Automated Reasoning 26, no. 2 (2001),
pp. 161-203).
<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>
|