File: QUANTIFIERS-USING-RECURSION.html

package info (click to toggle)
acl2 3.1-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 36,712 kB
  • ctags: 38,396
  • sloc: lisp: 464,023; makefile: 5,470; sh: 86; csh: 47; cpp: 25; ansic: 22
file content (37 lines) | stat: -rw-r--r-- 1,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
<html>
<head><title>QUANTIFIERS-USING-RECURSION.html  --  ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h4>QUANTIFIERS-USING-RECURSION</h4>recursion for implementing quantification
<pre>Major Section:  <a href="QUANTIFIERS.html">QUANTIFIERS</a>
</pre><p>

The following example illustrates the use of recursion as a means of
avoiding proof difficulties that can arise from the use of explicit
quantification (via <code><a href="DEFUN-SK.html">defun-sk</a></code>).  See <a href="QUANTIFIERS.html">quantifiers</a> for more about
the context of this example.
<p>

<pre>
(in-package "ACL2")<p>

; We prove that if every member A of each of two lists satisfies the
; predicate (P A), then this holds of their append; and, conversely.<p>

; Here is a solution using recursively-defined functions.<p>

(defstub p (x) t)<p>

(defun all-p (x)
  (if (atom x)
      t
    (and (p (car x))
         (all-p (cdr x)))))<p>

(defthm all-p-append
  (equal (all-p (append x1 x2))
         (and (all-p x1) (all-p x2))))
</pre>

<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>