1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
<html>
<head><title>REVAPPEND.html -- ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h2>REVAPPEND</h2>concatentate the <a href="REVERSE.html">reverse</a> of one list to another
<pre>Major Section: <a href="PROGRAMMING.html">PROGRAMMING</a>
</pre><p>
<code>(Revappend x y)</code> <a href="CONCATENATE.html">concatenate</a>s the <a href="REVERSE.html">reverse</a> of the list <code>x</code> to <code>y</code>,
which is also typically a list.
<p>
The following theorem characterizes this English description.
<pre>
(equal (revappend x y)
(append (reverse x) y))
</pre>
Hint: This lemma follows immediately from the definition of <code><a href="REVERSE.html">reverse</a></code>
and the following lemma.
<pre>
(defthm revappend-append
(equal (append (revappend x y) z)
(revappend x (append y z))))
</pre>
<p>
The <a href="GUARD.html">guard</a> for <code>(revappend x y)</code> requires that <code>x</code> is a true list.<p>
<code>Revappend</code> is defined in Common Lisp. See any Common Lisp
documentation for more information.
<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>
|