1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
<html>
<head><title>Revisiting_the_Admission_of_App.html -- ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h2>Revisiting the Admission of App</h2>
<p>
Here is the
definition of <code>app</code> again with certain parts highlighted. If you
are taking the Walking Tour, please read the text carefully and
click on each of the links below, <b>except those marked</B> <a href="A_Tiny_Warning_Sign.html"><img src=twarning.gif></a>.
Then come <b>back</B> here.<p>
<img src=green-line.gif><p>
<pre>
<a href="About_the_Prompt.html">ACL2 !></a><b>(defun app (x y)</B>
<b>(cond ((endp x) y)</B>
<b>(t (cons (car x) </B>
<b>(app (cdr x) y)))))</B><p>
The <a href="About_the_Admission_of_Recursive_Definitions.html">admission</a> of APP is trivial, using the
relation <a href="O_lt_.html">O<</a> <a href="A_Tiny_Warning_Sign.html"><img src=twarning.gif></a> (which is known to be well-founded on
the domain recognized by <a href="O-P.html">O-P</a> <a href="A_Tiny_Warning_Sign.html"><img src=twarning.gif></a>) and the measure
(<a href="ACL2-COUNT.html">ACL2-COUNT</a> <a href="A_Tiny_Warning_Sign.html"><img src=twarning.gif></a> X). We <a href="Guessing_the_Type_of_a_Newly_Admitted_Function.html">observe</a> that the
<a href="About_Types.html">type</a> of APP is described by the theorem (OR
(CONSP (APP X Y)) (EQUAL (APP X Y) Y)). We used primitive type
reasoning.<p>
<a href="The_Event_Summary.html">Summary</a>
Form: ( DEFUN APP ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
Warnings: None
Time: 0.03 seconds (prove: 0.00, print: 0.00, other: 0.03)
APP
</pre>
<p>
<img src=green-line.gif><p>
<a href="Evaluating_App_on_Sample_Input.html"><img src=walking.gif></a>
<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>
|