File: TYPE-SPEC.html

package info (click to toggle)
acl2 3.1-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 36,712 kB
  • ctags: 38,396
  • sloc: lisp: 464,023; makefile: 5,470; sh: 86; csh: 47; cpp: 25; ansic: 22
file content (86 lines) | stat: -rw-r--r-- 3,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
<html>
<head><title>TYPE-SPEC.html  --  ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h2>TYPE-SPEC</h2>type specifiers in declarations
<pre>Major Section:  <a href="PROGRAMMING.html">PROGRAMMING</a>
</pre><p>


<pre>
Examples:
The symbol INTEGER in (declare (type INTEGER i j k)) is a type-spec.  Other
type-specs supported by ACL2 include RATIONAL, COMPLEX, (INTEGER 0 127),
(RATIONAL 1 *), CHARACTER, and ATOM.  
</pre>

<p>
The type-specs and their meanings (when applied to the variable <code>x</code>
as in <code>(declare (type type-spec x))</code> are given below.

<pre>
type-spec              meaning
(AND type1 ... typek)  (AND (p1 X) ... (pk X))
                       where (pj x) is the meaning for type-spec typej
ATOM                   (ATOM X)
BIT                    (OR (EQUAL X 1) (EQUAL X 0))
CHARACTER              (CHARACTERP X)
COMPLEX,               (AND (COMPLEX-RATIONALP X)
(COMPLEX RATIONAL)          (RATIONALP (REALPART X))
                            (RATIONALP (IMAGPART X)))
(COMPLEX type)         (AND (COMPLEX-RATIONALP X)
                            (p (REALPART X))
                            (p (IMAGPART X)))
                       where (p x) is the meaning for type-spec type
CONS                   (CONSP X)
INTEGER                (INTEGERP X)
(INTEGER i j)          (AND (INTEGERP X)   ; See notes below
                            (&lt;= i X)
                            (&lt;= X j))
(MEMBER x1 ... xn)     (MEMBER X '(x1 ... xn))
(MOD i)                same as (INTEGER 0 i-1)
NIL                    NIL
(NOT type)             (NOT (p X))
                       where (p x) is the meaning for type-spec type
NULL                   (EQ X NIL)
(OR type1 ... typek)   (OR (p1 X) ... (pk X))
                       where (pj x) is the meaning for type-spec typej
RATIO                  (AND (RATIONALP X) (NOT (INTEGERP X)))
RATIONAL               (RATIONALP X)
(RATIONAL i j)         (AND (RATIONALP X)  ; See notes below
                            (&lt;= i X)
                            (&lt;= X j))
REAL                   (RATIONALP X)       ; (REALP X) in ACL2(r)
(REAL i j)             (AND (RATIONALP X)  ; See notes below
                            (&lt;= i X)
                            (&lt;= X j))
(SATISFIES pred)       (pred X) ; Lisp requires a unary function, not a macro
SIGNED-BYTE            (INTEGERP X)
(SIGNED-BYTE i)        same as (INTEGER -2**i-1 (2**i-1)-1)
STANDARD-CHAR          (STANDARD-CHARP X)
STRING                 (STRINGP X)
(STRING max)           (AND (STRINGP X) (EQUAL (LENGTH X) max))
SYMBOL                 (SYMBOLP X)
T                      T
UNSIGNED-BYTE          same as (INTEGER 0 *)
(UNSIGNED-BYTE i)      same as (INTEGER 0 (2**i)-1)
</pre>

<em>Notes:</em><p>

In general, <code>(integer i j)</code> means

<pre>
     (AND (INTEGERP X)
          (&lt;= i X)
          (&lt;= X j)).
</pre>

But if <code>i</code> is the symbol <code>*</code>, the first inequality is omitted.  If <code>j</code>
is the symbol <code>*</code>, the second inequality is omitted.  If instead of
being an integer, the second element of the type specification is a
list containing an integer, <code>(i)</code>, then the first inequality is made
strict.  An analogous remark holds for the <code>(j)</code> case.  The <code>RATIONAL</code>
and <code>REAL</code> type specifiers are similarly generalized.
<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>