File: The_Induction_Step_in_the_App_Example.html

package info (click to toggle)
acl2 3.1-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 36,712 kB
  • ctags: 38,396
  • sloc: lisp: 464,023; makefile: 5,470; sh: 86; csh: 47; cpp: 25; ansic: 22
file content (33 lines) | stat: -rw-r--r-- 1,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
<html>
<head><title>The_Induction_Step_in_the_App_Example.html  --  ACL2 Version 3.1</title></head>
<body text=#000000 bgcolor="#FFFFFF">
<h2>The Induction Step in the App Example</h2>
<p>
This formula is the <b>Induction Step</B>.  It basically consists of
three parts, a test identifying the inductive case, an induction
hypothesis and an induction conclusion.<p>


<pre>
(IMPLIES (AND (NOT (ENDP A))      <b>; Test</B>
              (:P (CDR A) B C))   <b>; Induction Hypothesis</B>
         (:P A B C))              <b>; Induction Conclusion</B>
</pre>


When we prove this we can assume<p>


<pre>
  * <code>A</code> is not empty, and that<p>

  * the associativity conjecture holds for a ``smaller'' version of
    <code>A</code>, namely, <code>(CDR A)</code>.
</pre>
<p>

Under those hypotheses we have to prove the associativity conjecture
for <code>A</code> itself.
<br><br><br><a href="acl2-doc.html"><img src="llogo.gif"></a> <a href="acl2-doc-index.html"><img src="index.gif"></a>
</body>
</html>