1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "formulas")
(%interactive)
(%autoadmit logic.pequal-list)
(%autoprove logic.pequal-list-when-not-consp-one
(%restrict default logic.pequal-list (equal x 'x)))
(%autoprove logic.pequal-list-when-not-consp-two
(%restrict default logic.pequal-list (equal x 'x)))
(%autoprove logic.pequal-list-of-cons-and-cons
(%restrict default logic.pequal-list (equal x '(cons a x))))
(%autoprove logic.pequal-list-under-iff)
(%autoprove logic.pequal-list-of-list-fix-one
(%cdr-cdr-induction x y))
(%autoprove logic.pequal-list-of-list-fix-two
(%cdr-cdr-induction x y))
(%autoprove true-listp-of-logic.pequal-list
(%cdr-cdr-induction x y))
(%autoprove forcing-logic.formulap-of-logic.pequal-list
(%cdr-cdr-induction x y))
(%autoprove forcing-logic.formula-atblp-of-logic.pequal-list
(%cdr-cdr-induction x y))
(%autoprove consp-of-logic.pequal-list)
(%autoprove car-of-logic.pequal-list
;; BOZO yuck, new car-cdr-elim code goes berserk here for some reason.
;; We just enable the function instead of dealing with it.
(%restrict default logic.pequal-list (equal x 'x)))
(%autoprove cdr-of-logic.pequal-list)
(%autoprove len-of-logic.pequal-list
(%cdr-cdr-induction x y))
(%autoprove logic.pequal-list-of-cons-and-repeat-plus-one)
(%deflist logic.all-atomicp (x)
(equal (logic.fmtype x) 'pequal*)
:hintsmap
;; These nasty hints are needed becuase the "equal" above ruins the
;; canonicalization we expect.
((logic.all-atomicp-of-remove-duplicates
(%cdr-induction x)
(%auto)
(%use (%instance (%thm equal-when-memberp-of-logic.all-atomicp)
(a x1)
(x x2))))
(logic.all-atomicp-of-subsetp-when-logic.all-atomicp
(%cdr-induction x)
(%auto)
(%use (%instance (%thm equal-when-memberp-of-logic.all-atomicp)
(a x1)
(x y))))))
(%autoprove logic.fmtype-of-car-when-logic.all-atomicp
(%enable default equal-of-car-when-logic.all-atomicp))
(%autoprove logic.fmtype-when-memberp-of-logic.all-atomicp
(%use (%instance (%thm equal-when-memberp-of-logic.all-atomicp))))
(%autoprove logic.fmtype-when-memberp-of-logic.all-atomicp-alt)
(%autoprove forcing-logic.all-atomicp-of-logic.pequal-list
(%cdr-cdr-induction x y))
(%autoprove forcing-logic.all-atomicp-of-logic.pequal-list-free)
(%autoprove logic.fmtype-of-nth-when-logic.all-atomicp)
|