File: basic.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (287 lines) | stat: -rw-r--r-- 7,631 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
;;;***************************************************************
;;;An ACL2 Library of Floating Point Arithmetic

;;;David M. Russinoff
;;;Advanced Micro Devices, Inc.
;;;February, 1998
;;;***************************************************************

(in-package "ACL2")

(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(include-book "fp2")
(local (include-book "even-odd"))

;;; natp ;;;
;Currently, we plan to leave natp enabled...
(local ; ACL2 primitive
 (defun natp (x)
   (declare (xargs :guard t))
   (and (integerp x)
        (<= 0 x))))

(defthm natp-compound-recognizer
  (equal (natp x)
         (and (integerp x)
              (<= 0 x)))
  :rule-classes :compound-recognizer)

; The fpaf3a proof of far-exp-low-lemma-1 in far.lisp requires the
; following to be a :rewrite rule, not just a :type-prescription rule.
; Let's make most or all of our :type-prescription rules into :rewrite
; rules as well.
(defthmd natp+
    (implies (and (natp x) (natp y))
	     (natp (+ x y))))

;move
(defthmd natp*
    (implies (and (natp x) (natp y))
	     (natp (* x y))))



;abs
;Currently, we plan to leave abs enabled, but here are some rules about it:

(defthm abs-nonnegative-acl2-numberp-type
  (implies (case-split (acl2-numberp x))
           (and (<= 0 (abs x))
                (acl2-numberp (abs x))))
  :rule-classes (:TYPE-PRESCRIPTION))

(defthm abs-nonnegative-rationalp-type
  (implies (case-split (rationalp x))
           (and (<= 0 (abs x))
                (rationalp (abs x))))
  :rule-classes (:TYPE-PRESCRIPTION))

(defthm abs-nonnegative-integerp-type
  (implies (integerp x)
           (and (<= 0 (abs x))
                (rationalp (abs x))))
  :rule-classes (:TYPE-PRESCRIPTION))

(defthm abs-nonnegative
  (<= 0 (abs x)))




(local (include-book "fl"))

(defthm fl-def-linear
  (implies (case-split (rationalp x))
           (and (<= (fl x) x)
                (< x (1+ (fl x)))))
  :rule-classes :linear)

;(in-theory (disable a13)) ;the same rule as fl-def-linear!

;bad? free var.
(defthm fl-monotone-linear
  (implies (and (<= x y)
                (rationalp x)
                (rationalp y))
           (<= (fl x) (fl y)))
  :rule-classes :linear)

(defthm n<=fl-linear
    (implies (and (<= n x)
		  (rationalp x)
		  (integerp n))
	     (<= n (fl x)))
  :rule-classes :linear)


;may need to disable? <-- why did I write that? expensive backchaining?
(defthm fl+int-rewrite
    (implies (and (integerp n)
		  (rationalp x))
	     (equal (fl (+ x n)) (+ (fl x) n))))


;from fl.lisp
(defthm fl/int-rewrite
  (implies (and (integerp n)
                (<= 0 n) ;can't gen?
                (rationalp x))
           (equal (fl (/ (fl x) n))
                  (fl (/ x n))))
  :hints (("Goal" :use ((:instance fl/int-1)
			(:instance fl/int-2)))))


;needed?
(defthm fl-integer-type
  (integerp (fl x))
  :rule-classes (:type-prescription))

;this rule is no better than fl-integer-type and might be worse:
(in-theory (disable (:type-prescription fl)))

(defthm fl-int
    (implies (integerp x)
	     (equal (fl x) x)))

(encapsulate
 ()
 (local (include-book "fl"))
 (defthm fl-integerp
   (equal (equal (fl x) x)
          (integerp x))))

(defthm fl-unique
    (implies (and (rationalp x)
		  (integerp n)
		  (<= n x)
		  (< x (1+ n)))
	     (equal (fl x) n))
  :rule-classes ())



(encapsulate
 ()
 (local (include-book "expt")) 

 (defthm expt-2-positive-rational-type
   (and (rationalp (expt 2 i))
        (< 0 (expt 2 i)))
   :rule-classes (:rewrite (:type-prescription :typed-term (expt 2 i))))

 (defthm expt-2-positive-integer-type
   (implies (<= 0 i)
            (and (integerp (expt 2 i))
                 (< 0 (expt 2 i))))
   :rule-classes (:type-prescription))
 
;the rewrite rule counterpart to expt-2-positive-integer-type
 (defthm expt-2-integerp
   (implies (<= 0 i)
            (integerp (expt 2 i))))
 


; (in-theory (disable a14)) ;the rules above are better than this one for (expt 2 i)


 (defthm expt-2-type-linear
   (implies (<= 0 i)
            (<= 1 (expt 2 i)))
   :rule-classes ((:linear :trigger-terms ((expt 2 i)))))

 (defthmd expt-split
   (implies (and (integerp i)
                 (integerp j)
                 (case-split (acl2-numberp r)) ;(integerp r)
                 (case-split (not (equal r 0)))
                 )
            (equal (expt r (+ i j))
                   (* (expt r i)
                      (expt r j)))))

 (theory-invariant (incompatible (:rewrite expt-split)
                                 (:definition a15))
                   :key expt-split-invariant)
 
 (defthmd expt-weak-monotone
   (implies (and (integerp n)
                 (integerp m))
            (equal (<= (expt 2 n) (expt 2 m))
                   (<= n m))))

 (defthmd expt-weak-monotone-linear
   (implies (and (<= n m)
                 (case-split (integerp n))
                 (case-split (integerp m)))
            (<= (expt 2 n) (expt 2 m)))
  :rule-classes ((:linear :match-free :all)))

 (defthmd expt-strong-monotone
   (implies (and (integerp n)
                 (integerp m))
            (equal (< (expt 2 n) (expt 2 m))
                   (< n m))))
 (defthmd expt-strong-monotone-linear
   (implies (and (< n m)
                 (case-split (integerp n))
                 (case-split (integerp m))
                 )
            (< (expt 2 n) (expt 2 m)))
  :rule-classes ((:linear :match-free :all)))

 (defthmd a15
   (implies (and (rationalp i)
                 (not (equal i 0))
                 (integerp j1)
                 (integerp j2))
            (and (equal (* (expt i j1) (expt i j2))
                        (expt i (+ j1 j2)))
                 (equal (* (expt i j1) (* (expt i j2) x))
                        (* (expt i (+ j1 j2)) x))))

   )

 )

; The next two events were added by Matt K. June 2004: Some proofs require
; calls of expt to be evaluated, but some calls are just too large (2^2^n for
; large n).  So we use the following hack, which allows calls of 2^n for n<130
; to be evaluated even when the executable-counterpart of expt is disabled.
; The use of 130 is somewhat arbitrary, chosen in the hope that it suffices for
; relieving of hyps related to widths of bit vectors

(defun expt-exec (r i)
  (declare (xargs :guard
                  (and (acl2-numberp r)
                       (integerp i)
                       (not (and (eql r 0) (< i 0))))
                  :guard-hints (("Goal" :expand (hide (expt r i))))))
  (mbe :logic (hide (expt r i)) ; hide may avoid potential loop
       :exec (expt r i)))

(defthm expt-2-evaluator
  (implies (syntaxp (and (quotep n)
                         (natp (cadr n))
                         (< (cadr n) 130)
                         ))
           (equal (expt 2 n)
                  (expt-exec 2 n)))
  :hints (("Goal" :expand ((hide (expt 2 n))))))

;weakly?
;cases for other signs?
(defthm *-doubly-monotonic
  (implies (and (rationalp x)
                (rationalp y)
                (rationalp a)
                (rationalp b)
                (<= 0 x)
                (<= 0 y)
                (<= 0 a)
                (<= 0 b)
                (<= x y)
                (<= a b))
           (<= (* x a) (* y b)))
  :rule-classes ())

(defund fl-half (x)
;  (declare (xargs :guard (real/rationalp x)))
  (1- (fl (/ (1+ x) 2))))


(defthm fl-half-lemma
    (implies (and (integerp x)
		  (not (integerp (/ x 2)))) ;if x is odd, ...
	     (= x (1+ (* 2 (fl-half x)))))
  :rule-classes ()
  :hints (("goal" :in-theory (e/d (fl-half) (fl-int))
           :use ((:instance x-or-x/2)
                 (:instance fl-int (x (/ (1+ x) 2)))))))