File: even-odd.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (221 lines) | stat: -rw-r--r-- 6,742 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(in-package "ACL2")

(local (include-book "integerp"))
(local (include-book "predicate"))
(local (include-book "fp2"))

;a funny little rule:
;can be expensive!
;perhaps should export disabled
;make a forward-chaining rule?
(defthmd even-int-implies-int
  (implies (and (integerp (* 1/2 x))
                (rationalp x) ;gen?
                )
           (integerp x))
  :rule-classes ((:rewrite :backchain-limit-lst (1 nil)))
  :hints (("Goal" :in-theory (disable integerp-prod)
           :use (:instance integerp-prod (x (* 1/2 x)) (y 2)))))

;this book is currently a mess.

;normal forms: leave evenp and oddp enabled

;from basic
(defun INDUCT-NAT (x)
  (if (and (integerp x)
	   (> x 0))
      (induct-nat (1- x))
    ()))


(local
 (defthm x-or-x/2-4
   (implies (and (integerp x) (>= x 0))
            (or (integerp (/ x 2)) (integerp (/ (1+ x) 2))))
   :rule-classes ()
   :hints (("Goal" :induct (induct-nat x)))))

;is this sort of thing elsewhere? integerp.lisp?
(defthm integerp-+
  (implies (and (integerp x)
                (integerp y))
           (integerp (+ x y))))

(defthm x-or-x/2
  (implies (integerp x) 
           (or (integerp (/ x 2)) (integerp (/ (1+ x) 2))))
  :rule-classes ()
  :hints (("Goal" :in-theory (disable integerp-+)
           :use ((:instance integerp-+ (x (+ 1/2 (* -1/2 X))) (y x))
                 (:instance x-or-x/2-4)
                 (:instance x-or-x/2-4 (x (- x)))))))



;end stuff from basic

(encapsulate
 ()
 (local (defthm hack-int
          (implies (and (integerp x)
                        (integerp y))
                   (integerp (+ x y)))))

 (defthm integerp-sum-of-odds-over-2
   (implies (and (rationalp x)
                 (rationalp y)
                 (integerp (* 2 x)) ;these two hyps say x is of the form (odd)/2
                 (not (integerp x)) ;
                 )
            (equal (integerp (+ x y))
                   (and (integerp (* 2 y))
                        (not (integerp y)) ; (oddp (* 2 y)) ;rephrase the oddp hyps?
                        )))
   :hints (("Goal" :in-theory (disable even-int-implies-int)
            :use ( (:instance even-int-implies-int (x (+ (* 2 x) (* 2 y))))
                   (:instance hack-int (x (+ 1/2 X)) (y (+ 1/2 y)))
                   (:instance x-or-x/2 (x (* 2 x)))
                   (:instance x-or-x/2 (x (* 2 y)))))))
 )

;derive the results below from the above (or eliminate them)

(in-theory (disable integerp-sum-of-odds-over-2))

;make this a rewrite?
;special case
(defthm integerp-sum-of-odds-over-2-leading-constant
  (implies (and (syntaxp (and (quotep x)
                              (integerp (* 2 x)) ;;these two hyps say x is of the form (odd)/2
                              (not (integerp x)) ;; 
                              ))
                (rationalp x)
                (rationalp y)
                (integerp (* 2 x)) ;;these two hyps say x is of the form (odd)/2
                (not (integerp x)) ;;
                (integerp (* 2 y))
                (not (integerp y)) ; (oddp (* 2 y)) ;rephrase the oddp hyps?
                )
           (integerp (+ x y)))
  :hints (("Goal" :use integerp-sum-of-odds-over-2)))

;do we need all this stuff?

;(defthm even-or-odd
 ; (implies (integerp x)
  ;         (or (evenp x) (oddp x)))
  ;:rule-classes nil)

;should be a rewrite? - general rewrites for evenp/oddp of sum/diff?
;(defthm odd-+-1
 ; (implies (and (integerp x)
  ;              (oddp x))
   ;        (evenp (+ 1 x)))
  ;:hints (("Goal" :use (:instance x-or-x/2 ))))

;(defthm odd/2-plus-1/2
 ; (implies (and (integerp x)
  ;              (oddp x))
   ;        (integerp (+ 1/2 (/ x 2))))
  ;:hints (("Goal" :use (:instance odd-+-1))))

;hack, don't leave enabled ;rewrite?
;(defthm integerp-next
 ; (implies (and (rationalp x)
  ;              (integerp (+ x 1)))
   ;        (integerp x)))

;(defthm odd/2-minus-1/2
 ; (implies (and (integerp x)
  ;              (oddp x))
   ;        (integerp (+ -1/2 (/ x 2))))
  ;:hints (("Goal" :use (:instance odd/2-plus-1/2))))

;(in-theory (disable integerp-next))

;(defthm odd/2-minus-1/2-alt
 ; (implies (and (integerp x)
  ;              (oddp x))
   ;        (integerp (+ -1/2 (* 1/2 x))))
 ; :hints (("Goal" :in-theory (disable  odd/2-minus-1/2)
  ;         :use (:instance  odd/2-minus-1/2))))

;floor of odd/2 is odd/2 -1/2


 ;; :hints (("Goal" :use ( (:instance  fl-unique 
   ;                                  (x (* 1/2 x))
    ;                                 (n (- (* 1/2 x) 1/2)))))))


;needed?

(defthm even-and-odd-alternate-eric
  (implies (and (rationalp x)
                (integerp (* 2 x)))
           (equal (integerp (+ 1/2 x))
                  (not (integerp x)))))


;should this go in type.lisp?
;needed? ;lets change any leading constant of -1/2 to 1/2 and elim this rule
(defthm even-and-odd-alternate-3
  (implies (and (integerp x))
           (equal (integerp (+ -1/2 (* -1/2 x)))
                  (not (integerp (* 1/2 x)))))
  :hints (("Goal" :in-theory (disable integerp-minus)
           :use (:instance integerp-minus (x (+ -1/2 (* -1/2 x)))))))

#| never finished this
(defthm integerp-+-odd-over-2-reduce
  (implies (and (rationalp x)
                (integerp (* 2 x)) ;these two hyps say x is of the form (odd)/2
                (not (integerp x))
                (rationalp y))
           (implies (integerp (+ x y))
                    (and (integerp (* 2 y)) ;these two hyps say x is of the form (odd)/2
                         (not (integerp y))))) ;
  :otf-flg t
  :hints (("Goal" :use  integerp-sum-of-odds-over-2)))
|#




(defthm even-and-odd-alternate-eric-2-bk
  (implies (rationalp x)
           (implies (and (integerp (* 2 x))
                         (not (integerp x)))
                    (integerp (+ 1/2 x)))))

;if s is even, then s-1 is odd
(defthm even-odd-5
  (implies (and (rationalp x)
                (integerp (* 1/2 x)))
           (and (integerp (- x 1))
                (not (integerp (* 1/2 (- x 1))))))
  :hints (("Goal" :in-theory (enable even-int-implies-int)))
)


(defthm even-and-odd-alternate-eric-2-fw
  (implies (rationalp x)
           (implies (integerp (+ 1/2 x))
                  (and (integerp (* 2 x))
                       (not (integerp x)))))
  :hints (("Goal"
           :in-theory (disable even-odd-5)
           :use (:instance even-odd-5 (x (+ 1 (* 2 x)))))))


;replace the 1/2 rules above and similarly generalize the rules at the top to be equal rules
(defthm even-and-odd-alternate-eric-2
  (implies (rationalp x)
           (equal (integerp (+ 1/2 x))
                  (and (integerp (* 2 x))
                       (not (integerp x))))))

(in-theory (disable  even-and-odd-alternate-eric-2-fw even-and-odd-alternate-eric-2-bk))