File: even-odd2.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (163 lines) | stat: -rw-r--r-- 4,617 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
(in-package "ACL2")

;This is different from the book even-odd.  (We define new functions EVEN and ODD here.)
;This book contains only the results I want to export.  The proofs are in even-odd2-proofs.lisp
;I could take pains to define functions that agree with evenp and oddp for all inputs (complex-rationalps are
;a little weird).  But for now, I'll just focus on the integers.
;Perhaps see also the function REVEN in x-2xx.lisp

(include-book "ground-zero")
(local (include-book "even-odd2-proofs"))

;just a helper function
(defund even-aux (x)
  (if (zp x)
      t
    (if (eql 1 x)
        nil
      (even-aux (+ -2 x)))))

;A recursive recognizer for even integers.
;Note that EVEN is not the same as the built in function EVENP
;handle complex numbers?
(defund even (x)
  (if (not (integerp x))
      nil
    (if (< x 0)
        (even-aux (- x))
      (even-aux x))))

;A recognizer for odd integers.
;Most theorems about ODD follow from theorems about EVEN.
(defund odd (x)
  (and (integerp x)
       (not (even x))))

;keep disabled?
(defthmd even-is-evenp
  (implies (integerp x)
           (equal (even x) (evenp x))))

(defthm even-minus
  (implies (case-split (acl2-numberp x))
           (equal (even (* -1 x))
                  (even x))))

;not currently a rewrite rule
(defthm even-means-integerp
  (implies (even x)
           (integerp x))
  :rule-classes (;:compound-recognizer
                 :forward-chaining)) 

;not currently a rewrite rule
(defthm odd-means-integerp
  (implies (odd x)
           (integerp x))
  :rule-classes (;:compound-recognizer
                 :forward-chaining))

(defthm even-sum-rewrite-1
  (implies (and (even x)
                (case-split (acl2-numberp y))
                )
           (and (equal (even (+ x y))
                       (even y))
                (equal (even (+ y x))
                       (even y)))))

(defthm even-sum-rewrite-2
  (implies (odd x)
           (and (equal (even (+ x y))
                       (odd y))
                (equal (even (+ y x))
                       (odd y)))))

(defthm odd-sum-rewrite-1
  (implies (even x)
           (and (equal (odd (+ x y))
                       (odd y))
                (equal (odd (+ y x))
                       (odd y)))))

(defthm odd-sum-rewrite-2
  (implies (and (odd x)
                (case-split (acl2-numberp y))
                )
           (and (equal (odd (+ x y))
                       (even y))
                (equal (odd (+ y x))
                       (even y)))))


;avoid loops
;wait, why would even ever be around?
(theory-invariant (incompatible (:rewrite even-reduce) (:definition even-aux)))

;yuck.  generalize?
(defthm even-reduce
  (implies (case-split (integerp n))
           (equal (even (+ -1 n))
                  (not (even n)))))


(defthm odd-reduce
  (implies (case-split (integerp n))
           (equal (odd (+ -1 n))
                  (not (odd n)))))

(defthm even-double
  (implies (integerp x)
           (even (* 2 x))))

(defthm odd-double
  (implies (integerp x)
           (not (odd (* 2 x)))))


;do we want this enabled?
;Eric needed this for an RTL proof, but perhaps we should think more about how to handle this.
(defthm even-means-half-is-integer
  (implies (even x)
           (integerp (* 1/2 x))))

#|

there are plenty more nice even-odd theorems

(defthm even-sum-rewrite
  (implies (and (integerp x)
                (integerp y))
           (equal (even (+ x y))
                  (or (and (even x) (even y))
                      (and (odd x) (odd y)))))
  :hints (("Goal" :in-theory (enable odd))))

plus rules to rewrite oddp and evenp   

(defthm oddp-sum
  (implies (and (integerp x)
                (integerp y))
           (equal (oddp (+ x y))
                  (or (and (oddp x) (evenp y))
                      (and (evenp x) (oddp y))))))



;move? ;or just prove rules like EVEN-SUM-REWRITE-1, etc. about even-aux
(defthm even-aux-reduce-by-4
  (implies (and (case-split (integerp n))
                (case-split (<= 4 n)))
           (equal (even-aux (+ -4 n))
                  (even-aux n)))
  :hints (("Goal" :in-theory (e/d (even odd) (ODD-REDUCE EVEN-REDUCE  EVEN-SUM-REWRITE-1
                                                   ODD-SUM-REWRITE-1
                                                    EVEN-SUM-REWRITE-2
                                                     ODD-SUM-REWRITE-2))
           :use ((:instance even-reduce (n n))
                 (:instance even-reduce (n (+ -1 n)))
                 (:instance even-reduce (n (+ -2 n)))
                 (:instance even-reduce (n (+ -3 n)))))))
|#