1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
(in-package "ACL2")
;this book contains very basic expt stuff (i couldn't include expt.lisp in basic.lisp because of a circular dependency)
;todo:
;make a separate expt-proofs book
;there's a distinction between expt and expt-2 rules
;make consistent names: expt vs. expt2
;think about the rules to combine and split exponents
;generalize some of these rules to be about expt with any base (not just 2)
;remove this?
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= 0 x))))
(defund fl (x)
(declare (xargs :guard (real/rationalp x)))
(floor x 1))
(include-book "ground-zero")
(include-book "negative-syntaxp")
(local (include-book "predicate"))
(local (include-book "fp2"))
(local (include-book "numerator"))
(local (include-book "denominator"))
(local (include-book "integerp"))
(local (include-book "fl")) ;or use floor?
(local (include-book "arith2"))
(encapsulate
()
(local (include-book "arithmetic/top" :dir :system))
(defthm a16
(equal (expt (* a b) i)
(* (expt a i) (expt b i)))
:hints
(("Goal" :in-theory (enable distributivity-of-expt-over-*))))
;gen
;split off the non-integer case
;make an expt2-split?
;instead of i1 and i2, use i and j?
(defthmd expt-split
(implies (and (integerp i)
(integerp j)
(case-split (acl2-numberp r)) ;(integerp r)
(case-split (not (equal r 0)))
)
(equal (expt r (+ i j))
(* (expt r i) (expt r j))))
:hints (("Goal" :in-theory (enable expt)))
)
)
(theory-invariant
(not (and (active-runep '(:rewrite expt-split))
(active-runep '(:rewrite a15))))
:key expt-split-invariant)
(theory-invariant
(not (and (active-runep '(:rewrite expt-split))
(active-runep '(:definition expt))))
:key expt-split-invariant-2)
;see also a14
;generalize? use arith books?
(defthm expt-2-positive-rational-type
(and (rationalp (expt 2 i))
(< 0 (expt 2 i)))
:hints (("Goal" :in-theory (enable expt) ))
:rule-classes (:rewrite (:type-prescription :typed-term (expt 2 i))))
;like a14?
(defthm expt-2-positive-integer-type
(implies (<= 0 i)
(and (integerp (expt 2 i))
(< 0 (expt 2 i))))
:hints (("Goal" :in-theory (enable expt)))
:rule-classes (:type-prescription))
;someday our rules may be better, but right now, ours only talk about when when the base is 2
;(in-theory (disable (:TYPE-PRESCRIPTION EXPT)))
;the rewrite rule counterpart to expt-2-positive-integer-type
(defthm expt-2-integerp
(implies (<= 0 i)
(integerp (expt 2 i))))
(defthm expt-2-type-linear
(implies (<= 0 i)
(<= 1 (expt 2 i)))
:rule-classes ((:linear :trigger-terms ((expt 2 i)))))
;when you disable either of the two rules below, you might want to also disable expt-compare?
;took these rules out of :rewrite since we have expt-compare?
;are these bad :linear rules because they have free vars?
(encapsulate
()
(local (defthm expt-strong-monotone-1
(implies (and (integerp n)
(integerp k)
(> k 0))
(< (expt 2 n) (expt 2 (+ n k))))
:hints (("Goal" :in-theory (enable expt
)))
:rule-classes ()))
(defthmd expt-strong-monotone
(implies (and (integerp n)
(integerp m))
(equal (< (expt 2 n) (expt 2 m))
(< n m)))
:hints (("Goal" :use ((:instance expt-strong-monotone-1 (k (- m n)))
(:instance expt-strong-monotone-1 (k (- n m)) (n m))
)))))
;improve to handle i non-integer?
(defthm expt2-integer
(implies (case-split (integerp i))
(equal (integerp (expt 2 i))
(<= 0 i)))
:hints (("Goal" :use (:instance expt-strong-monotone (n i) (m 0)))))
;trying :match-free :all
;why disabled?
(defthmd expt-strong-monotone-linear
(implies (and (< n m)
(case-split (integerp n))
(case-split (integerp m))
)
(< (expt 2 n) (expt 2 m)))
:rule-classes ((:linear :match-free :all))
:hints (("Goal" :use expt-strong-monotone)))
;why disabled?
(defthmd expt-weak-monotone
(implies (and (integerp n)
(integerp m))
(equal (<= (expt 2 n) (expt 2 m))
(<= n m)))
:hints (("Goal" :use (expt-strong-monotone
(:instance expt-strong-monotone (m n) (n m))))))
;disabled because of the free var
;but is occasionally helpful
;make linear?
;BOZO rename params?
;trying :match-free :all
(defthmd expt-weak-monotone-linear
(implies (and (<= n m)
(case-split (integerp n))
(case-split (integerp m)))
(<= (expt 2 n) (expt 2 m)))
:rule-classes ((:linear :match-free :all))
:hints (("Goal" :use (expt-strong-monotone
(:instance expt-strong-monotone (m n) (n m))))))
;generalize? rewrite (< (expt 2 i) k) to a comparison of (expt 2 i) and the greatest power of 2 <= k
;is this what expt-compare does?
(defthmd expt-between-one-and-two
(implies (and (<= 1 (expt 2 i))
(< (expt 2 i) 2))
(equal (expt 2 i) 1))
:hints (("goal"
:in-theory (enable expt zip))
("subgoal *1/7" :use (:instance expt-weak-monotone (n (+ i 1)) (m 0)))))
;We could disable this if it causes problems (but it seems okay).
;should always use case-split n hyps that say exponents are integers
(defthm expt-with-i-non-integer
(implies (not (integerp i))
(equal (expt r i)
1))
:hints (("Goal" :in-theory (enable expt))))
(defthmd expt-minus-helper
(equal (expt r (* -1 i))
(/ (expt r i)))
:otf-flg t
:hints (("Goal" :cases ((integerp i) (and (not (integerp i)) (acl2-numberp i)))
:in-theory (enable expt))))
;BOZO disable or enable by default?
;Loops with expt-inverse. How do we want to handle this??
;I'd rather have the inverting done outside EXPT since most rules don't look inside EXPT.
;This rule can be said to scatter exponents...
(defthmd expt-minus
(implies (syntaxp (negative-syntaxp i))
(equal (expt r i)
(/ (expt r (* -1 i)))))
:hints (("Goal" :in-theory (enable expt-minus-helper
expt-split))))
(local (in-theory (enable expt-minus)))
;This can loop with expt-minus (see theory-invariant).
(defthmd expt-inverse
(equal (/ (expt 2 i))
(expt 2 (* -1 i))))
(theory-invariant
(not (and (active-runep '(:rewrite expt-minus))
(active-runep '(:rewrite expt-inverse))))
:key expt-minus-invariant)
;could prove a rule for (expt (* -1 r) i) ... or maybe we have a rule for expt when r is a product...
;rename to expt-gather? !
;Note that this rule isn't enough to gather exponents in every situation. For example, two factors, (expt 2 i)
;and (expt 2 j), won't be gathered if there are intervening factors between them.
;BOZO change param names
(defthmd a15
(implies (and (rationalp i)
(not (equal i 0))
(integerp j1)
(integerp j2))
(and (equal (* (expt i j1) (expt i j2))
(expt i (+ j1 j2)))
(equal (* (expt i j1) (* (expt i j2) x))
(* (expt i (+ j1 j2)) x))))
:hints (("Goal" :in-theory (enable expt-split))))
(defthm expt-r-0
(equal (expt r 0)
1)
:hints (("Goal" :in-theory (enable expt))))
(defthm expt-0-i
(implies (and (case-split (integerp i)) ;since expt with a non-integer index is 1
(case-split (not (equal 0 i))) ;since (expt 0 0) is 1
)
(equal (expt 0 i)
0))
:hints (("Goal" :in-theory (enable expt))))
;==== A scheme for preventing massively expensive calls to expt =======
#| When ACL2 encounters a function call with constant arguments, the simplifier just evaluates the function on
those arguments. However, calls of (expt r i) with huge i can be very expensive to compute. (I suppose calls
with huge r might be very expensive too, but r is almost always 2 in my work.) The scheme below prevents
(expt r i) from being evaluated when i is too large (but allows evaluation in the case of small i).
|#
(in-theory (disable (:executable-counterpart expt)))
(set-compile-fns t)
(defun expt-execute (r i) (expt r i))
;Allows expt calls with small exponents to be computed
;You can change 1000 to your own desired bound.
(defthm expt-execute-rewrite
(implies (and (syntaxp (and (quotep r) (quotep i) (< (abs (cadr i)) 1000))))
(equal (expt r i)
(expt-execute r i))))
#|
The rules below are not complete, I proved them as needed to simplify terms like:
(* x
(EXPT 2 1000001)
(/ (EXPT 2 1000000))
y)
Note that we could just compute (EXPT 2 1000001) and (EXPT 2 1000000) but that would be very expensive.
Perhaps we can make this into a complete theory, based on the observation that if a product contains two
factors of the form (expt 2 k) of (/ (expt 2 k)), where k is a constant, those factors will be brought
together because they are very close in the term order used order arguments to * (recall that unary-/ is
ignored when we decide how to order arguments to *).
|#
;this could be made more general (replace the lhs with its second arg...)
(defthm expt2-constants-collect-special-1
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (rationalp y))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (* (EXPT 2 i1)
(/ (EXPT 2 i2))
y)
(* (expt 2 (- i1 i2)) y)))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'())))
)
(defthm expt2-constants-collect-special-2
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (* (EXPT 2 i1)
(/ (EXPT 2 i2))
)
(expt 2 (- i1 i2))))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'())))
)
(defthm expt2-constants-collect-special-4
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (rationalp y))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (* (/ (EXPT 2 i2)) (EXPT 2 i1) y)
(* (expt 2 (- i1 i2)) y)))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'()))))
(defthm expt2-constants-collect-special-5
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (* (/ (EXPT 2 i2)) (EXPT 2 i1))
(expt 2 (- i1 i2))))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'()))))
;will this happen?
(defthm expt2-constants-collect-special-6
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (rationalp x))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (* (EXPT 2 i2) x (EXPT 2 i1))
(* (expt 2 (+ i1 i2)) x)))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'()))))
;whoa this one is sort of different... (it rewrites an equality)
(defthm expt2-constants-collect-special-3
(implies (and (syntaxp (and (quotep i1) (quotep i2)))
(case-split (rationalp x))
(case-split (integerp i1))
(case-split (integerp i2)))
(equal (equal (* x (EXPT 2 i1)) (EXPT 2 i2))
(equal x (expt 2 (- i2 i1)))))
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'())))
)
;==================================================================
;expt-compare
;handle constants as args?
(defthm expt2-1-to-1
(implies (and (integerp i1)
(integerp i2))
(equal (equal (expt 2 i1) (expt 2 i2))
(equal i1 i2)))
:hints (("Goal"
:use ((:instance expt-strong-monotone (n i1) (m i2))
(:instance expt-strong-monotone (n i2) (m i1))))))
;could gen? move hyps to concl?
(defthm expt-even
(implies (and (< 0 i)
(case-split (integerp i))
)
(integerp (* 1/2 (expt 2 i))))
:hints (("goal" :in-theory (enable expt))))
;generalize rules like this with a power2-syntaxp (not power2p!) ?
;make conclusion an equality?
(defthm expt-quotient-integerp
(implies (and (<= j i)
(case-split (integerp i))
(case-split (integerp j))
)
(integerp (* (expt 2 i) (/ (expt 2 j)))))
:rule-classes (:rewrite :type-prescription)
:hints (("Goal" :in-theory (e/d (expt-split) ( expt-2-integerp))
:use (:instance expt-2-positive-integer-type (i (- i j))))))
(defthm expt-quotient-integerp-alt
(implies (and (<= j i)
(case-split (integerp i))
(case-split (integerp j))
)
(integerp (* (/ (expt 2 j)) (expt 2 i))))
:rule-classes (:rewrite :type-prescription))
;is there a 2 term version?
(defthm expt-prod-integer-3-terms
(implies (and (integerp n)
(<= 0 (+ i j))
(integerp i)
(integerp j)
)
(integerp (* (expt 2 i) (expt 2 j) n)))
:hints (("Goal" :in-theory (enable a15))))
;drop these?
;generalize to comparisons to any constant (any power of 2)?
;bad name?
(defthm expt2-inverse-integer
(implies (case-split (integerp i))
(equal (integerp (/ (expt 2 i)))
(<= i 0)))
:hints (("Goal" :in-theory (disable expt2-integer)
:use (:instance expt2-integer (i (- i))))))
;figure out a better solution to this problem
;perhaps say if a term is a power of 2, then it's an integer iff its expo is >=0
(defthm expt-prod-integer-3-terms-2
(implies (and (<= 0 (+ i (- j) (- l)))
(integerp i)
(integerp j)
(integerp l)
)
(integerp (* (expt 2 i) (/ (expt 2 j)) (/ (expt 2 l)))))
:hints (("Goal" :in-theory (set-difference-theories (enable a15 expt-inverse)
'(expt-minus))))
)
#| would be nice (use expt2-1-to-1)?
(defthm expt2-equal-1
(implies (integerp i)
(equal (EQUAL (EXPT 2 i) 1)
(equal i 0)))
; :rule-classes nil
:hints (("Goal" :in-theory (enable expt-split-rewrite)))
)
|#
(defthm expt2-inverse-even
(implies (case-split (integerp i))
(equal (integerp (* 1/2 (/ (expt 2 i))))
(<= (+ 1 i) 0)))
:otf-flg t
:hints (("Goal" :in-theory (set-difference-theories
(enable expt-split)
'(expt2-integer EXPT2-INVERSE-INTEGER))
:use (:instance expt2-integer (i (+ -1 (- i)))))))
;loops with a15?
; (expt (* 2 i)) was matching with (expt 2 0) (booo!) so I added the syntaxp hyp
(defthmd expt-2-split-product-index
(implies (and (syntaxp (not (quotep i)))
(case-split (rationalp r))
(case-split (integerp i)))
(equal (expt r (* 2 i))
(* (expt r i) (expt r i))))
:hints (("Goal" :in-theory (disable expt-split)
:use (:instance expt-split (i i) (j i)))))
;linear?
(defthm expt-bigger-than-i
(implies (integerp i)
(< i (expt 2 i)))
:hints (("Goal" :in-theory (enable expt)))
)
;BOZO this might loop with expt-split
;i'm not sure that this is a good rewrite anyway
(defthmd expt-compare-with-double
(implies (and (integerp x)
(integerp i))
(equal (< (* 2 x) (expt 2 i))
(< x (expt 2 (+ -1 i)))))
:hints (("Goal" :in-theory (enable expt-split))))
;leave this disabled?
(defthmd expt-2-reduce-leading-constant-gen
(implies (case-split (integerp (+ k d)))
(equal (expt 2 (+ k d))
(* (expt 2 (fl k)) (expt 2 (+ (mod k 1) d)))))
:hints (("Goal" :in-theory (set-difference-theories
(enable mod)
'(expt-split))
:use (:instance expt-split (r 2) (i (fl k)) (j (+ (mod k 1) d))))))
;handles the case when k isn't even an integer!
;loops with a15! add theory invariant....
(defthmd expt-2-reduce-leading-constant
(implies (and (syntaxp (and (quotep k)
(or (>= (cadr k) 1) (< (cadr k) 0))))
(case-split (integerp (+ k d)))
)
(equal (expt 2 (+ k d))
(* (expt 2 (fl k)) (expt 2 (+ (mod k 1) d)))))
:hints (("Goal" :in-theory (set-difference-theories
(enable)
'(expt-split))
:use (expt-2-reduce-leading-constant-gen
(:instance expt-split (r 2) (i (fl k)) (j (+ (mod k 1) d)))))))
; BOZO better than a15?
(defthmd expt-combine
(implies (and (case-split (rationalp r))
(case-split (not (equal r 0)))
(case-split (integerp i1))
(case-split (integerp i2)))
(and (equal (* (expt r i1) (expt r i2))
(expt r (+ i1 i2)))
(equal (* (expt r i1) (* (expt r i2) x))
(* (expt r (+ i1 i2)) x))))
:hints (("goal" :in-theory (enable a15))))
;remove since we have expt-compare?
(defthm expt-with-small-n
(implies (<= n 0)
(<= (expt 2 n) 1))
:hints (("Goal" :use (:instance expt-weak-monotone (m 0))))
:rule-classes (:linear))
#|
(include-book
"factor-2")
;which way do we want to do this?
;disable later?
;add a "can have a 2 multiplied in" hyp to this series?
(defthm expt-2-combine-like-is
(implies (and (syntaxp (should-have-a-2-factor-multiplied-in i))
(integerp i))
(equal (* (expt 2 i) (expt 2 i))
(expt 2 (* 2 i))))
:hints (("Goal" :in-theory (disable expt-split)
:use (:instance expt-split (r 2) (i i) (j i)))))
(defthm expt-2-combine-like-is-3-and-4-of-6
(implies (and (syntaxp (should-have-a-2-factor-multiplied-in i))
(integerp i)
(rationalp a)
(rationalp b)
(rationalp c)
(rationalp d)
)
(equal (* a b (expt 2 i) (expt 2 i) c d )
(* a b c d (expt 2 (* 2 i)))))
:hints (("Goal" :in-theory (disable expt-split)
:use (:instance expt-split (r 2) (i i) (j i)))))
(defthm expt-2-combine-like-is-4-and-5-of-6
(implies (and (syntaxp (should-have-a-2-factor-multiplied-in i))
(integerp i)
(rationalp a)
(rationalp b)
(rationalp c)
(rationalp d)
)
(equal (* a b c (expt 2 i) (expt 2 i) d )
(* a b c d (expt 2 (* 2 i)))))
:hints (("Goal" :in-theory (disable expt-split)
:use (:instance expt-split (r 2) (i i) (j i)))))
(defthm expt-2-combine-like-is-inverted
(implies (and (syntaxp (should-have-a-2-factor-multiplied-in i))
(integerp i))
(equal (* (/ (EXPT 2 i))
(/ (EXPT 2 i)))
(/ (expt 2 (* 2 i)))))
:hints (("Goal" :in-theory (disable
expt-2-combine-like-is
expt-split)
:use (:instance expt-split (r 2) (i (* 1/2 i)) (j (* 1/2 i))))))
|#
#|
(defthm expt-prod-integer-4-terms
(implies (and (integerp i)
(integerp j)
(integerp l)
(<= 0 (+ i (- j) l))
(integerp n))
(integerp (* (expt 2 i) (/ (expt 2 j)) (expt 2 l) n)))
:hints (("Goal" :in-theory (set-difference-theories (enable a15 expt-inverse)
'(expt-minus))))
)
would be nice (use expt2-1-to-1)?
(defthm expt2-equal-1
(implies (integerp i)
(equal (EQUAL (EXPT 2 i) 1)
(equal i 0)))
; :rule-classes nil
:hints (("Goal" :in-theory (enable expt-split)))
)
;remove?
;actually, maybe this is good whether we are scattering or gathering...
;bad name?
;in general, are there rules which are good for scattering and for gathering?
(defthm expt-simp
(implies (integerp x)
(equal (* 2 (EXPT 2 (+ -1 x)))
(expt 2 x)))
:hints (("Goal" :use (:instance a15 (i 2) (j1 1) (j2 (+ -1 x))))))
(defthmd expt-next
(implies (and (integerp i1)
(integerp i2)
(< (expt 2 i1) (expt 2 i2)))
(<= (expt 2 i1) (expt 2 (+ -1 i2)))))
|#
(local (include-book "even-odd"))
;move? make fw-chaining rule?
(defthmd even-not-equal-odd
(implies (and (evenp x)
(oddp y))
(not (equal x y)))
:hints (("Goal" :in-theory (enable oddp))))
;this is sort of strange...
(defthm expt-2-is-not-odd
(implies (and (evenp x)
(< 0 i) ;drop?
(integerp i)
)
(equal (equal (expt 2 i)
(+ 1 x))
nil))
:hints (("Goal" :in-theory (enable evenp oddp even-not-equal-odd))) ;shouldn't have to enable oddp
:otf-flg t)
(defthm a14
(and
(implies (and (integerp i)
(<= 0 i)
(<= 0 j))
(and (integerp (expt i j))
(<= 0 (expt i j))))
(implies (and (rationalp i)
(not (equal i 0)))
(not (equal (expt i j) 0))))
:hints
(("Goal" :in-theory (enable expt)))
:rule-classes
((:type-prescription
:corollary
(implies (and (integerp i)
(<= 0 i)
(<= 0 j))
(and (integerp (expt i j))
(<= 0 (expt i j)))))
(:type-prescription
:corollary
(implies (and (rationalp i)
(not (equal i 0)))
(not (equal (expt i j) 0))))))
#|
;this will get rewritten away?
(defthm expt-in-product-linear
(implies (and (<= 0 i)
(<= 0 x)
(case-split (rationalp x))
)
(<= x (* x (expt 2 i))))
:rule-classes (:linear)
)
;this will get rewritten away?
(defthm expt-in-product-linear-2
(implies (and (case-split (<= i 0))
(case-split (<= 0 x))
(case-split (rationalp x))
)
(<= (* x (expt 2 i)) x))
:rule-classes (:linear)
)
|#
;crap. This unifies with (EXPT '2 '0), which we see because we disable the executable counterpart of expt to
;prevent massively expensive calls.
;loops with a15!!
;add theory invar!
;does this already exist?
(defthmd expt-with-product-exponent
(implies (and (syntaxp (not (quotep i)))
(case-split (integerp i)))
(equal (expt 2 (* 2 i))
(* (expt 2 i) (expt 2 i))))
:hints (("Goal" :in-theory (enable a15))))
;yuck
;perhaps use only expt-2-positive-integer-type;
;don't need this if natp is enabled?
(defthmd natp-expt
(implies (natp n)
(and (integerp (expt 2 n))
(< 0 (expt 2 n))))
:rule-classes (:type-prescription :rewrite))
#|
these deal with arbitrary bases (not just 2):
(local (include-book
"../../../arithmetic-2/meta/expt"))
(local
(include-book
"../arithmetic/product"))
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(>= x 0))))
;allows both a and b to be non-integers:
(defthm expt-non-negative
(implies (and (<= 0 a)
(<= 0 b)
(case-split (rationalp a))
)
(<= 0 (expt a b))))
(defthm expt-integerp
(implies (and (natp a)
(<= 0 b)
)
(integerp (expt a b))))
|#
;there are funny little rules...
(defthm expt-exceeds-another-by-more-than-1
(implies (and (<= 0 i)
(<= 0 j)
(integerp i)
(integerp j)
)
(implies (< (+ 1 i) j)
(< (+ 1 (expt 2 i)) (expt 2 j))))
:hints (("Goal" :in-theory (enable expt-split)
:use (:instance expt-strong-monotone (n (+ 1 i)) (m j)))))
(defthm expt-exceeds-2
(IMPLIES (AND (< i j)
(<= 0 i)
(<= 0 j)
(INTEGERP i)
(INTEGERP j)
)
(<= (+ 1 (EXPT 2 i)) (EXPT 2 j)))
:rule-classes (:rewrite :linear)
:hints (("Goal" :use (:instance expt-strong-monotone (n i) (m j)))))
#|
Are there some rules (such as this one) which we want enabled for both scaterring and gathering exponents?
(defthm expt-hack
(equal (* (expt 2 n) (expt 2 (* -1 n))) 1)
:hints (("Goal" :in-theory (e/d () (EXPT-minus)))))
(defthm expt-hack-2
(equal (* (expt 2 (* -1 n)) (expt 2 n)) 1)
:hints (("Goal" :in-theory (e/d () (EXPT-minus)))))
|#
(defthm expt-with-i-non-integer-special
(implies (not (integerp i))
(equal (EXPT 2 (+ -1 i))
(if (acl2-numberp i)
1
1/2))))
|