1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
(in-package "ACL2")
#|
;; NOTE:: all proofs are now in bits-proofs.lisp !!
This book is still a mess.
See the comments in bits-proofs (especially at the end) for more possible lemmas to add.
bits now uses mod instead of rem; the use of "mod" seems to allow nicer results to be proved.
bits now *always* returns a non-negative integer. Many hyps of other lemmas require expressions to be
non-negative integers, and with bits, this used to require further checking of the arguments (at worst,
checking all the way to the leaves of each bits nest each time).
todo:
add case-split to all hyps about i and j (indices to bits must be integers and j must be <= i or else weird
stuff happens (but we can easily handle these cases).
|#
(local (include-book "bits-proofs"))
(set-inhibit-warnings "theory") ; avoid warning in the next event
(local (in-theory nil))
(include-book "../arithmetic/negative-syntaxp")
(include-book "../arithmetic/power2p")
;; Necessary defuns:
(defund fl (x)
(declare (xargs :guard (real/rationalp x)))
(floor x 1))
(defund bits (x i j)
(declare (xargs :guard (and (natp x)
(natp i)
(natp j))
:verify-guards nil))
(mbe :logic (if (or (not (integerp i))
(not (integerp j)))
0
(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j))))
:exec (if (< i j)
0
(logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= 0 x))))
(defund bvecp (x k)
(declare (xargs :guard (integerp k)))
(and (integerp x)
(<= 0 x)
(< x (expt 2 k))))
(defun bitvec (x n)
(if (bvecp x n) x 0))
(defun expo-measure (x)
; (declare (xargs :guard (and (real/rationalp x) (not (equal x 0)))))
(cond ((not (rationalp x)) 0)
((< x 0) '(2 . 0))
((< x 1) (cons 1 (fl (/ x))))
(t (fl x))))
(defund expo (x)
(declare (xargs :guard t
:measure (expo-measure x)))
(cond ((or (not (rationalp x)) (equal x 0)) 0)
((< x 0) (expo (- x)))
((< x 1) (1- (expo (* 2 x))))
((< x 2) 0)
(t (1+ (expo (/ x 2))))))
;In proofs about RTL terms, i and j are almost always constants
(defthm bits-nonnegative-integerp-type
(and (<= 0 (bits x i j))
(integerp (bits x i j)))
:rule-classes (:type-prescription))
;this rule is no better than bits-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription bits)))
(defthm bits-natp
(natp (bits x i j)))
(defthm bits-with-x-0
(equal (bits 0 i j)
0))
(defthm bits-with-x-not-rational
(implies (not (rationalp x))
(equal (bits x i j)
0)))
(defthm bits-with-i-not-an-integer
(implies (not (integerp i))
(equal (bits x i j)
0)))
(defthm bits-with-j-not-an-integer
(implies (not (integerp j))
(equal (bits x i j)
0)))
(defthm bits-with-indices-in-the-wrong-order
(implies (< i j)
(equal (bits x i j)
0)))
(defthm bits-upper-bound
(< (bits x i j) (expt 2 (+ 1 i (- j))))
:rule-classes (:rewrite (:linear :trigger-terms ((bits x i j)))))
;tigher bound for the usual case
(defthm bits-upper-bound-tighter
(implies (case-split (<= j i))
(<= (bits x i j) (1- (expt 2 (+ i 1 (- j))))))
:rule-classes (:rewrite (:linear :trigger-terms ((bits x i j)))))
;this might help stupid hyps get rewritten away...
;perhaps require that z be a constant?
(defthm bits-upper-bound-2
(implies (<= (expt 2 (+ 1 i (- j))) z)
(< (bits x i j) z)))
;a is a free var
(defthm bits-force
(implies (and (<= (* a (expt 2 (+ i 1))) x)
(< x (* (1+ a) (expt 2 (+ i 1))))
(integerp x)
(integerp i)
(integerp a)
)
(equal (bits x i 0)
(- x (* a (expt 2 (+ i 1))))))
:rule-classes nil
)
;BOZO expensive? disable?
(defthm bits-force-with-a-chosen-neg
(implies (and (< x 0) ;rarely the case?
(<= (* -1 (expt 2 (+ i 1))) x)
(integerp x)
(integerp i)
)
(equal (bits x i 0)
(- x (* -1 (expt 2 (+ i 1)))))))
;eventually, I'd like to add a bind-free rule to handle the bits-shift case?
(defthm bits-shift
(implies (and (case-split (integerp n))
(case-split (integerp i))
(case-split (integerp j))
)
(and (equal (bits (* (expt 2 n) x) i j)
(bits x (- i n) (- j n)))
(equal (bits (* x (expt 2 n)) i j)
(bits x (- i n) (- j n))))))
(defthm bits-shift-second-with-more
(implies (and (case-split (integerp n))
(case-split (integerp i))
(case-split (integerp j))
)
(equal (bits (* x (expt 2 n) y) i j)
(bits (* x y) (- i n) (- j n)))))
(defthm bits-shift-by-constant-power-of-2
(implies (and (syntaxp (quotep k))
(power2p k)
(case-split (integerp i))
(case-split (integerp j))
)
(equal (bits (* k x) i j)
(bits x (- i (expo k)) (- j (expo k))))))
;don't need this if we have bits-shift-by-constant-power-of-2?
(defthmd bits-times-2
(implies (and (acl2-numberp i)
(acl2-numberp j)
)
(equal (bits (* 2 x) i j)
(bits x (1- i) (1- j)))))
;allows you to split a bit vector into two parts
;split x[i:j] into x[i:n] and x[n-1:j]
;free var n (where to split)
;BOZO get rid of the other in favor of this one?
(defthm bits-plus-bits2
(implies (and ;(rationalp x)
(integerp i)
(integerp j)
(integerp n)
(<= j n)
(<= n i))
(equal (bits x i j)
(+ (* (bits x i n) (expt 2 (- n j)))
(bits x (1- n) j))))
:rule-classes nil)
(defthm bits-plus-bits
(implies (and (integerp m)
(integerp p)
(integerp n)
(<= m p)
(<= p n))
(= (bits x n m)
(+ (bits x (1- p) m)
(* (expt 2 (- p m)) (bits x n p)))))
:rule-classes ())
;this really has two separate cases
;generalize with j not 0?
;this rule often seems helpful, but I'm not sure exactly why
(defthm bits-split-around-zero
(implies (and (>= x (- (expt 2 (+ i 1))))
(< x (expt 2 (+ i 1)))
(integerp x)
(case-split (integerp i))
(case-split (<= 0 i))
)
(equal (bits x i 0)
(if (<= 0 x)
x
(+ x (expt 2 (+ i 1)))))))
;this should fire after bits-bvecp, so we list it first
;or should we rewrite (bvecp (bits x i j))? <-- huh? make the conslusion an equal??
(defthm bits-bvecp-when-x-is
(implies (and (bvecp x k) ;gen k to be something less that the k in the rhs?
(case-split (<= 0 j))
)
(bvecp (bits x i j) k)))
#|
I found a case where this failed to apply because I didn't know that j was an acl2-number:
1x (:REWRITE BITS-BVECP) failed because :HYP 1 rewrote to (NOT (< J (IF (ACL2-NUMBERP J) J '0))).
|#
(defthm bits-bvecp
(implies (and (<= (+ 1 i (- j)) k)
(case-split (integerp k))
)
(bvecp (bits x i j) k)))
;do we want this rule enabled?
;this is sort of odd
(defthm bits-bvecp-fw
(implies (equal n (- (1+ i) j)) ; note equal here to help with the fw chaining
(bvecp (bits x i j) n))
:rule-classes
((:forward-chaining :trigger-terms ((bits x i j)))))
;BOZO make this one a fw-chaining rule instead of the one above?
(defthm bits-bvecp-simple
(implies (equal k (+ 1 i (* -1 j)))
(bvecp (bits x i j) k)))
;included in case bits-bvecp has the problem described above...
(defthm bits-bvecp-simple-2
(bvecp (bits x (1- i) 0) i))
;I have many theorems dealing with the simplification of bits of a sum
;better names: make the dropped term x, the others a,b,c,...
;;; more bits thms like this!
(defthm bits-sum-drop-irrelevant-term-2-of-2
(implies (integerp (/ y (expt 2 (+ 1 i))))
(equal (bits (+ x y) i j)
(bits x i j))))
(defthm bits-sum-drop-irrelevant-term-1-of-2
(implies (integerp (/ y (expt 2 (+ 1 i))))
(equal (bits (+ y x) i j)
(bits x i j))))
(defthm bits-sum-drop-irrelevant-term-3-of-3
(implies (integerp (/ y (expt 2 (+ 1 i))))
(equal (bits (+ w x y) i j)
(bits (+ w x) i j))))
(defthm bits-sum-drop-irrelevant-term-2-of-3
(implies (integerp (/ y (expt 2 (+ 1 i))))
(equal (bits (+ w y x) i j)
(bits (+ w x) i j))))
;kind of yucky
(defthm bits-minus
(implies (and (case-split (rationalp x))
(case-split (integerp i))
(case-split (<= j i)) ;drop?
(case-split (integerp j))
)
(equal (bits (* -1 x) i j)
(if (integerp (* 1/2 x (/ (expt 2 i))))
0
(if (integerp (* x (/ (expt 2 j))))
(+ (* 2 (expt 2 i) (/ (expt 2 j))) (- (bits x i j)))
(+ -1 (* 2 (expt 2 i) (/ (expt 2 j))) (- (bits x i j))))))))
;this one should be the one enabled?
(defthmd bits-minus-alt
(implies (and (syntaxp (negative-syntaxp x))
(case-split (rationalp x))
(case-split (integerp i))
(case-split (<= j i))
(case-split (integerp j))
)
(equal (bits x i j)
(if (integerp (* 1/2 (- X) (/ (EXPT 2 I))))
0
(if (INTEGERP (* (- X) (/ (EXPT 2 J))))
(+ (* 2 (EXPT 2 I) (/ (EXPT 2 J))) (- (bits (- x) i j)))
(+ -1 (* 2 (EXPT 2 I) (/ (EXPT 2 J))) (- (bits (- x) i j))))))))
;drops hyps like this: (<= (BITS x 30 24) 253)
;Recall that <= gets rewritten to < during proofs
(defthm bits-drop-silly-upper-bound
(implies (and (syntaxp (quotep k))
(>= k (1- (expt 2 (+ 1 i (- j)))))
(case-split (<= j i))
(case-split (integerp i))
(case-split (integerp j))
)
(equal (< k (bits x i j))
nil)))
;rewrite things like (<= 4096 (BITS x 23 12)) to false
;Recall that <= gets rewritten to < during proofs
(defthm bits-drop-silly-lower-bound
(implies (and (syntaxp (quotep k))
(> k (1- (expt 2 (+ 1 i (- j)))))
(case-split (<= j i))
(case-split (integerp i))
(case-split (integerp j))
)
(equal (< (bits x i j) k)
t)))
;rewrite (< -64 (BITS <signal> 64 59)) to t
(defthm bits-drop-silly-bound-3
(implies (and (syntaxp (quotep k))
(< k 0)
)
(equal (< k (bits x i j))
t)))
(defthm bits-drop-silly-bound-4
(implies (and (syntaxp (quotep k))
(<= k 0)
)
(equal (< (bits x i j) k)
nil)))
;This is the rule for which I wish I knew the "parity" of the term being rewritten...
(defthm bits-<-1
(equal (< (bits x i j) 1)
(equal (bits x i j) 0)))
;put bits-cancel- in the name?
(defthm bits-at-least-zeros
(implies (and (syntaxp (quotep k))
(equal k (expt 2 (- j2 j)))
(<= j j2)
(case-split (rationalp x))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp j2))
)
(equal (< (bits x i j)
(* k (bits x i j2)))
nil)))
(defthm bits-upper-with-subrange
(implies (and (syntaxp (quotep k))
(<= j j2)
(equal k (expt 2 (- j2 j)))
(case-split (<= j2 i)) ;drop?
(case-split (rationalp x))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp j2))
)
(< (BITS x i j)
(BINARY-+ k (BINARY-* k (BITS x i j2))))))
(defthm bits-upper-with-subrange-alt
(implies (and (syntaxp (quotep k))
(<= j j2)
(equal k (expt 2 (- j2 j)))
(case-split (<= j2 i)) ;drop?
(case-split (rationalp x))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp j2))
)
(equal (< (BINARY-+ k (BINARY-* k (BITS x i j2)))
(BITS x i j))
nil)))
;make another version for k negative? (t-p should handle?)
(defthm bits-equal-impossible-constant
(implies (and (syntaxp (quotep k)) ;require that i and j be constants too?
(<= (expt 2 (+ 1 i (- j))) k)
)
(not (equal (bits x i j) k))))
;will this fire?
(defthm bits-compare-to-zero
(implies (and (case-split (rationalp x))
(case-split (integerp i))
(case-split (integerp j))
)
(equal (not (< 0 (bits x i j)))
(equal 0 (bits x i j)))))
;expensive?
;have we done enough to prevent loops?
;should we make a version where we require j to be a constant and then disable this version?
(defthm bits-ignore-negative-bits-of-integer
(implies (and (syntaxp (not (and (quotep j) (equal 0 (cadr j))))) ;prevents loops
(<= j 0)
(integerp x)
(case-split (integerp j))
)
(equal (bits x i j)
(* (expt 2 (- j)) (bits x i 0)))))
;disable since it can be bad to leave "naked" signals and we never want to see expt
(defthmd bits-does-nothing-2
(implies (and (<= j 0) ;a bit strange (j will usually be zero?)
(bvecp x (+ i 1)) ;expand?
(case-split (integerp i))
(case-split (integerp j))
)
(equal (bits x i j)
(* (expt 2 (- j)) x))))
;has the right pattern to rewrite stuff like this: (<= (EXPT 2 J) (BITS Y (+ -1 J) 0)) to nil
(defthm bits-upper-bound-special
(< (bits x (1- i) 0) (expt 2 i)))
;like bits-reduce
;was called bits-tail
;BOZO choose a name for this...
(defthmd bits-does-nothing
(implies (and (bvecp x (1+ i))
(case-split (integerp i))
)
(equal (bits x i 0)
x)))
(defthm bits-with-bad-index-2
(implies (not (integerp i))
(equal (bits x (1- i) 0)
0)))
;BOZO rename to begin with "bits-"
(defthmd bvecp-bits-0
(implies (bvecp x j)
(equal (bits x i j) 0)))
;to handle mod- correctly
;make an alt version?
(defthm bits-drop-from-minus
(implies (and (<= y x)
(bvecp x n)
(bvecp y n)
)
(equal (bits (+ x (* -1 y)) (1- n) 0)
(+ x (* -1 y))
)))
;backchain-limit?
(defthm bits-tail
(implies (and (bvecp x (1+ i))
(case-split (acl2-numberp i)))
(equal (bits x i 0)
x)))
(defthm bits-tail-special
(implies (bvecp x i)
(equal (bits x (1- i) 0)
x)))
(defthmd bits-alt-def
(equal (bits x i j)
(if (or (not (integerp i))
(not (integerp j)))
0
(mod (fl (/ x (expt 2 j))) (expt 2 (+ 1 i (- j)))))))
(defthmd bits-plus-mult-2
(implies (and (< n k)
(integerp y)
(integerp k)
)
(equal (bits (+ x (* y (expt 2 k))) n m)
(bits x n m))))
(defthmd bits-plus-mult-2-rewrite
(implies (and (syntaxp (quotep c))
(equal (mod c (expt 2 (1+ n))) 0))
(equal (bits (+ c x) n m)
(bits x n m))))
;can we replace 0 with any non-negative j?
(defthm bits-less-than-x
(implies (<= 0 x)
(<= (bits x i 0) x))
:rule-classes (:rewrite :linear))
;should say <= instead of less-than
(defthm bits-less-than-x-gen
(implies (and (<= 0 x) ;case-split?
(case-split (<= 0 j))
(case-split (not (complex-rationalp x)))
)
(<= (bits x i j) x))
:rule-classes (:rewrite :linear))
(defthmd bits-bits-1
(implies (and (<= k (- i j))
(case-split (<= 0 l))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp k))
(case-split (integerp l))
)
(equal (bits (bits x i j) k l)
(bits x (+ k j) (+ l j)))))
(defthmd bits-bits-2
(implies (and (> k (- i j))
(case-split (<= 0 l))
; (case-split (integerp i))
(case-split (integerp j))
(case-split (integerp k))
(case-split (integerp l))
)
(equal (bits (bits x i j) k l)
(bits x i (+ l j)))))
(defthm bits-bits
(implies (and (case-split (<= 0 l))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp k))
(case-split (integerp l))
)
(equal (bits (bits x i j) k l)
(if (<= k (- i j))
(bits x (+ k j) (+ l j))
(bits x i (+ l j))))))
;The following trivial corollary of bits-bits is worth keeping enabled.
(defthm bits-bits-constants
(implies (and (syntaxp (quotep i))
(syntaxp (quotep j))
(syntaxp (quotep k))
(<= 0 l)
(integerp i)
(integerp j)
(integerp k)
(integerp l))
(equal (bits (bits x i j) k l)
(if (<= k (- i j))
(bits x (+ k j) (+ l j))
(bits x i (+ l j))))))
(defthm bits-reduce
(implies (and (< x (expt 2 (+ 1 i)))
(case-split (integerp x))
(case-split (<= 0 x))
(case-split (integerp i))
)
(equal (bits x i 0)
x)))
(defthm bits-0
(equal (bits 0 i j)
0))
;could prove a version where we drop bits from both args?
(defthm bits-sum-drop-bits-around-arg-2
(implies (and (<= i i+)
(integerp y)
(case-split (integerp i+))
)
(equal (bits (+ x (bits y i+ 0)) i j)
(bits (+ x y) i j))))
;Follows from BITS-SUM-DROP-BITS-AROUND-ARG-2.
(defthm bits-sum-drop-bits-around-arg-1
(implies (and (<= i i+)
(integerp x)
(case-split (integerp i+))
)
(equal (bits (+ (bits x i+ 0) y) i j)
(bits (+ x y) i j))))
(defthm bits-sum-drop-bits-around-arg-2-special-case
(implies (integerp y)
(equal (bits (+ x (bits y i 0)) i j)
(bits (+ x y) i j))))
(defthm bits-sum-drop-bits-around-arg-1-special-case
(implies (integerp x)
(equal (bits (+ (bits x i 0) y) i j)
(bits (+ x y) i j))))
;rename
;Follows from BVECP-SUM-OF-BVECPS.
(defthm bits-sum-1
(equal (bits (+ (bits x (1- i) 0)
(bits y (1- i) 0))
i ;actually, this could be anything >= i ??
0)
(+ (bits x (1- i) 0)
(bits y (1- i) 0))))
;export!! enable?
;gen?
;BOZO rename!
(defthmd bits-of-non-integer-special
(implies (case-split (not (integerp i)))
(equal (bits x (1- i) 0)
0)))
(defthm bits-fl
(implies (<= 0 j)
(equal (bits (fl x) i j)
(bits x i j))))
;just use bits-fl-eric and bits-shift!
;BOZO drop the fl from the lhs, since it'll be rewritten away...
(defthmd bits-shift-down
(implies (and (<= 0 j)
(integerp i)
(integerp j)
(integerp k)
)
(equal (bits (fl (/ x (expt 2 k)))
i
j)
(bits x (+ i k) (+ j k)))))
(defthmd bits-shift-down-eric
(implies (and (<= 0 j)
(integerp i)
(integerp j)
(integerp k)
)
(equal (bits (* x (/ (expt 2 k)))
i
j)
(bits x (+ i k) (+ j k)))))
; like bits-plus-mult-1 - remove one of them?
(defthmd bits+2**k-2
(implies (and (< x (expt 2 k))
(<= 0 x)
(rationalp x) ;(integerp x)
(<= k m)
(integerp y)
(case-split (integerp m))
(case-split (integerp n))
(case-split (integerp k))
)
(equal (bits (+ x (* y (expt 2 k))) n m)
(bits y (- n k) (- m k)))))
(defthm bits+2**k-2-alt
(implies (and (< x (expt 2 k))
(<= 0 x)
(rationalp x) ;(integerp x)
(<= k m)
(integerp y)
(case-split (integerp m))
(case-split (integerp n))
(case-split (integerp k))
)
(equal (bits (+ x (* (expt 2 k) y)) n m)
(bits y (- n k) (- m k)))))
(defthmd bits-fl-by-2
(equal (fl (* 1/2 (bits x i 0)))
(bits x i 1)))
(defthm mod-bits-by-2
(implies (and (integerp x)
(<= 0 i)
(integerp i)
)
(equal (mod (bits x i 0) 2)
(mod x 2))))
;basically the same as bits+2**k-2; drop one?
;move
(defthmd bits-plus-mult-1
(implies (and (bvecp x k) ;actually, x need not be an integer...
(<= k m)
(integerp y)
(case-split (integerp m))
(case-split (integerp n))
(case-split (integerp k))
)
(equal (bits (+ x (* y (expt 2 k))) n m)
(bits y (- n k) (- m k)))))
(defthm bits-mod-0
(implies (and (integerp x)
(>= x 0)
(integerp m)
(>= m 0)
(integerp n)
(>= n 0))
(iff (= (mod x (expt 2 (+ m n 1))) 0)
(and (= (bits x (+ m n) n) 0)
(= (mod x (expt 2 n)) 0))))
:rule-classes ())
;this is silly? just open up bits!
(defthm mod-bits-equal
(implies (= (mod x (expt 2 (1+ i))) (mod y (expt 2 (1+ i))))
(= (bits x i j) (bits y i j)))
:rule-classes ())
;not needed? just expand bits?
(defthmd bits-mod
(implies (and (case-split (integerp x))
(case-split (integerp i)) ;gen?
;(case-split (<= 0 i))
)
(equal (bits x i 0)
(mod x (expt 2 (1+ i))))))
;reorder? make rewrite?
(defthm bits-shift-up
(implies (and (integerp x)
(integerp k)
(<= 0 k)
(integerp i)
)
(equal (* (expt 2 k) (bits x i 0))
(bits (* (expt 2 k) x) (+ i k) 0)))
:rule-classes ())
;export!
;more forms of this? (bits (/ (expt 2 k)) i j)
;bits of a constant power of 2??
;bits of a range of ones (i.e., a difference of powers of 2).
;use power2p??
(defthm bits-expt
(implies (and (case-split (integerp i))
(case-split (integerp j))
(case-split (integerp k)) ;BOZO gen?
)
(equal (bits (expt 2 k) i j)
(if (or (< i j)
(< k j)
(< i k))
0
(expt 2 (- k j))))))
(defthm bits-expt-constant
(implies (and (syntaxp (and (quotep k) (power2p (cadr k))))
(force (power2p k)) ;bozo do the computation only once
(case-split (integerp k)) ;gen?
(case-split (integerp i))
(case-split (integerp j))
)
(equal (bits k i j)
(if (or (< i j)
(< (expo k) j)
(< i (expo k)))
0
(expt 2 (- (expo k) j))))))
;BOZO add case-splits?
(defthm mod-bits
(implies (and (<= 0 i)
(<= 0 j)
(integerp j)
(integerp i))
(equal (mod (bits x i 0) (expt 2 j))
(bits x (min i (1- j)) 0))))
;Unlike bits-tail, this allows j to be non-zero.
;Note that the conclusion is (bits x ...), not just x.
;i is a free variable
;watch out for loops with this rule
(defthmd bits-tighten
(implies (and (bvecp x i)
(<= i n)
(case-split (integerp n))
)
(equal (bits x n j)
(bits x (1- i) j)))
:rule-classes ((:rewrite :match-free :all)))
|