File: cat.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (774 lines) | stat: -rw-r--r-- 26,084 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
(in-package "ACL2")

;; Necessary defuns

(defund bvecp (x k)
  (declare (xargs :guard (integerp k)))
  (and (integerp x)
       (<= 0 x)
       (< x (expt 2 k))))

(local ; ACL2 primitive
 (defun natp (x)
   (declare (xargs :guard t))
   (and (integerp x)
        (<= 0 x))))

(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(defund bits (x i j)
  (declare (xargs :guard (and (natp x)
                              (natp i)
                              (natp j))
                  :verify-guards nil))
  (mbe :logic (if (or (not (integerp i))
                      (not (integerp j)))
                  0
                (fl (/ (mod x (expt 2 (1+ i))) (expt 2 j))))
       :exec  (if (< i j)
                  0
                (logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))

(defund bitn (x n)
  (declare (xargs :guard (and (natp x)
                              (natp n))
                  :verify-guards nil))
  (mbe :logic (bits x n n)
       :exec  (if (evenp (ash x (- n))) 0 1)))

(defund all-ones (n)
  (declare (xargs :guard (and (integerp n) (<= 0 n))))
  (if (zp n)
      0 ;degenerate case
    (1- (expt 2 n))))

(include-book "cat-def")

; "Definition" used in the library for the purpose of documentation.
(defthm cat-def
  (implies (and (natp m) (natp n))
           (equal (cat x m y n)
                  (+ (* (expt 2 n) (bits x (1- m) 0))
                     (bits y (1- n) 0))))
  :hints (("Goal" :in-theory (enable cat)))
  :rule-classes nil)

(local (include-book "cat-proofs"))

#|
Concatenate the M-bit value X onto the N-bit value Y.  X will occupy the high bits of the result.

(cat x m y n) is well-defined only when the following predicate is true:

(and (natp m)
     (bvecp x m)
     (natp n)
     (bvecp y n))

|#

;; New stuff

(defthm cat-nonnegative-integer-type
  (and (integerp (cat x m y n))
       (<= 0 (cat x m y n)))
  :rule-classes (:type-prescription)
  )

;this rule is no better than cat-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription binary-cat)))

;just a rewrite rule
(defthm cat-natp
  (natp (cat x m y n)))

;bozo disable? drop bvecp hyp and wrap bits around conclusion??
(defthm cat-0
  (implies (and (case-split (bvecp y n))
                (case-split (integerp n))
                (case-split (integerp m))
                (case-split (<= 0 m))
                )		  
           (equal (cat 0 m y n) y)))

;BOZO just use this one??
(defthm cat-0-alt
  (implies (and ;(case-split (bvecp y n))
                (case-split (integerp n))
                (case-split (integerp m))
                (case-split (<= 0 m))
                )		  
           (equal (cat 0 m y n) (bits y (1- n) 0))))

;We can rely on bits-tail to complete the simplification down to x if desired.
(defthm cat-with-n-0
  (equal (binary-cat x m y 0)
         (bits x (1- m) 0)))

;bozo disable?
(defthm cat-with-n-0-alt
  (implies (case-split (bvecp x m))
           (equal (cat x m y 0)
                  x)))

;We can rely on bits-tail to complete the simplification down to y if desired.
(defthm cat-with-m-0
  (equal (binary-cat x 0 y n)
         (bits y (1- n) 0)))

;bozo disable?
(defthm cat-with-m-0-alt
  (implies (case-split (bvecp y n))
           (equal (cat x 0 y n)
                  y)))

;change this behavior?? no, it makes for a nice setbits bvecp lemma
(defthm cat-with-n-not-a-natural
  (implies (or (not (integerp n))
               (< n 0))
           (equal (cat x m y n)
                  0)))

(defthm cat-with-m-not-a-natural
  (implies (or (not (integerp m))
               (< m 0))
           (equal (cat x m y n)
                  0)))

(defthm cat-bvecp-simple
  (bvecp (cat x m y n) (+ m n)))

(defthm cat-bvecp
  (implies (and (<= (+ m n) k)
                (case-split (integerp k)))
           (bvecp (cat x m y n) k)))

(defthm cat-associative
  (implies (and (case-split (<= (+ m n) p)) ;gen?
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (<= 0 q))
                (case-split (integerp m))
                (case-split (integerp n))
                (case-split (integerp p))
                (case-split (integerp q))
                )
           (equal (cat (cat x m y n) p z q)
                  (cat x m (cat y n z q) (+ n q)))))

;prove from something more general (cat-equal-split??)
;BOZO move hyps to conclusion?
(defthm cat-equal-0
  (implies (and (case-split (bvecp x m))
                (case-split (bvecp y n))
                (case-split (natp n))
                (case-split (natp m))
                )
           (equal (equal (cat x m y n) 0)
                  (and (equal x 0)
                       (equal y 0)))))

(defthm cat-combine-constants
  (implies (and (syntaxp (and (quotep x)
                              (quotep m)
                              (quotep y)
                              (quotep n)))
                (equal (+ n p) r)
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (<= 0 p))
                (case-split (integerp m))
                (case-split (integerp n))
                (case-split (integerp p))
                )
           (equal (cat x m (cat y n z p) r)
                  (cat (cat x m y n) (+ m n) z p))))

;allows r to be > n+p
;perhaps we only want this one, not cat-combine-constants ??
(defthm cat-combine-constants-gen
  (implies (and (syntaxp (and (quotep x)
                              (quotep m)
                              (quotep y)
                              (quotep r)
                              (quotep p)))
                (case-split (<= (+ n p) r)) ;other case?
                (case-split (bvecp y n)) ;BOZO instead put bits in the conclusion?
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (<= 0 p))
                (case-split (integerp m))
                (case-split (integerp n))
                (case-split (integerp p))
                (case-split (integerp r))
                )
           (equal (cat x m (cat y n z p) r)
                  (cat (cat x m y (+ r (- p))) (+ m r (- p)) z p))))

(defthm cat-constant-equal-constant-hack
  (implies (and (syntaxp (and (quotep k1) (quotep k2)))
                (case-split (bvecp x n))
                (case-split (bvecp k1 m))
                (case-split (rationalp k2))
                (case-split (natp n))
                (case-split (natp m))
                )
           (equal (equal (cat k1 m x n) k2)
                  (equal x (- k2 (* (expt 2 n) k1))))))

(defthm cat-upper-bound
  (< (cat x m y n)
     (expt 2 (+ m n)))
  :rule-classes (:rewrite :linear))

;perhaps the :linear rule cat-upper-bound is enough, but this may help stupid hyps be rewritten away
(defthm cat-compare-to-constant-1
  (implies (and (syntaxp (quotep k))
                (<= (expt 2 (+ m n)) k))
           (< (cat x m y n) k)))

;provides a tighter bound
(defthm cat-upper-bound-tight
  (implies (and (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (integerp m))
                (case-split (integerp n))
                )
           (<= (cat x m y n)
               (1- (expt 2 (+ n m))))))


(defthm cat-compare-to-constant-2
  (implies (and (syntaxp (quotep k))
                (<= (1- (expt 2 (+ m n))) k)
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (integerp m))
                (case-split (integerp n))
                )
           (not (< k (cat x m y n)))))

;BOZO consider adding?
;problem if we case-split something that turns out to be false?
(defthm bits-with-i-not-an-integer-2
  (implies (case-split (not (integerp i)))
           (equal (bits x i j)
                  0)))

(defthm bits-with-j-not-an-integer-2
  (implies (case-split (not (integerp j)))
           (equal (bits x i j)
                  0)))

;also case-split that i>=j in any call to bits?


;loops with bits-<-1
;BOZO add theory invariant!
;BOZO ask matt about parity..
(defthmd bits-equal-0-to-bound
  (equal (equal 0 (bits x i j))
         (< (bits x i j) 1)))

;we had a special case where j was 0, but I think this is better (it's certainly more general):
;better name?
;think about whether this can be proved without opening bits (including bits-plus-bits??)
;prove bvecp-bits from this??
;the regular bits-bvecp should fire first...
(defthm bits-slice-zero-gen
  (implies (and (case-split (<= 0 k))
                (case-split (integerp k))
                (case-split (integerp j))
                )
           (equal (bvecp (bits x i j) k)
                  (equal 0 (bits x i (+ k j))))))

;move!
;this can help, especially when we aren't multiplying through by inverted factors
(defthm bits-upper-bound-new
  (< (* (/ (expt 2 i)) (bits x (1- i) 0)) 1)
  :rule-classes (:rewrite :linear)
   )

 (defthmd cat-bvecp-rewrite
   (implies (and (case-split (<= 0 k))
                 (case-split (<= 0 n))
                 (case-split (<= 0 m))
                 (case-split (integerp n)) 
                 (case-split (integerp m)) 
                 (case-split (integerp k)) 
                 )
            (equal (bvecp (cat x m y n) k)
                   (if (<= (+ m n) k)
                       t
                     (if (<= n k)
                         (equal 0 (bits x (1- m) (+ k (* -1 n))))                      
                       (and (equal 0 (bits x (1- m) 0))
                            (equal 0 (bits y (1- n) k))))))))

(defthm cat-bvecp-rewrite-constants
  (implies (and (syntaxp (and (quotep k) (quotep m) (quotep n)))
                (case-split (<= 0 k))
                (case-split (<= 0 n))
                (case-split (<= 0 m))
                (case-split (integerp n)) 
                (case-split (integerp m)) 
                (case-split (integerp k)) 
                )
           (equal (bvecp (cat x m y n) k)
                  (if (<= (+ m n) k)
                      t
                    (if (<= n k)
                        (equal 0 (bits x (1- m) (+ k (* -1 n))))                      
                      (and (equal 0 (bits x (1- m) 0))
                           (equal 0 (bits y (1- n) k))))))))

;k is a free variable.
;There is no real analogue of this for y (that is, we can't change n to something smaller).
(defthm cat-tighten-x
  (implies (and (bvecp x k) ;k becomes bound here
                (< k m) ;if k=m, this rule can loop
                (case-split (<= 0 k))
                (case-split (integerp k))
                (case-split (integerp m))
                )
           (equal (cat x m y n)
                  (cat x k y n))))

(defthm cat-equal-y
  (implies (and (bvecp y (+ m n))
                (case-split (integerp m))
                (case-split (<= 0 m))
                (case-split (integerp n))
                (case-split (<= 0 n)))
           (equal (equal y (binary-cat x m y n))
                  (equal (bits y (+ -1 m n) n)
                         (bits x (1- m) 0)))))

(defthm cat-equal-y-alt
  (implies (and (case-split (integerp m))
                (case-split (<= 0 m))
                (case-split (integerp n))
                (case-split (<= 0 n)))
           (equal (equal y (binary-cat x m y n))
                  (if (bvecp y (+ m n))
                      (equal (bits y (+ -1 m n) n)
                             (bits x (1- m) 0))
                    nil))))

(defthm cat-equal-bits-of-y
  (implies (and; (case-split (bvecp y n))
;                (case-split (bvecp x m))
                (case-split (integerp m))
                (case-split (<= 0 m))
                (case-split (integerp n))
                (case-split (<= 0 n)))
           (equal (equal (bits y (1- n) 0) (binary-cat x m y n))
                  (equal (bits x (1- m) 0) 0))))

;requires y to be a bvecp of length n
;drop this one?
(defthm cat-equal-y-special
  (implies (and (case-split (bvecp y n))
                (case-split (integerp m))
                (case-split (<= 0 m)) ;gen!
                (case-split (integerp n))
                (case-split (<= 0 n)))
           (equal (equal y (binary-cat x m y n))
                  (equal 0 (bits x (1- m) 0)))))

;enable?
;make into 2 separate lemmas (can drop the bits from x or from y)
(defthmd cat-ignores-bits
  (equal (cat (bits x (1- m) 0)
              m (bits y (1- n) 0)
              n)
         (cat x m y n)))

(defthmd bits-cat-1
  (implies (and (< i n)
                (case-split (<= 0 j))
                (case-split (integerp n))
                (case-split (integerp m))
                (case-split (<= 0 m))
                )
           (equal (bits (cat x m y n) i j)
                  (bits y i j))))

(defthmd bits-cat-2-1
  (implies (and (<= n j) ;case 2
                (< i (+ m n))  ;case 2-1
                (case-split (natp n))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (natp m))
                )
           (equal (bits (cat x m y n) i j)
                  (bits x (- i n) (- j n)))))

(defthmd bits-cat-2-2
  (implies (and (<= n j)  ;case 2
                (<= (+ m n) i)  ;case 2-1
                (case-split (natp n))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (natp m))
                )
           (equal (bits (cat x m y n) i j)
                  (bits x (+ m -1) (- j n)))))

;note the IF in the conclusion
(defthmd bits-cat-2
  (implies (and (<= n j)  ;case 2
                (case-split (natp n))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (natp m))
                )
           (equal (bits (cat x m y n) i j)
                  (bits x (if (< i (+ m n))
                              (- i n)
                            (1- m))
                        (- j n)))))


;Note the IF in the conclusion
(defthmd bits-cat-3
  (implies (and (>= i n)
                (< j n)
                (case-split (natp n))
                (case-split (natp m))
                (case-split (natp i))
                (case-split (natp j))
                )
           (equal (bits (cat x m y n) i j)
                  (cat (bits x (if (< i (+ m n))
                                    (- i n)
                                  (1- m))
                              0)
                        (+ 1 (- i n))
                        (bits y (1- n) j)
                        (- n j)))))

;includes both bits-cat-1, bits-cat-2, and bits-cat-3
;we expect the indices to be constants, so this won't cause case-splits
;gen
(defthm bits-cat
  (implies (and (case-split (natp n))
                (case-split (natp m))
                (case-split (natp i))
                (case-split (natp j)))
           (equal (bits (cat x m y n) i j)
                  (if (< i n)
                      (bits y i j)
                    (if (>= j n)
                        (bits x (if (< i (+ m n))
                                    (- i n)
                                  (1- m)) 
                              (- j n))
                      (cat (bits x (if (< i (+ m n))
                                        (- i n)
                                      (1- m)) 0)
                            (+ 1 (- i n))
                            (bits y (1- n) j)
                            (- n j)))))))

;The following trivial corollary of bits-cat is worth keeping enabled.

(defthm bits-cat-constants
  (implies (and (syntaxp (quotep n))
                (syntaxp (quotep m))
                (syntaxp (quotep i))
                (syntaxp (quotep j))
                (natp n)
                (natp m)
                (natp i)
                (natp j))
           (equal (bits (cat x m y n) i j)
                  (if (< i n)
                      (bits y i j)
                    (if (>= j n)
                        (bits x (if (< i (+ m n))
                                    (- i n)
                                  (1- m)) 
                              (- j n))
                      (cat (bits x (if (< i (+ m n))
                                       (- i n)
                                     (1- m)) 0)
                           (+ 1 (- i n))
                           (bits y (1- n) j)
                           (- n j)))))))

;bitn-cat should be all we need for simplifying (bitn (cat...))
(defthmd bitn-cat-1
  (implies (and (< i n)
                (case-split (natp n))
                (case-split (natp m))
                (case-split (natp i))
                )
           (equal (bitn (cat x m y n) i)
                  (bitn y i))))

;bitn-cat should be all we need for simplifying (bitn (cat...))
(defthmd bitn-cat-2
  (implies (and (>= i n)
                (case-split (natp n))
                (case-split (natp m))
                (case-split (integerp i))
                )
           (equal (bitn (cat x m y n) i)
                  (if (< i (+ m n))
                      (bitn x (- i n))
                    0))))

;includes both bitn-cat-1 and bitn-cat-2
(defthm bitn-cat
  (implies (and (case-split (natp n))
                (case-split (natp m))
                (case-split (natp i)))
           (equal (bitn (cat x m y n) i)
                  (if (< i n)
                      (bitn y i)
                    (if (< i (+ m n))
                      (bitn x (- i n))
                    0)))))

;The following trivial corollary of bitn-cat is worth keeping enabled.

(defthm bitn-cat-constants
  (implies (and (syntaxp (quotep n))
                (syntaxp (quotep m))
                (syntaxp (quotep i))
                (natp n)
                (natp m)
                (natp i))
           (equal (bitn (cat x m y n) i)
                  (if (< i n)
                      (bitn y i)
                    (if (< i (+ m n))
                      (bitn x (- i n))
                    0)))))

(defthm cat-bits-bits
  (implies (and (equal j (1+ k))
                (equal n (+ 1 (- l) k))
                (case-split (<= (+ 1 (- j) i) m))
                (case-split (<= j i))
                (case-split (<= l k))
                (case-split (integerp i))
                (case-split (integerp k))
                (case-split (integerp l))
                (case-split (integerp m))
                )
           (equal (cat (bits x i j) m (bits x k l) n)
                  (bits x i l))))

(defthm cat-bitn-bits
    (implies (and (equal j (+ 1 k))
		  (equal n (+ 1 (- l) k))
                  (case-split (<= 1 m))
		  (case-split (<= l k))
		  (case-split (integerp j))
                  (case-split (integerp k))
                  (case-split (integerp l))
                  (case-split (integerp m))
		  )
	     (equal (cat (bitn x j) m (bits x k l) n)
		    (bits x j l))))

(defthm cat-bits-bitn
  (implies (and (equal j (+ 1 k))
                (case-split (<= (+ 1 (- j) i) m))
                (case-split (<= j i))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (integerp k))
                (case-split (integerp m))
                )
           (equal (cat (bits x i j) m (bitn x k) 1)
                  (bits x i k))))

(defthm cat-bitn-bitn
  (implies (and (equal i (+ 1 j))
                (case-split (integerp i))
                (case-split (integerp j)))
           (equal (cat (bitn x i) 1 (bitn x j) 1)
                  (bits x i j))))


;may not want this enabled (but probably do want CAT-EQUAL-CONSTANT enabled)
;the BITS calls around X and Y in the conclusion allow us to drop the hyps that X and Y are bvecps.
(defthmd cat-split-equality
  (implies (and (case-split (bvecp k (+ m n))) ;if not, K can't be equal to the CAT expression
                (case-split (integerp m))
                (case-split (<= 0 m))
                (case-split (integerp n))
                (case-split (<= 0 n))
                )
           (equal (equal k (cat x m y n))
                  (and (equal (bits y (1- n) 0) (bits k (1- n) 0))
                       (equal (bits x (1- m) 0) (bits k (+ -1 m n) n))))))



;generalize this by dropping the bvecp-hyps and wrapping bits around x and y in the conclusion?
;follows trivially from   cat-split-equality
;prove a version of this without the bvecp hyps?
(defthm cat-equal-constant
  (implies (and (syntaxp (and (quotep k)
                              (quotep m)
                              (quotep n)))
                (case-split (bvecp y n))
                (case-split (bvecp x m))
                (case-split (< k (expt 2 (+ m n)))) ;drop!
                (case-split (integerp k))
                (case-split (<= 0 k))
                (case-split (integerp m))
                (case-split (<= 0 m))
                (case-split (integerp n))
                (case-split (<= 0 n))
                )
           (equal (equal k (cat x m y n))
                  (and (equal y (bits k (1- n) 0))
                       (equal x (bits k (+ -1 m n) n))))))

;lacks the bvecp hyps.  do we want this or cat-equal-rewrite?
(defthm cat-equal-rewrite-alt
  (implies (and (case-split (natp n))
                (case-split (natp m))
                )
           (equal (equal (cat x1 m y1 n)
                         (cat x2 m y2 n))
                  (and (equal (bits x1 (1- m) 0) (bits x2 (1- m) 0))
                       (equal (bits y1 (1- n) 0) (bits y2 (1- n) 0))))))

;move hyps to conclusion?
(defthm cat-equal-rewrite
  (implies (and (case-split (bvecp x1 m))
                (case-split (bvecp y1 n))
                (case-split (bvecp x2 m))
                (case-split (bvecp y2 n))
                (case-split (integerp n))
                (case-split (<= 0 n))
                (case-split (integerp m))
                (case-split (<= 0 m))
                )
           (equal (equal (cat x1 m y1 n)
                         (cat x2 m y2 n))
                  (and (equal x1 x2)
                       (equal y1 y2)))))

(defthm cat-bits-bits-bits
  (implies (and (<= k i)
                (<= l k)
                (<= j l)
                (integerp i)
                (integerp j)
                (integerp k)
                (integerp l)
                )
           (equal (cat (bits x i (+ 1 k))
                       (+ 2 i (- k))
                       (cat (bits x k l)
                            (+ 1 k (- l))
                            (bits x (1- l) j)
                            (+ l (- j)))
                       (+ 1 (- j) k))
                  (bits x i j)))
  :rule-classes nil)

#|
bits-dont-match can prove things like this:
(thm (IMPLIES (EQUAL 7 (BITS x 8 6))
              (NOT (EQUAL 3 (BITS x 15 6)))))
|#

(defthm bits-dont-match 
  (implies (and (syntaxp (and (quotep i)
                              (quotep j)
                              (quotep k)))
                (equal (bits x i2 j2) k2) ;i2, j2, and k2 are free vars
                (syntaxp (and (quotep i2)
                              (quotep j2)
                              (quotep k2)))
                (<= j2 j) (<= j i) (<= i i2)
                (not (equal k (bits k2 (+ i (- j2)) (+ (- j2) j))))
                (<= 0 i) (<= 0 j) (<= 0 k) (<= 0 i2) (<= 0 j2) (<= 0 k2)
                (integerp i) (integerp j)  (integerp k) (integerp i2) (integerp j2) (integerp k2)
                )
           (equal (equal k (bits x i j))
                  nil)))

; improve somehow?
(defthm bits-match
  (implies (and (syntaxp (and (quotep i)
                              (quotep j)
                              (quotep k)))
                (equal (bits x i2 j2) k2) ;i2, j2, and k2 are free vars
                (syntaxp (and (quotep i2)
                              (quotep j2)
                              (quotep k2)))
                (<= j2 j) (<= j i) (<= i i2)
                (equal k (bits k2 (+ i (- j2)) (+ (- j2) j)))
                (<= 0 i) (<= 0 j) (<= 0 k) (<= 0 i2) (<= 0 j2) (<= 0 k2)
                (integerp i) (integerp j)  (integerp k) (integerp i2) (integerp j2) (integerp k2)
                )
           (equal (equal k (bits x i j))
                  t)))


;make into a rewrite rule
(defthm cat-with-slice-of-x-equal-x
  (implies (and (bvecp x (+ m n))
                (case-split (bvecp y n))
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (integerp m))
                (case-split (integerp n))
                )
           (equal (equal x (cat (bits x (+ -1 m n) n) m y n))
                  (equal (bits x (1- n) 0) y))
           ))

;cat-with-slice-of-x-equal-x won't match, so we use kk here
;add a syntaxp hyp?
(defthm cat-with-slice-of-x-equal-x-rewrite
  (implies (and (equal kk (+ -1 m n))
                (bvecp x (+ m n))
                (case-split (bvecp y n))
                (case-split (<= 0 m))
                (case-split (<= 0 n))
                (case-split (integerp m))
                (case-split (integerp n))
                )
           (equal (equal x (cat (bits x kk n) m y n))
                  (equal (bits x (1- n) 0) y))
           ))

;If X and Y have identical bits in the range [i..j], then they also match on any subrange [k..l] of [i..j]
(defthmd bits-equal-implies-subranges-equal-helper
  (implies (and (equal (bits x i j) (bits y i j))
                (<= j l)
                (<= k i)
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (integerp k))
                (case-split (integerp l))
                )
           (equal (equal (bits x k l) (bits y k l))
                  t))
  :rule-classes ((:rewrite :match-free :all)))

(defthm bits-equal-implies-subranges-equal
  (implies (and (equal (bits x i j) (bits y i j))
                (<= j l)
                (<= k i)
                (case-split (integerp i))
                (case-split (integerp j))
                )
           (equal (equal (bits x k l) (bits y k l))
                  t))
  :rule-classes ((:rewrite :match-free :all)))