File: lxor.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (307 lines) | stat: -rw-r--r-- 8,181 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(in-package "ACL2")

#|

This book is about LXOR, a nice version of LOGXOR.  LXOR takes an extra size parameter, N, and always returns
a bit vector of length N.

todo: ;add analogues of the thms in land.lisp past bitn-land

|#

(local ; ACL2 primitive
 (defun natp (x)
   (declare (xargs :guard t))
   (and (integerp x)
        (<= 0 x))))

(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(defund bits (x i j)
  (declare (xargs :guard (and (natp x)
                              (natp i)
                              (natp j))
                  :verify-guards nil))
  (mbe :logic (if (or (not (integerp i))
                      (not (integerp j)))
                  0
                (fl (/ (mod x (expt 2 (1+ i))) (expt 2 j))))
       :exec  (if (< i j)
                  0
                (logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))

(defund bitn (x n)
  (declare (xargs :guard (and (natp x)
                              (natp n))
                  :verify-guards nil))
  (mbe :logic (bits x n n)
       :exec  (if (evenp (ash x (- n))) 0 1)))

(defund lnot (x n)
  (declare (xargs :guard (and (natp x)
                              (integerp n)
                              (< 0 n))
                  :verify-guards nil))
  (if (natp n)
      (+ -1 (expt 2 n) (- (bits x (1- n) 0)))
    0))

(defund bvecp (x k)
  (declare (xargs :guard (integerp k)))
  (and (integerp x)
       (<= 0 x)
       (< x (expt 2 k))))

(defund all-ones (n)
  (declare (xargs :guard (and (integerp n) (<= 0 n))))
  (if (zp n)
      0 ;degenerate case
    (1- (expt 2 n))))

(local (include-book "lxor-proofs"))

(defund binary-lxor (x y n)
  (declare (xargs :guard (and (natp x) 
                              (natp y)
                              (integerp n)
                              (< 0 n))
                  :verify-guards nil))
  (logxor (bits x (1- n) 0)
          (bits y (1- n) 0)))

(defun formal-+ (x y)
  (declare (xargs :guard t))
  (if (and (acl2-numberp x) (acl2-numberp y))
      (+ x y)
    (list '+ x y)))

(defmacro lxor (&rest x)
  (declare (xargs :guard (consp x)))
  (cond ((endp (cdddr x)) ;(lxor x y n) -- the base case
         `(binary-lxor ,@x))
        (t         
         `(binary-lxor ,(car x)
                       (lxor ,@(cdr x))
                       ,(car (last x))))))


;Allows things like (in-theory (disable lxor)) to refer to binary-lxor.
(add-macro-alias lxor binary-lxor)

(defthm lxor-nonnegative-integer-type
  (and (integerp (lxor x y n))
       (<= 0 (lxor x y n)))
  :rule-classes (:type-prescription))

;(:type-prescription lxor) is no better than lxor-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription binary-lxor)))

;drop this if we plan to keep natp enabled?
(defthm lxor-natp
  (natp (lxor x y n)))

(defthm lxor-with-n-not-a-natp
  (implies (not (natp n))
           (equal (lxor x y n)
                  0)))

(defthmd lxor-bvecp-simple
  (bvecp (lxor x y n) n))

(defthm lxor-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (lxor x y n) k)))


;;
;; Rules to normalize lxor terms (recall that LXOR is a macro for BINARY-LXOR):
;;

;; allow sizes to differ on these?

(defthm lxor-associative
  (equal (lxor (lxor x y n) z n)
         (lxor x (lxor y z n) n)))

(defthm lxor-commutative
  (equal (lxor y x n)
         (lxor x y n)))

(defthm lxor-commutative-2
  (equal (lxor y (lxor x z n) n)
         (lxor x (lxor y z n) n)))

(defthm lxor-combine-constants
  (implies (syntaxp (and (quotep x)
                         (quotep y)
                         (quotep n)))
           (equal (lxor x (lxor y z n) n)
                  (lxor (lxor x y n) z n))))

(defthm lxor-0
  (implies (case-split (bvecp y n))
           (equal (lxor 0 y n)
                  y)))

;nicer than the analogous rule for logand?
(defthm lxor-1
  (implies (case-split (bvecp y 1))
           (equal (lxor 1 y 1)
                  (lnot y 1))))

(defthm lxor-self
  (implies (case-split (bvecp x n))
           (equal (lxor x x n)
                  0)))


(defthmd bits-lxor-1
  (implies (and (< i n)
                (case-split (<= 0 j))
                (case-split (integerp n))
                )
           (equal (bits (lxor x y n) i j)
                  (lxor (bits x i j) 
                        (bits y i j) 
                        (+ 1 i (- j))))))

(defthmd bits-lxor-2
  (implies (and (<= n i)
                (case-split (<= 0 j))
                (case-split (integerp n))
                )
           (equal (bits (lxor x y n) i j)
                  (lxor (bits x i j) 
                        (bits y i j) 
                        (+ n (- j))))))

;notice the call to MIN in the conclusion
(defthm bits-lxor
  (implies (and (case-split (<= 0 j))
                (case-split (integerp n))
                (case-split (integerp i))
                )
           (equal (bits (lxor x y n) i j)
                  (lxor (bits x i j) 
                        (bits y i j) 
                        (+ (min n (+ 1 i)) (- j))))))

(defthmd bitn-lxor-1
  (implies (and (< m n)
                (case-split (<= 0 m))
                (case-split (integerp n))
                )
           (equal (bitn (lxor x y n) m)
                  (lxor (bitn x m) 
                        (bitn y m) 
                        1))))
(defthmd bitn-lxor-2
  (implies (and (<= n m)
                (case-split (<= 0 m))
                (case-split (integerp n))
                )
           (equal (bitn (lxor x y n) m)
                  0)))

;notice the IF in the conclusion
;we expect this to cause case splits only rarely, since m and n will usually be constants
(defthm bitn-lxor
  (implies (and (case-split (<= 0 m))
                (case-split (integerp n))
                )
           (equal (bitn (lxor x y n) m)
                  (if (< m n)
                      (lxor (bitn x m) 
                            (bitn y m) 
                            1)
                    0))))


(defthm lxor-ones
  (implies (case-split (bvecp x n))
           (equal (lxor (1- (expt 2 n)) x n)
                  (lnot x n)))
  :rule-classes ())

;lxor-with-all-ones will rewrite (lxor x n) [note there's only one value being ANDed], because (lxor x n)
;expands to (BINARY-LXOR X (ALL-ONES N) N) - now moot???
(defthm lxor-with-all-ones
  (implies (case-split (bvecp x n))
           (equal (lxor (all-ones n) x n)
                  (lnot x n))))

(defthm lxor-ones-rewrite
  (implies (and (syntaxp (and (quotep k)
                              (quotep n)
                              (equal (cadr k) (1- (expt 2 (cadr n))))))
                (force (equal k (1- (expt 2 n))))
                (case-split (bvecp x n)))
           (equal (lxor k x n)
                  (lnot x n))))

(defthm lxor-def
    (implies (and (integerp x)
		  (integerp y)
		  (< 0 n)
                  (integerp n)
		  )
	     (equal (lxor x y n)
		    (+ (* 2 (lxor (fl (/ x 2)) (fl (/ y 2)) (1- n)))
		       (lxor (mod x 2) (mod y 2) 1))))
  :rule-classes ())

(defthm lxor-mod-2
    (implies (and (natp x)
		  (natp y)
		  (natp n)
		  (> n 0))
	     (equal (mod (lxor x y n) 2)
		    (lxor (mod x 2) (mod y 2) 1))))

(defthm lxor-fl-2
    (implies (and (natp x)
		  (natp y)
		  (natp n)
		  (> n 0))
	     (equal (fl (/ (lxor x y n) 2))
		    (lxor (fl (/ x 2)) (fl (/ y 2)) (1- n)))))

(in-theory (disable lxor-mod-2 lxor-fl-2))

(defthm bitn-lxor-0
    (implies (and (integerp x)
                  (integerp y)
		  (not (zp n))
                  )
	     (= (bitn (lxor x y n) 0)
		(bitn (+ x y) 0)))		
  :rule-classes ())

;BOZO rename
(defthm lxor-x-y-0
  (equal (lxor x y 0) 0))


;N is a free variable
(defthm lxor-reduce
    (implies (and (bvecp x n)
		  (bvecp y n)
		  (< n m)
		  (case-split (integerp m))
		  )
	     (equal (lxor x y m) 
                    (lxor x y n))))

(defthm lxor-upper-bound
  (implies (and (integerp n)
                (<= 0 n))
           (< (lxor x y n) (expt 2 n)))
  :rule-classes (:rewrite :linear))

(defthm lxor-upper-bound-tight
  (implies (and (integerp n)
                (<= 0 n))
           (<= (lxor x y n) (1- (expt 2 n)))))