1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
(in-package "ACL2")
(defund bvecp (x k)
(declare (xargs :guard (integerp k)))
(and (integerp x)
(<= 0 x)
(< x (expt 2 k))))
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= 0 x))))
(defund fl (x)
(declare (xargs :guard (real/rationalp x)))
(floor x 1))
(defund bits (x i j)
(declare (xargs :guard (and (natp x)
(natp i)
(natp j))
:verify-guards nil))
(mbe :logic (if (or (not (integerp i))
(not (integerp j)))
0
(fl (/ (mod x (expt 2 (1+ i))) (expt 2 j))))
:exec (if (< i j)
0
(logand (ash x (- j)) (1- (ash 1 (1+ (- i j))))))))
(defund bitn (x n)
(declare (xargs :guard (and (natp x)
(natp n))
:verify-guards nil))
(mbe :logic (bits x n n)
:exec (if (evenp (ash x (- n))) 0 1)))
(include-book "cat-def")
(local (include-book "mulcat-proofs"))
(defund mulcat (l n x)
; We introduce mbe not because we want particularly fast execution, but because
; the existing logic definition does not satisfy the guard of cat, which can't
; be changed because of the guard of bits.
(declare (xargs :guard (and (integerp l)
(< 0 l)
(acl2-numberp n)
(natp x))
:verify-guards nil))
(mbe :logic (if (and (integerp n) (> n 0))
(cat (mulcat l (1- n) x)
(* l (1- n))
x
l)
0)
:exec (cond
((eql n 1)
(bits x (1- l) 0))
((and (integerp n) (> n 0))
(cat (mulcat l (1- n) x)
(* l (1- n))
x
l))
(t 0))))
(defthm mulcat-nonnegative-integer-type
(and (integerp (mulcat l n x))
(<= 0 (mulcat l n x)))
:rule-classes (:type-prescription))
;this rule is no better than mulcat-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription mulcat)))
(defthm mulcat-1
(implies (natp l)
(equal (mulcat l 1 x)
(bits x (1- l) 0))))
(defthm mulcat-bvecp-simple
(implies (and (= p (* l n))
(case-split (natp l)))
(bvecp (mulcat l n x) p))
:rule-classes ())
(defthm mulcat-bvecp
(implies (and (>= p (* l n))
(case-split (integerp p))
(case-split (natp l)))
(bvecp (mulcat l n x) p)))
(defthm mulcat-0
(equal (mulcat l n 0)
0))
(defthm mulcat-0-two
(equal (mulcat l 0 x)
0))
(defthm bvecp-mulcat-1
(implies (natp n)
(bvecp (mulcat 1 n 1) n))
:rule-classes ())
(defthm mulcat-n-1
(implies (case-split (<= 0 n))
(equal (mulcat 1 n 1)
(1- (expt 2 n)))))
(defun mulcat-induct (n n2)
(if (and (integerp n) (> n 0) (integerp n2) (> n2 0))
(mulcat-induct (1- n) (1- n2))
0))
;BOZO prove a bits-mulcat? could be used to prove-bitn-mulcat
;BOZO generalize to bits of mulcat when x is larger than 1?
;not general (note the 1 for the l parameter)
;and to when (<= n m)
;add to lib/ ?
(defthm bitn-mulcat-1
(implies (and (< m n)
(case-split (bvecp x 1))
(case-split (natp m))
(case-split (integerp n)) ;(case-split (natp n))
)
(equal (bitn (mulcat 1 n x) m)
x)))
(defthm bitn-mulcat-2
(implies (and (<= (* l n) n2)
(natp n)
(natp l)
(natp n2)
(case-split (bvecp x l))
)
(equal (bitn (mulcat l n x) n2)
0)))
|