1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
; Rob Sumners
(in-package "ACL2")
#|
We define properties of a generic record accessor function and updater function
we will use for RTL arrays. The basic functions are (ag a r) and (as a v r)
where a is an array index, v is a value, r is an "array" or record, and
(ag a r) returns the value set to index a in array r, and (as a v r) returns
a new array with index a set to value v in array r.
The following main lemmas are "exported" about record (ag)et and (as)et:
(defthm ag-same-as
(equal (ag a (as a v r))
v))
(defthm ag-diff-as
(implies (not (equal a b))
(equal (ag a (as b v r))
(ag a r))))
(defthm as-same-ag
(equal (as a (ag a r) r)
r))
(defthm as-same-as
(equal (as a y (as a x r))
(as a y r)))
(defthm as-diff-as
(implies (not (equal a b))
(equal (as b y (as a x r))
(as a x (as b y r))))
:rule-classes ((:rewrite :loop-stopper ((b a as)))))
We also include some auxiliary lemmas which have proven useful.
(defthm ag-of-nil-is-default
(equal (ag a nil) (default-get-valu)))
(defthm as-non-default-cannot-be-nil
(implies (not (equal v (default-get-valu)))
(as a v r))
:hints (("Goal"
:in-theory (disable rcd->acl2-of-record-non-nil)
:use (:instance rcd->acl2-of-record-non-nil
(r (as-aux a v (acl2->rcd r)))))))
(defthm non-nil-if-ag-not-default
(implies (not (equal (ag a r)
(default-get-valu)))
r)
:rule-classes :forward-chaining)
We also include some "type" lemmas for accesses and updates of rtl arrays.
(defthm as-maps-bv-arr-to-bv-arr
(implies (and (bv-arrp r k)
(bvecp v k))
(bv-arrp (as a v r) k)))
(defthm ag-maps-bv-arr-to-bvecp
(implies (bv-arrp r k)
(bvecp (ag a r) k)))
Note we also define as2 and ag2 for 2-dimensional arrays but these simply
macro-expand into appropriate as and ag calls.
We normalize the array structures (which allows the 'equal-ity based rewrite
rules) as alists where the keys (cars) are ordered using the total-order added
to ACL2 and defined in the included book. We define a set of "-aux" functions
which assume well-formed records -- defined by rcdp -- and then prove the
desired properties using hypothesis assuming well-formed records.
We then remove these well-formed record hypothesis by defining an invertible
mapping (acl2->rcd) taking any ACL2 object and returning a well-formed
record. We then prove the desired properties using the proper translations of
the -aux functions to the acl2 objects, and subsequently remove the
well-formed record hypothesis.
|#
(include-book "../../../misc/total-order")
;; BEGIN records definitions.
(defmacro default-get-valu () 0)
(defun rcdp (x)
(declare (xargs :guard t))
(or (null x)
(and (consp x)
(consp (car x))
(rcdp (cdr x))
(not (equal (cdar x)
(default-get-valu)))
(or (null (cdr x))
(<< (caar x) (caadr x))))))
(defthm rcdp-implies-alistp
(implies (rcdp x) (alistp x)))
(defmacro ifrp-tag ()
''unlikely-to-ever-occur-in-an-executable-counterpart)
(defun ifrp (x) ;; ill-formed rcdp
(declare (xargs :guard t))
(or (not (rcdp x))
(and (consp x)
(null (cdr x))
(consp (car x))
(equal (cdar x) (ifrp-tag))
(ifrp (caar x)))))
(defun acl2->rcd (x) ;; function mapping acl2 objects to well-formed records.
(declare (xargs :guard t))
(if (ifrp x) (list (cons x (ifrp-tag))) x))
(defun rcd->acl2 (r) ;; inverse of acl2->rcd.
(declare (xargs :guard (rcdp r)))
(if (ifrp r) (caar r) r))
(defun ag-aux (a r) ;; record g(et) when r is a well-formed record.
(declare (xargs :guard (rcdp r)))
(cond ((or (endp r)
(<< a (caar r)))
(default-get-valu))
((equal a (caar r))
(cdar r))
(t
(ag-aux a (cdr r)))))
(defun ag (a x) ;; the generic record g(et) which works on any ACL2 object.
(declare (xargs :guard t))
(ag-aux a (acl2->rcd x)))
(defun acons-if (a v r)
(declare (xargs :guard (rcdp r)))
(if (equal v (default-get-valu)) r (acons a v r)))
(defun as-aux (a v r) ;; record s(et) when x is a well-formed record.
(declare (xargs :guard (rcdp r)))
(cond ((or (endp r)
(<< a (caar r)))
(acons-if a v r))
((equal a (caar r))
(acons-if a v (cdr r)))
(t
(cons (car r) (as-aux a v (cdr r))))))
;; we need the following theorems in order to get the guard for s to verify.
(local
(defthm as-aux-is-bounded
(implies (and (rcdp r)
(as-aux a v r)
(<< e a)
(<< e (caar r)))
(<< e (caar (as-aux a v r))))))
(local
(defthm as-aux-preserves-rcdp
(implies (rcdp r)
(rcdp (as-aux a v r)))))
(defun as (a v x) ;; the generic record s(et) which works on any ACL2 object.
(declare (xargs :guard t))
(rcd->acl2 (as-aux a v (acl2->rcd x))))
;;;; basic property of records ;;;;
(local
(defthm rcdp-implies-true-listp
(implies (rcdp x)
(true-listp x))
:rule-classes (:forward-chaining
:rewrite)))
;;;; initial properties of s-aux and g-aux ;;;;
(local
(defthm ag-aux-same-as-aux
(implies (rcdp r)
(equal (ag-aux a (as-aux a v r))
v))))
(local
(defthm ag-aux-diff-as-aux
(implies (and (rcdp r)
(not (equal a b)))
(equal (ag-aux a (as-aux b v r))
(ag-aux a r)))))
(local
(defthm as-aux-same-ag-aux
(implies (rcdp r)
(equal (as-aux a (ag-aux a r) r)
r))))
(local
(defthm as-aux-same-as-aux
(implies (rcdp r)
(equal (as-aux a y (as-aux a x r))
(as-aux a y r)))))
(local
(defthm as-aux-diff-as-aux
(implies (and (rcdp r)
(not (equal a b)))
(equal (as-aux b y (as-aux a x r))
(as-aux a x (as-aux b y r))))
:rule-classes ((:rewrite :loop-stopper ((b a as))))))
(local
(defthm as-aux-non-nil-cannot-be-nil
(implies (and (not (equal v (default-get-valu)))
(rcdp r))
(as-aux a v r))))
(local
(defthm ag-aux-is-nil-for-<<
(implies (and (rcdp r)
(<< a (caar r)))
(equal (ag-aux a r)
(default-get-valu)))))
;;;; properties of acl2->rcd and rcd->acl2 ;;;;
(local
(defthm acl2->rcd-rcd->acl2-of-rcdp
(implies (rcdp x)
(equal (acl2->rcd (rcd->acl2 x))
x))))
(local
(defthm acl2->rcd-returns-rcdp
(rcdp (acl2->rcd x))))
(local
(defthm acl2->rcd-preserves-equality
(iff (equal (acl2->rcd x) (acl2->rcd y))
(equal x y))))
(local
(defthm rcd->acl2-acl2->rcd-inverse
(equal (rcd->acl2 (acl2->rcd x)) x)))
(local
(defthm rcd->acl2-of-record-non-nil
(implies (and r (rcdp r))
(rcd->acl2 r))))
(in-theory (disable acl2->rcd rcd->acl2))
;;;; final (exported) properties of record g(et) and s(et) ;;;;
;; NOTE that these theorems basically follow from the "equivalent" properties
;; for s-aux and g-aux with rcdp hypothesis, and the lemmas about the acl2->rcd
;; and its inverse rcd->acl2. If the user wanted to add to the following set of
;; exported theorems, they should add the corresponding lemma about s-aux and
;; g-aux using rcdp hypothesis and then add the theorem here about the generic
;; s(et) and g(et) they wish to export from the book.
(defthm ag-same-as
(equal (ag a (as a v r))
v))
(defthm ag-diff-as
(implies (not (equal a b))
(equal (ag a (as b v r))
(ag a r))))
;;;; NOTE: The following can be used instead of the above rules to force ACL2
;;;; to do a case-split. We disable this rule by default since it can lead to
;;;; an expensive case explosion, but in many cases, this rule may be more
;;;; effective than two rules above and should be enabled.
(defthm ag-of-as-redux
(equal (ag a (as b v r))
(if (equal a b) v (ag a r))))
(in-theory (disable ag-of-as-redux))
(defthm as-same-ag
(equal (as a (ag a r) r)
r))
(defthm as-same-as
(equal (as a y (as a x r))
(as a y r)))
(defthm as-diff-as
(implies (not (equal a b))
(equal (as b y (as a x r))
(as a x (as b y r))))
:rule-classes ((:rewrite :loop-stopper ((b a as)))))
;; the following theorems are less relevant but have been useful in dealing
;; with a default record of NIL.
(defthm ag-of-nil-is-default
(equal (ag a nil) (default-get-valu)))
(defthm as-non-default-cannot-be-nil
(implies (not (equal v (default-get-valu)))
(as a v r))
:hints (("Goal"
:in-theory (disable rcd->acl2-of-record-non-nil)
:use (:instance rcd->acl2-of-record-non-nil
(r (as-aux a v (acl2->rcd r)))))))
(defthm non-nil-if-ag-not-default
(implies (not (equal (ag a r)
(default-get-valu)))
r)
:rule-classes :forward-chaining)
;; OK, we add here some properties for typing the records and the values which
;; are stored in the records. This "typing" is pretty generic, but we choose the
;; "bvecp" types for record values because it suits AMD's RTL modeling needs.
(defun bvecp (x k)
(declare (xargs :guard (integerp k)))
(and (integerp x)
(<= 0 x)
(< x (expt 2 k))))
(defun bv-arrp (x k)
(declare (xargs :guard (integerp k)))
(or (null x)
(and (consp x)
(consp (car x))
(bv-arrp (cdr x) k)
(not (equal (cdar x)
(default-get-valu)))
(bvecp (cdar x) k)
(or (null (cdr x))
(<< (caar x) (caadr x))))))
(local
(defthm bvecp-of-default-get-valu-is-true
(bvecp (default-get-valu) k)))
(local
(defthm bvecp-of-ifrp-tag-is-false
(not (bvecp (ifrp-tag) k))))
(in-theory (disable bvecp))
(local
(defthm bv-arrp-implies-rcdp
(implies (bv-arrp r k)
(rcdp r))))
(local
(defthm as-aux-maps-bv-rcd-to-bv-rcd
(implies (and (bv-arrp r k)
(bvecp v k))
(bv-arrp (as-aux a v r) k))))
(local
(defthm ag-aux-maps-bv-rcd-to-bvecp
(implies (bv-arrp r k)
(bvecp (ag-aux a r) k))))
(local
(defthm bv-arrp-implies-not-ifrp
(implies (bv-arrp x k)
(not (ifrp x)))))
(local
(defthm bv-arrp-acl2->rcd-transfers
(implies (bv-arrp x k)
(bv-arrp (acl2->rcd x) k))
:hints (("Goal" :in-theory (enable acl2->rcd)))))
(local
(defthm bv-arrp-rcd->acl2-transfers
(implies (bv-arrp r k)
(bv-arrp (rcd->acl2 r) k))
:hints (("Goal" :in-theory (enable rcd->acl2)))))
(defthm as-maps-bv-arr-to-bv-arr
(implies (and (bv-arrp r k)
(bvecp v k))
(bv-arrp (as a v r) k)))
(defthm ag-maps-bv-arr-to-bvecp
(implies (bv-arrp r k)
(bvecp (ag a r) k)))
(defun mk-bvarr (r k)
(declare (xargs :guard (integerp k)))
(if (bv-arrp r k) r ()))
(defthm mk-bvarr-is-bv-arrp
(bv-arrp (mk-bvarr r k) k))
(defthm mk-bvarr-identity
(implies (bv-arrp r k)
(equal (mk-bvarr r k) r)))
(in-theory (disable bv-arrp mk-bvarr))
;; finally we define some "2D" array accessors.
(defmacro ag2 (a b r)
`(ag (cons ,a ,b) ,r))
(defmacro as2 (a b v r)
`(as (cons ,a ,b) ,v ,r))
;; We disable s and g, assuming the rules proven in this book are sufficient to
;; manipulate record terms which are encountered.
(in-theory (disable as ag))
; Begin events added March 2005 when it was discovered that they are in
; ../lib/rtlarr.lisp but not in this file.
(defun positive-integer-listp (l)
(declare (xargs :guard t))
(cond ((atom l)
(equal l nil))
(t (and (integerp (car l))
(< 0 (car l))
(positive-integer-listp (cdr l))))))
(defmacro arr0 (&rest dims)
(declare (ignore dims)
(xargs :guard (positive-integer-listp dims)))
nil)
;;Functions representing bit vectors of determined length but undetermined value:
(encapsulate
((reset2 (key size) t))
(local (defun reset2 (key size) (declare (ignore key size)) nil))
(defthm bv-arrp-reset2
(bv-arrp (reset2 key size) size)
:hints
(("goal" :in-theory (enable bv-arrp)))
))
(encapsulate
((unknown2 (key size n) t))
(local (defun unknown2 (key size n) (declare (ignore key size n)) nil))
(defthm bv-arrp-unknown2
(bv-arrp (unknown2 key size n) size)
:hints
(("goal" :in-theory (enable bv-arrp)))
))
(defun if1 (x y z)
(declare (xargs :guard (integerp x)))
(if (eql x 0) z y))
;BOZO where in lib/ should this go?
(defthm bv-arrp-if1
(equal (bv-arrp (if1 x y z) n)
(if1 x (bv-arrp y n) (bv-arrp z n))))
; End events added March 2005 when it was discovered that they are in
; ../lib/rtlarr.lisp but not in this file.
|