1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
(in-package "ACL2")
(local ; ACL2 primitive
(defun natp (x)
(declare (xargs :guard t))
(and (integerp x)
(<= 0 x))))
(defund bvecp (x k)
(declare (xargs :guard (integerp k)))
(and (integerp x)
(<= 0 x)
(< x (expt 2 k))))
(include-book "cat-def")
(local (include-book "setbits-proofs"))
(defund bitn (x n)
(declare (xargs :guard (and (natp x)
(natp n))
:verify-guards nil))
(mbe :logic (bits x n n)
:exec (if (evenp (ash x (- n))) 0 1)))
#|
Currently we expect to leave setbits enabled so that it rewrites to cat, but there are some lemmas below which
might be useful if we choose to keep setbits disabled...
is this comment still valid? :
;it may happen that setbitn is called with an index which is a signal rather than a constant.
;in that case, we probably don't want it to expand to setbits.
;thus, we always expect the indices in setbits calls to be constants
;Set bits I down to J of the W-bit value X to Y.
(setbits x w i j y) is only well-defined when the following predicate is true:
(and (natp w)
(bvecp x w)
(integerp i)
(integerp j)
(<= 0 j)
(<= j i)
(< i w)
(bvecp y (+ 1 i (- j))))
|#
;Note: when j is 0, there is no lower part of x, but we have cat-with-n-0 to handle this case.
(defund setbits (x w i j y)
(declare (xargs :guard (and (natp x)
(natp y)
(integerp i)
(integerp j)
(<= 0 j)
(<= j i)
(integerp w)
(< i w))
:verify-guards nil))
(mbe :logic (cat (bits x (1- w) (1+ i))
(+ -1 w (- i))
(cat (bits y (+ i (- j)) 0)
(+ 1 i (- j))
(bits x (1- j) 0)
j)
(1+ i))
:exec (cond ((int= j 0)
(cond ((int= (1+ i) w)
(bits y (+ i (- j)) 0))
(t
(cat (bits x (1- w) (1+ i))
(+ -1 w (- i))
(bits y (+ i (- j)) 0)
(1+ i)))))
((int= (1+ i) w)
(cat (bits y (+ i (- j)) 0)
(+ 1 i (- j))
(bits x (1- j) 0)
j))
(t
(cat (bits x (1- w) (1+ i))
(+ -1 w (- i))
(cat (bits y (+ i (- j)) 0)
(+ 1 i (- j))
(bits x (1- j) 0)
j)
(1+ i))))))
(defthm setbits-nonnegative-integer-type
(and (integerp (setbits x w i j y))
(<= 0 (setbits x w i j y)))
:rule-classes (:type-prescription))
;this rule is no better than setbits-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription setbits)))
(defthm setbits-natp
(natp (setbits x w i j y)))
;BOZO r-c?
;tighten?
(defthm setbits-upper-bound
(< (setbits x w i j y) (expt 2 w)))
(defthm setbits-bvecp-simple
(bvecp (setbits x w i j y) w))
(defthm setbits-bvecp
(implies (and (<= w k) ;gen?
(case-split (integerp k))
)
(bvecp (setbits x w i j y) k)))
(defthm setbits-does-nothing
(implies (and (case-split (< i w))
(case-split (<= j i))
(case-split (integerp i))
(case-split (integerp j))
(case-split (<= 0 j))
)
(equal (setbits x w i j (bits x i j))
(bits x (1- w) 0))))
;taking bits from the lower third
(defthm bits-setbits-1
(implies (and (< k j)
(case-split (<= 0 w))
(case-split (< i w))
(case-split (<= 0 l))
(case-split (<= j i)) ;drop?
(case-split (integerp w))
(case-split (integerp i))
(case-split (integerp j))
)
(equal (bits (setbits x w i j y) k l)
(bits x k l)))
:hints (("Goal" :in-theory (enable setbits))))
;taking bits from the middle third
;gen?
(defthm bits-setbits-2
(implies (and (<= k i)
(<= j l)
(case-split (integerp i))
(case-split (<= 0 j))
(case-split (integerp j))
(case-split (acl2-numberp k)); (case-split (integerp k))
(case-split (acl2-numberp l)) ; (case-split (integerp l))
(case-split (integerp w))
(case-split (<= 0 w))
(case-split (< i w))
)
(equal (bits (setbits x w i j y) k l)
(bits y (- k j) (- l j))))
:hints (("Goal" :in-theory (enable setbits natp))))
;taking bits from the upper third
(defthm bits-setbits-3
(implies (and (< i l)
(case-split (< i w))
(case-split (< k w)) ;handle this?
(case-split (<= j i))
(case-split (<= 0 l))
(case-split (<= 0 j))
(case-split (<= 0 w))
(case-split (integerp l))
(case-split (integerp w))
(case-split (integerp i))
(case-split (integerp j))
(case-split (integerp k))
)
(equal (bits (setbits x w i j y) k l)
(bits x k l)))
:hints (("Goal" :in-theory (enable setbits natp))))
(defthm setbits-with-w-0
(equal (setbits x 0 i j y)
0))
;add case-splits to the bitn-setbits rules?
;why can't i prove this from bits-setbits?
(defthm bitn-setbits-1
(implies (and (< k j) ;case 1
(< i w)
(<= 0 i)
(<= 0 j)
(<= 0 k)
(<= j i)
(integerp k)
(integerp w)
(integerp i)
(integerp j)
)
(equal (bitn (setbits x w i j y) k)
(bitn x k))))
(defthm bitn-setbits-2
(implies (and(<= k i) ;;case-2
(<= j k) ;;case-2
(<= 0 i)
(<= 0 j)
(< i w)
(integerp k)
(integerp w)
(integerp i)
(integerp j)
)
(equal (bitn (setbits x w i j y) k)
(bitn y (- k j)))))
(defthm bitn-setbits-3
(implies (and (< i k) ;;case-3
(< k w) ;;case-3
; (< i w)
(<= 0 i)
(<= 0 j)
(<= j i)
(integerp i)
(integerp j)
(integerp k)
(integerp w))
(equal (bitn (setbits x w i j y) k)
(bitn x k))))
;taking a slice of each of the lower two thirds.
(defthm bits-setbits-4
(implies (and (<= k i) ;;case-4
(<= j k) ;;case-4
(< l j) ;;case-4
(< i w)
(<= 0 j)
(<= 0 l)
(integerp i)
(integerp j)
(integerp w)
(acl2-numberp l) ;(integerp l)
)
(equal (bits (setbits x w i j y) k l)
(cat (bits y (- k j) 0)
(+ 1 k (- j))
(bits x (1- j) l)
(- j l))))
:hints (("Goal" :in-theory (enable setbits))))
;taking a slice of each of the upper two thirds.
(defthm bits-setbits-5
(implies (and (< i k) ;case-5
(<= l i) ;case-5
(<= j l) ;case-5
(< k w) ;case-5 ;BOZO drop stuff like this?
(<= 0 j)
(integerp i)
(integerp j)
(integerp w)
(acl2-numberp l) ;(integerp l)
)
(equal (bits (setbits x w i j y) k l)
(cat (bits x k (1+ i))
(+ k (- i))
(bits y (- i j) (- l j))
(1+ (- i l))))))
;taking a slice of each of the thirds.
;make one huge bits-setbits lemma?
(defthm bits-setbits-6
(implies (and (< i k) ;;case-6
(< l j) ;;case-6
(<= j i)
(< k w)
(<= 0 l)
(integerp i)
(integerp j)
(acl2-numberp l) ; (integerp l)
(integerp w)
)
(equal (bits (setbits x w i j y) k l)
(cat (bits x k (1+ i))
(+ k (- i))
(cat (bits y (+ i (- j)) 0)
(1+ (- i j))
(bits x (1- j) l)
(- j l))
(+ 1 i (- l))))))
;prove that if (not (natp w)) setbits = 0 .
;are our setbits-combine rules sufficient to cover all of the cases?
;combining these adjacent ranges [i..j][k..l]
(defthm setbits-combine
(implies (and (equal j (+ k 1))
(case-split (<= j i))
(case-split (<= l k))
(case-split (natp w))
(case-split (natp i))
(case-split (natp j))
(case-split (natp k))
(case-split (natp l))
)
(equal (setbits (setbits x w k l y1) w i j y2)
(setbits x w i l (cat y2
(+ 1 i (- j))
y1
(+ 1 k (- l))
)))))
(defthm setbits-combine-2
(implies (and (equal j (+ k 1))
(case-split (< i w))
(case-split (<= j i))
(case-split (<= l k))
(case-split (natp w))
(case-split (natp i))
(case-split (natp j))
(case-split (natp k))
(case-split (natp l))
)
(equal (setbits (setbits x w i j y2) w k l y1)
(setbits x w i l (cat y2
(+ 1 i (- j))
y1
(+ 1 k (- l))
)))))
(defthm setbits-combine-3
(implies (and (equal j (+ k 1))
(case-split (< i w))
(case-split (<= j i))
(case-split (<= l k))
(case-split (natp w))
(case-split (natp i))
(case-split (natp j))
(case-split (natp k))
(case-split (natp l)))
(equal (setbits (setbits x w i j y2) w k l y1)
(setbits x w i l
(cat y2 (+ 1 i (- j))
y1 (+ 1 k (- l)))))))
(defthm setbits-all
(implies (and (equal i (1- w))
(case-split (bvecp y w))
)
(equal (setbits x w i 0 y)
y)))
|