File: setbits.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (349 lines) | stat: -rw-r--r-- 11,094 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
(in-package "ACL2")

(local ; ACL2 primitive
 (defun natp (x)
   (declare (xargs :guard t))
   (and (integerp x)
        (<= 0 x))))

(defund bvecp (x k)
  (declare (xargs :guard (integerp k)))
  (and (integerp x)
       (<= 0 x)
       (< x (expt 2 k))))

(include-book "cat-def")
(local (include-book "setbits-proofs"))

(defund bitn (x n)
  (declare (xargs :guard (and (natp x)
                              (natp n))
                  :verify-guards nil))
  (mbe :logic (bits x n n)
       :exec  (if (evenp (ash x (- n))) 0 1)))

#|

Currently we expect to leave setbits enabled so that it rewrites to cat, but there are some lemmas below which
might be useful if we choose to keep setbits disabled...

is this comment still valid? :
;it may happen that setbitn is called with an index which is a signal rather than a constant.
;in that case, we probably don't want it to expand to setbits. 
;thus, we always expect the indices in setbits calls to be constants


;Set bits I down to J of the W-bit value X to Y.

(setbits x w i j y) is only well-defined when the following predicate is true:

(and (natp w)
     (bvecp x w)
     (integerp i)
     (integerp j)
     (<= 0 j)
     (<= j i)
     (< i w)
     (bvecp y (+ 1 i (- j))))

|#

;Note: when j is 0, there is no lower part of x, but we have cat-with-n-0 to handle this case. 
(defund setbits (x w i j y)
  (declare (xargs :guard (and (natp x)
                              (natp y)
                              (integerp i)
                              (integerp j)
                              (<= 0 j)
                              (<= j i)
                              (integerp w)
                              (< i w))
                  :verify-guards nil))
  (mbe :logic (cat (bits x (1- w) (1+ i))
                   (+ -1 w (- i))
                   (cat (bits y (+ i (- j)) 0)
                        (+ 1 i (- j))
                        (bits x (1- j) 0)
                        j)
                   (1+ i))
       :exec  (cond ((int= j 0)
                     (cond ((int= (1+ i) w)
                            (bits y (+ i (- j)) 0))
                           (t
                            (cat (bits x (1- w) (1+ i))
                                 (+ -1 w (- i))
                                 (bits y (+ i (- j)) 0)
                                 (1+ i)))))
                    ((int= (1+ i) w)
                     (cat (bits y (+ i (- j)) 0)
                          (+ 1 i (- j))
                          (bits x (1- j) 0)
                          j))
                    (t
                     (cat (bits x (1- w) (1+ i))
                          (+ -1 w (- i))
                          (cat (bits y (+ i (- j)) 0)
                               (+ 1 i (- j))
                               (bits x (1- j) 0)
                               j)
                          (1+ i))))))

(defthm setbits-nonnegative-integer-type
  (and (integerp (setbits x w i j y))
       (<= 0 (setbits x w i j y)))
  :rule-classes (:type-prescription))

;this rule is no better than setbits-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription setbits)))

(defthm setbits-natp
  (natp (setbits x w i j y)))

;BOZO r-c?
;tighten?
(defthm setbits-upper-bound
  (< (setbits x w i j y) (expt 2 w)))

(defthm setbits-bvecp-simple
  (bvecp (setbits x w i j y) w))

(defthm setbits-bvecp
  (implies (and (<= w k) ;gen?
                (case-split (integerp k))
                )
           (bvecp (setbits x w i j y) k)))

(defthm setbits-does-nothing
  (implies (and (case-split (< i w))
                (case-split (<= j i))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (<= 0 j))
                )
           (equal (setbits x w i j (bits x i j))
                  (bits x (1- w) 0))))

;taking bits from the lower third
(defthm bits-setbits-1
  (implies (and (< k j)
                (case-split (<= 0 w))
                (case-split (< i w))
                (case-split (<= 0 l))
                (case-split (<= j i)) ;drop?
                (case-split (integerp w))
                (case-split (integerp i))
                (case-split (integerp j))
                )
           (equal (bits (setbits x w i j y) k l)
                  (bits x k l)))
  :hints (("Goal" :in-theory (enable setbits))))

;taking bits from the middle third
;gen?
(defthm bits-setbits-2
  (implies (and (<= k i)
                (<= j l)
                (case-split (integerp i))
                (case-split (<= 0 j))
                (case-split (integerp j))
                (case-split (acl2-numberp k));		  (case-split (integerp k))
                (case-split (acl2-numberp l)) ;	  (case-split (integerp l))
                (case-split (integerp w))
                (case-split (<= 0 w))
                (case-split (< i w))
                )
           (equal (bits (setbits x w i j y) k l)
                  (bits y (- k j) (- l j))))
  :hints (("Goal" :in-theory (enable setbits natp))))

;taking bits from the upper third
(defthm bits-setbits-3
  (implies (and (< i l)
                (case-split (< i w))
                (case-split (< k w)) ;handle this?
                (case-split (<= j i))
                (case-split (<= 0 l))
                (case-split (<= 0 j))
                (case-split (<= 0 w))
                (case-split (integerp l))
                (case-split (integerp w))
                (case-split (integerp i))
                (case-split (integerp j))
                (case-split (integerp k))
                )
           (equal (bits (setbits x w i j y) k l)
                  (bits x k l)))
  :hints (("Goal" :in-theory (enable setbits natp))))

(defthm setbits-with-w-0
  (equal (setbits x 0 i j y)
         0))

;add case-splits to the bitn-setbits rules?
;why can't i prove this from bits-setbits?
(defthm bitn-setbits-1
  (implies (and (< k j) ;case 1
                (< i w)
                (<= 0 i)
                (<= 0 j) 
                (<= 0 k)
                (<= j i)
                (integerp k)
                (integerp w)
                (integerp i)
                (integerp j)
                )
           (equal (bitn (setbits x w i j y) k)
                  (bitn x k))))

(defthm bitn-setbits-2
  (implies (and(<= k i) ;;case-2
               (<= j k) ;;case-2
               (<= 0 i)
               (<= 0 j) 
               (< i w)
               (integerp k)
               (integerp w)
               (integerp i)
               (integerp j)
               )
           (equal (bitn (setbits x w i j y) k)
                  (bitn y (- k j)))))

(defthm bitn-setbits-3
  (implies (and (< i k) ;;case-3
                (< k w) ;;case-3
;                (< i w)
                (<= 0 i)
                (<= 0 j) 
                (<= j i)
                (integerp i)
                (integerp j)
                (integerp k)
                (integerp w))
           (equal (bitn (setbits x w i j y) k)
                  (bitn x k))))

;taking a slice of each of the lower two thirds.
(defthm bits-setbits-4
  (implies (and (<= k i) ;;case-4
                (<= j k) ;;case-4
                (< l j) ;;case-4
                (< i w)
                (<= 0 j)
                (<= 0 l)
                (integerp i)
                (integerp j)
                (integerp w) 
                (acl2-numberp l) ;(integerp l)
                )
           (equal (bits (setbits x w i j y) k l)
                  (cat (bits y (- k j) 0)
                       (+ 1 k (- j))
                       (bits x (1- j) l)
                       (- j l))))
  :hints (("Goal" :in-theory (enable setbits))))

;taking a slice of each of the upper two thirds.
(defthm bits-setbits-5
    (implies (and (< i k)  ;case-5
		  (<= l i) ;case-5
		  (<= j l) ;case-5
                  (< k w)  ;case-5 ;BOZO drop stuff like this?
                  (<= 0 j)
                  (integerp i)
                  (integerp j)
                  (integerp w)
                  (acl2-numberp l) ;(integerp l)
                  )
	     (equal (bits (setbits x w i j y) k l)
		    (cat (bits x k (1+ i))
                         (+ k (- i))
			 (bits y (- i j) (- l j))
			 (1+ (- i l))))))

;taking a slice of each of the thirds.
;make one huge bits-setbits lemma?
(defthm bits-setbits-6
  (implies (and (< i k) ;;case-6
                (< l j) ;;case-6
                (<= j i)
                (< k w)
                (<= 0 l)
                (integerp i)
                (integerp j)
                (acl2-numberp l) ; (integerp l)
                (integerp w)
                )
           (equal (bits (setbits x w i j y) k l)
                  (cat (bits x k (1+ i))
                       (+ k (- i))
                       (cat (bits y (+ i (- j)) 0)
                            (1+ (- i j))
                            (bits x (1- j) l)
                            (- j l))
                       (+ 1 i (- l))))))

;prove that if (not (natp w)) setbits = 0 .

;are our setbits-combine rules sufficient to cover all of the cases?

;combining these adjacent ranges [i..j][k..l]
(defthm setbits-combine
  (implies (and (equal j (+ k 1))
                (case-split (<= j i))
                (case-split (<= l k))
                (case-split (natp w))
                (case-split (natp i))
                (case-split (natp j))
                (case-split (natp k))
                (case-split (natp l))
                )
  (equal (setbits (setbits x w k l y1) w i j y2)
         (setbits x w i l (cat y2
                                (+ 1 i (- j))
                                y1
                                (+ 1 k (- l))
                                )))))

(defthm setbits-combine-2
  (implies (and (equal j (+ k 1))
                (case-split (< i w))
                (case-split (<= j i))
                (case-split (<= l k))
                (case-split (natp w))
                (case-split (natp i))
                (case-split (natp j))
                (case-split (natp k))
                (case-split (natp l))
                )
  (equal (setbits (setbits x w i j y2) w k l y1)
         (setbits x w i l (cat y2
                                (+ 1 i (- j))
                                y1
                                (+ 1 k (- l))
                                )))))

(defthm setbits-combine-3
  (implies (and (equal j (+ k 1))
                (case-split (< i w))
                (case-split (<= j i))
                (case-split (<= l k))
                (case-split (natp w))
                (case-split (natp i))
                (case-split (natp j))
                (case-split (natp k))
                (case-split (natp l)))
           (equal (setbits (setbits x w i j y2) w k l y1)
                  (setbits x w i l
                           (cat y2 (+ 1 i (- j))
                                 y1 (+ 1 k (- l)))))))


(defthm setbits-all
  (implies (and (equal i (1- w))
                (case-split (bvecp y w))
                )
  (equal (setbits x w i 0 y)
         y)))