File: bits-trunc.lisp

package info (click to toggle)
acl2 6.5-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 108,856 kB
  • ctags: 110,136
  • sloc: lisp: 1,492,565; xml: 7,958; perl: 3,682; sh: 2,103; cpp: 1,477; makefile: 1,470; ruby: 453; ansic: 358; csh: 125; java: 24; haskell: 17
file content (65 lines) | stat: -rw-r--r-- 2,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
; RTL - A Formal Theory of Register-Transfer Logic and Computer Arithmetic 
; Copyright (C) 1995-2013 Advanced Mirco Devices, Inc. 
;
; Contact:
;   David Russinoff
;   1106 W 9th St., Austin, TX 78703
;   http://www.russsinoff.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.
;
; This program is distributed in the hope that it will be useful but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
; PARTICULAR PURPOSE.  See the GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License along with
; this program; see the file "gpl.txt" in this directory.  If not, write to the
; Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA
; 02110-1335, USA.
;
; Author: David M. Russinoff (david@russinoff.com)

;;;***************************************************************
;;;An ACL2 Library of Floating Point Arithmetic

;;;David M. Russinoff
;;;Advanced Micro Devices, Inc.
;;;February, 1998
;;;***************************************************************

(in-package "ACL2")

;BOZO include less...
(include-book "log")
(include-book "float")
(include-book "trunc")
(include-book "land0")
(local (include-book "bits-trunc-proofs"))



(defthm bits-trunc-2
  (implies (and (= n (1+ (expo x)))
                (>= x 0)
                (integerp k) 
                (> k 0)
                )
           (= (trunc x k)
              (* (expt 2 (- n k))
                 (bits x (1- n) (- n k)))))
  :rule-classes ())

(defthm bits-trunc-original
  (implies (and (>= x (expt 2 (1- n)))
                (< x (expt 2 n))
                (integerp x) (> x 0)
                (integerp m) (>= m n)
                (integerp n) (> n k)
                (integerp k) (> k 0)
                )
           (= (trunc x k)
              (land0 x (- (expt 2 m) (expt 2 (- n k))) n)))
  :rule-classes ())