File: measures.lisp

package info (click to toggle)
acl2 7.2dfsg-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 198,968 kB
  • ctags: 182,300
  • sloc: lisp: 2,415,261; ansic: 5,675; perl: 5,577; xml: 3,576; sh: 3,255; cpp: 2,835; makefile: 2,440; ruby: 2,402; python: 778; ml: 763; yacc: 709; csh: 355; php: 171; lex: 162; tcl: 44; java: 24; asm: 23; haskell: 17
file content (211 lines) | stat: -rw-r--r-- 5,701 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
(in-package "ACL2")

#|

     measures.lisp
     ~~~~~~~~~~~~~

we define and prove in this book several theorems about the measures defined by
fixed-length lists of natural numbers. the ordering on these measures is the
function msr< and is the lexicographic ordering on lists of naturals. we prove
that the ordering on these meaures is "embedded" in the e0-ord-< ordering on
the e0-ordinals, which is axiomatized to be well-founded and thus our ordering
is well-founded.

|#

;; (defun natp (x)
;;   (and (integerp x)
;;        (>= x 0)))

;; (defthm natp-compound-recognizer
;;   (iff (natp x)
;;        (and (integerp x)
;;             (>= x 0)))
;;   :rule-classes :compound-recognizer)

;; (in-theory (disable natp))

(include-book "ordinals/e0-ordinal" :dir :system)

(defmacro len= (x y)
  `(equal (len ,x) (len ,y)))

(defun msrp (x)
  (and (consp x)
       (natp (first x))))

(defun msr< (x y)
  (and (msrp x)
       (msrp y)
       (or (and (< (first x) (first y))
                (len= (rest x) (rest y)))
           (and (equal (first x) (first y))
                (msr< (rest x) (rest y))))))

(defun msr=0 (x)
  (or (endp x)
      (let ((ctr (first x)))
        (not (and (integerp ctr)
                  (> ctr 0))))))

(defun msr1- (x)
  (let ((rest (rest x)))
    (if (msr=0 rest)
        (cons (1- (first x)) rest)
      (cons (first x) (msr1- rest)))))

(defun pump-ord (n x)
  (if (zp n) (1+ x)
    (cons (pump-ord (1- n) x) 0)))

(defun msr->ord (x)
  (if (not (msrp x)) 0
    (cons (pump-ord (len x) (first x))
          (msr->ord (rest x)))))

(defun binary-induct (x y)
  (if (or (zp x) (zp y))
      (+ x y)
    (binary-induct (1- x) (1- y))))

(defthm consp-pump-ord-reduction
  (equal (consp (pump-ord n x))
         (and (integerp n)
              (> n 0))))

(defthm pump-ord-type-prescription
  (implies (and (integerp x)
                (>= x 0))
           (or (consp (pump-ord n x))
               (and (integerp (pump-ord n x))
                    (> (pump-ord n x) 0))))
  :rule-classes :type-prescription)

(defthm e0-ord-<-pump-ord-m<n
  (implies (and (integerp n)
                (integerp m)
                (> n m)
                (>= m 0)
                (integerp x)
                (integerp y))
           (e0-ord-< (pump-ord m x)
                     (pump-ord n y)))
  :hints (("Goal" :induct (binary-induct m n))))

(defthm e0-ord-<-asymmetry
  (implies (e0-ord-< x y)
           (not (e0-ord-< y x))))

(defthm pump-ord-is-an-e0-ordinalp
  (implies (and (integerp x)
                (>= x 0))
           (e0-ordinalp (pump-ord n x))))

(defthm car-msr->ord-conditional
  (implies (consp (msr->ord x))
           (equal (car (msr->ord x))
                  (pump-ord (len x) (car x)))))

(defthm pump-ord-maps-e0-ord-<-to-<1
  (implies (and (integerp x)
                (integerp y))
           (iff (e0-ord-< (pump-ord n x)
                          (pump-ord n y))
                (< x y))))

(defthm pump-ord-maps-e0-ord-<-to-<2
  (implies (and (integerp n)
                (integerp m)
                (integerp x)
                (>= m 0)
                (>= n 0))
           (iff (e0-ord-< (pump-ord n x)
                          (pump-ord m x))
                (< n m)))
  :hints (("Goal" :induct (binary-induct m n))))

(defthm msr<-implies-equal-lengths
  (implies (msr< x y)
           (equal (len x) (len y))))

#|

We will commonly use the predicate msr< as our well-founded measure in
the spec language SL. msr< is used to compare two equilength lists of
natural numbers via the lexicographic ordering. The next two theorems
demonstrate that msr< is well-founded by showing how to embed msr<
within e0-ord-< on the e0-ordinals via the mapping msr->ord. The last
theorem demonstrates that msr1- decrements measures which are non-0.

|#

(defthm msr->ord-returns-e0-ordinals
  (e0-ordinalp (msr->ord x))
  ;; [Jared] disabling this after building it into ACL2
  :hints(("Goal" :in-theory (disable fold-consts-in-+))))

(defthm msr<-is-well-founded-via-msr->ord
  (implies (msr< x y)
           (e0-ord-< (msr->ord x)
                     (msr->ord y))))

(defthm msr-1-decreases-non0-measures
  (implies (not (msr=0 x))
           (msr< (msr1- x) x)))


;;;; we additionally include some theorems for reducing msr<, cons,
;;;; append, len and some theorems demonstrating the ordering
;;;; properties of msr<

(defthm msr<-is-irreflexive
  (not (msr< x x)))

(defthm msr<-is-asymmetric
  (implies (msr< x y)
           (not (msr< y x))))

(defthm msr<-is-transitive
  (implies (and (msr< x y)
                (msr< y z))
           (msr< x z)))

(defthm msr<-cons-reduction
  (implies (and (len= x y)
                (natp a)
                (natp b))
           (equal (msr< (cons a x)
                        (cons b y))
                  (or (< a b)
                      (and (equal a b)
                           (msr< x y))))))

; Modified slightly 12/4/2012 by Matt K. to be redundant with new ACL2
; definition.
(defun nat-listp (l)
  (declare (xargs :guard t))
  (cond ((atom l)
         (eq l nil))
        (t (and (natp (car l))
                (nat-listp (cdr l))))))

(defthm nat-listp-is-true-listp
  (implies (nat-listp x)
           (true-listp x)))

(defthm len-append-reduction
  (equal (len (append x y))
         (+ (len x) (len y))))

(defthm msr<-append-reduction
  (implies (and (force (len= x1 y1))
                (force (len= x2 y2))
                (force (nat-listp x1))
                (force (nat-listp y1)))
           (equal (msr< (append x1 x2)
                        (append y1 y2))
                  (or (msr< x1 y1)
                      (and (equal x1 y1)
                           (msr< x2 y2))))))