1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
; Std/basic - Basic definitions
; Copyright (C) 2008-2013 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "ACL2")
(include-book "xdoc/top" :dir :system)
(local (xdoc::set-default-parents std/basic))
(defsection bitp
:parents (std/basic logops-definitions)
:short "Bit recognizer. @('(bitp b)') recognizes 0 and 1."
:long "<p>This is a predicate form of the @(see type-spec) declaration
@('(TYPE BIT b)').</p>"
(defun-inline bitp (b)
(declare (xargs :guard t))
(or (eql b 0)
(eql b 1)))
)
(defsection bfix
:parents (std/basic logops-definitions bitp)
:short "Bit fix. @('(bfix b)') is a fixing function for @(see bitp)s. It
coerces any object to a bit (0 or 1) by coercing non-1 objects to 0."
:long "<p>See also @(see lbfix).</p>"
(defun-inline bfix (b)
(declare (xargs :guard t))
(if (eql b 1)
1
0)))
(defsection lbfix
:parents (std/basic logops-definitions bitp)
:short "Logical bit fix. @('(lbfix b)') is logically identical to @('(bfix
b)') but executes as the identity. It requires @('(bitp b)') as a guard, and
expands to just @('b')."
:long "@(def lbfix)"
(defmacro lbfix (x)
`(mbe :logic (bfix ,x) :exec ,x)))
(defsection bitp-basics
:extension bitp
(defthm bitp-bfix
(bitp (bfix b)))
(defthm bfix-bitp
(implies (bitp b)
(equal (bfix b) b))))
(defsection maybe-bitp
:parents (std/basic bitp)
:short "Recognizer for bits and @('nil')."
:long "<p>This is like an <a
href='https://en.wikipedia.org/wiki/Option_type'>option type</a>; when @('x')
satisfies @('maybe-bitp'), then either it is a @(see bitp) or nothing.</p>"
(defund-inline maybe-bitp (x)
(declare (xargs :guard t))
(or (not x)
(bitp x)))
(local (in-theory (enable maybe-bitp)))
(defthm maybe-bitp-compound-recognizer
(implies (maybe-bitp x)
(or (not x)
(natp x)))
:rule-classes :compound-recognizer))
(defsection lnfix
:short "@(call lnfix) is logically identical to @('(nfix x)'), but its guard
requires that @('x') is a natural number and, in the execution, it is just a
no-op that returns @('x')."
:long "<p>@(call lnfix) is an inlined, enabled function that just expands into</p>
@({
(mbe :logic (nfix x) :exec x)
})
<p>Why would you want this? When you defining a function whose @(see guard)
assumes @('(natp n)'), it is often a good idea to write the function so that it
logically treats non-naturals as 0. You might generally accomplish this by
rewriting, e.g.,:</p>
@({
(defun my-function (n ...)
(declare (xargs :guard (natp n)))
<body>)
--->
(defun my-function (n ...)
(declare (xargs :guard (natp n)))
(let ((n (nfix n)))
<body>))
})
<p>This leads to a nice @(see nat-equiv) @(see congruence) rule. But since
@(see nfix) has to check whether its argument is a natural number, and that
has some performance cost.</p>
<p>By using @(see lnfix) in place of @('nfix') here, you can get the same
logical definition without this overhead.</p>"
(defun-inline lnfix (x)
(declare (xargs :guard (natp x)))
(mbe :logic (nfix x) :exec x)))
(defsection lifix
:short "@(call lifix) is logically identical to @('(ifix x)'), but its guard
requires that @('x') is an integer and, in the execution, it is just a no-op
that returns @('x')."
:long "<p>@(call lifix) is an inlined, enabled function that just expands into</p>
@({
(mbe :logic (ifix x) :exec x)
})
<p>To understand why you might want this, see the analogous discussion about
@(see lnfix).</p>"
(defun-inline lifix (x)
(declare (xargs :guard (integerp x)))
(mbe :logic (ifix x) :exec x)))
(defsection true
:short "A function that always just returns the constant @('t')."
:long "<p>This is occasionally useful for @(see defattach), etc.</p>"
(defun true ()
(declare (xargs :guard t))
t))
(defsection false
:short "A function that just returns the constant @('nil')."
:long "<p>This is occasionally useful for @(see defattach), etc.</p>"
(defun false ()
(declare (xargs :guard t))
nil))
(defsection maybe-natp
:short "Recognizer for naturals and @('nil')."
:long "<p>This is like an <a
href='https://en.wikipedia.org/wiki/Option_type'>option type</a>; when @('x')
satisfies @('maybe-natp'), then either it is a natural number or nothing.</p>"
(defund-inline maybe-natp (x)
(declare (xargs :guard t))
(or (not x)
(natp x)))
(local (in-theory (enable maybe-natp)))
(defthm maybe-natp-compound-recognizer
(equal (maybe-natp x)
(or (not x)
(and (integerp x)
(<= 0 x))))
:rule-classes :compound-recognizer))
(defsection maybe-integerp
:short "Recognizer for integers and @('nil')."
:long "<p>This is like an <a
href='https://en.wikipedia.org/wiki/Option_type'>option type</a>; when @('x')
satisfies @('maybe-integerp'), then either it is a integer or nothing.</p>"
(defund-inline maybe-integerp (x)
(declare (xargs :guard t))
(or (not x)
(integerp x)))
(local (in-theory (enable maybe-integerp)))
(defthm maybe-integerp-compound-recognizer
(equal (maybe-integerp x)
(or (integerp x)
(not x)))
:rule-classes :compound-recognizer))
(defsection maybe-posp
:short "Recognizer for positive naturals and @('nil')."
:long "<p>This is like an <a
href='https://en.wikipedia.org/wiki/Option_type'>option type</a>; when @('x')
satisfies @('maybe-posp'), then either it is a positive, natural number or
nothing.</p>"
(defund-inline maybe-posp (x)
(declare (xargs :guard t))
(or (not x)
(posp x)))
(local (in-theory (enable maybe-posp)))
(defthm maybe-posp-compound-recognizer
(equal (maybe-posp x)
(or (and (integerp x)
(< 0 x))
(not x)))
:rule-classes :compound-recognizer))
(defsection maybe-stringp
:short "Recognizer for strings and @('nil')."
:long "<p>This is like an <a
href='https://en.wikipedia.org/wiki/Option_type'>option type</a>; when @('x')
satisfies @('maybe-stringp'), then either it is a string or nothing.</p>"
(defund-inline maybe-stringp (x)
(declare (xargs :guard t))
(or (not x)
(stringp x)))
(local (in-theory (enable maybe-stringp)))
(defthm maybe-stringp-compound-recognizer
(equal (maybe-stringp x)
(or (not x)
(stringp x)))
:rule-classes :compound-recognizer))
(defsection char-fix
:parents (std/basic str::equivalences)
:short "Coerce to a character."
:long "<p>@(call char-fix) is the identity on @(see acl2::characters), and
returns the NUL character (i.e., the character whose code is 0) for any
non-character.</p>
<p>This is similar to other fixing functions like @(see fix) and @(see nfix).
See also @(see chareqv).</p>"
(defund-inline char-fix (x)
(declare (xargs :guard t))
(if (characterp x)
x
(code-char 0)))
(local (in-theory (enable char-fix)))
(defthm characterp-of-char-fix
(characterp (char-fix x))
:rule-classes :type-prescription)
(defthm char-fix-default
(implies (not (characterp x))
(equal (char-fix x)
(code-char 0))))
(defthm char-fix-when-characterp
(implies (characterp x)
(equal (char-fix x)
x))))
(defsection chareqv
:parents (std/basic str::equivalences)
:short "Case-sensitive character equivalence test."
:long "<p>@(call chareqv) determines if @('x') and @('y') are equivalent when
interpreted as characters. That is, non-characters are first coerced to be the
NUL character (via @(see char-fix)), then we see if these coerced arguments are
equal.</p>
<p>See also @(see str::ichareqv) for a case-insensitive alternative.</p>"
(defund-inline chareqv (x y)
(declare (xargs :guard t))
(eql (char-fix x) (char-fix y)))
(local (in-theory (enable char-fix char< chareqv)))
(defequiv chareqv)
(defthm chareqv-of-char-fix
(chareqv (char-fix x) x))
(defcong chareqv equal (char-fix x) 1)
(defcong chareqv equal (char-code x) 1)
(defcong chareqv equal (char< x y) 1)
(defcong chareqv equal (char< x y) 2))
(defsection str-fix
:parents (std/basic str::equivalences)
:short "Coerce to a string."
:long "<p>@(call str-fix) is the identity on @(see acl2::stringp)s, or
returns the empty string, @('\"\"'), for any non-string.</p>
<p>This is similar to other fixing functions like @(see fix) and @(see nfix).
See also @(see streqv).</p>"
(defund-inline str-fix (x)
(declare (xargs :guard t))
(if (stringp x)
x
""))
(local (in-theory (enable str-fix)))
(defthm stringp-of-str-fix
(stringp (str-fix x))
:rule-classes :type-prescription)
(defthm str-fix-default
(implies (not (stringp x))
(equal (str-fix x)
"")))
(defthm str-fix-when-stringp
(implies (stringp x)
(equal (str-fix x)
x))))
(defsection streqv
:parents (std/basic str::equivalences)
:short "Case-sensitive string equivalence test."
:long "<p>@(call streqv) determines if @('x') and @('y') are equivalent when
interpreted as strings. That is, non-strings are first coerced to be the empty
string (via @(see str-fix)), then we see if these coerced arguments are
equal.</p>
<p>See also @(see str::istreqv) for a case-insensitive alternative.</p>"
(defund-inline streqv (x y)
(declare (xargs :guard t))
(equal (str-fix x) (str-fix y)))
(local (in-theory (enable str-fix streqv)))
(defequiv streqv)
(defthm streqv-of-str-fix
(streqv (str-fix x) x))
(defcong streqv equal (str-fix x) 1)
(defcong streqv equal (char x n) 1)
(defcong streqv equal (string-append x y) 1)
(defcong streqv equal (string-append x y) 2))
(defsection tuplep
:parents (std/basic)
:short "Recognizers for true-lists of some particular length."
:long "<p>@(call tuplep) recognizes @('n')-tuples. For instance:</p>
@({
(tuplep 3 '(1 2 3)) --> t
(tuplep 3 '(1 2)) --> nil (not long enough)
(tuplep 3 '(1 2 3 . 4)) --> nil (not a true-listp)
})
<p>We generally just leave this enabled.</p>"
(defun tuplep (n x)
(declare (xargs :guard (natp n)))
(mbe :logic (and (true-listp x)
(equal (len x) n))
:exec (and (true-listp x)
(eql (length x) n)))))
(defsection impossible
:parents (std/basic)
:short "Prove that some case is unreachable using @(see guard)s."
:long "<p>Logically, @('(impossible)') just returns @('nil').</p>
<p>But @('impossible') has a guard of @('nil'), so whenever you use it in a
function, you will be obliged to prove that it cannot be executed when the
guard holds.</p>
<p>What good is this? One use is to make sure that every possible case in a
sum type has been covered. For instance, you can write:</p>
@({
(define f ((x whatever-p))
(case (type-of x)
(:foo (handle-foo ...))
(:bar (handle-bar ...))
(otherwise (impossible))))
})
<p>This is a nice style in that, if we later extend @('x') so that its type can
also be @(':baz'), then the guard verification will fail and remind us that we
need to extend @('f') to handle @(':baz') types as well.</p>
<p>If somehow @('(impossible)') is ever executed (e.g., due to program mode
code that is violating guards), it just causes a hard error.</p>"
(defun impossible ()
(declare (xargs :guard nil))
(er hard 'impossible "Provably impossible")))
(defsection impliez
;; Added by Alessandro Coglio (coglio@kestrel.edu), Kestrel Institute.
:parents (std/basic)
:short "Logical implication defined via @(tsee if)."
:long
"<p>Since @(tsee implies) is a function,
guards in the consequent must be verified
without assuming the antecedent.
@('impliez') is a macro that expands to an @(tsee if),
so guards in the consequent can be verified
assuming the antecedent.</p>"
"<p>@(def impliez)</p>"
(defmacro impliez (p q)
`(if ,p ,q t)))
|