File: binary.lisp

package info (click to toggle)
acl2 7.2dfsg-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 198,968 kB
  • ctags: 182,300
  • sloc: lisp: 2,415,261; ansic: 5,675; perl: 5,577; xml: 3,576; sh: 3,255; cpp: 2,835; makefile: 2,440; ruby: 2,402; python: 778; ml: 763; yacc: 709; csh: 355; php: 171; lex: 162; tcl: 44; java: 24; asm: 23; haskell: 17
file content (727 lines) | stat: -rw-r--r-- 28,586 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
; ACL2 String Library
; Copyright (C) 2009-2014 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "ieqv")
(include-book "std/basic/defs" :dir :system)
(include-book "std/util/deflist" :dir :system)
(include-book "ihs/basic-definitions" :dir :system)
(local (include-book "arithmetic"))
(local (include-book "misc/assert" :dir :system))
(local (include-book "centaur/bitops/ihsext-basics" :dir :system))
(local (in-theory (disable unsigned-byte-p)))
(local (in-theory (acl2::enable* acl2::arith-equiv-forwarding)))

(local (defthm loghead-of-1
         (equal (acl2::loghead 1 n)
                (acl2::logcar n))
         :hints(("Goal" :in-theory (enable acl2::loghead**)))))

#!ACL2
(local (progn
         ;; BOZO re-prove things from ihs-extensions to avoid "apparent" dependency loop
         ;; with defs-program
         (defthm logcar-possibilities
           (or (equal (logcar a) 0)
               (equal (logcar a) 1))
           :rule-classes ((:forward-chaining :trigger-terms ((logcar a))))
           :hints(("Goal" :use logcar-type)))

         (defthm +-of-logcons-with-cin
           (implies (bitp cin)
                    (equal (+ cin
                              (logcons b1 r1)
                              (logcons b2 r2))
                           (logcons (b-xor cin (b-xor b1 b2))
                                    (+ (b-ior (b-and cin b1)
                                              (b-ior (b-and cin b2)
                                                     (b-and b1 b2)))
                                       (ifix r1)
                                       (ifix r2)))))
           :hints(("Goal" :in-theory (enable logcons b-ior b-and b-xor bitp))))

         (defthm +-of-logcons
           (equal (+ (logcons b1 r1)
                     (logcons b2 r2))
                  (logcons (b-xor b1 b2)
                           (+ (b-and b1 b2)
                              (ifix r1)
                              (ifix r2))))
           :hints(("Goal" :use ((:instance +-of-logcons-with-cin (cin 0))))))

         (defthm logcdr-of-+
           (implies (and (integerp a)
                         (integerp b))
                    (equal (logcdr (+ a b))
                           (+ (logcdr a) (logcdr b)
                              (b-and (logcar a) (logcar b))))))))

(local (defthm unsigned-byte-p-of-new-bit-on-the-front
         (implies (and (unsigned-byte-p 1 a)
                       (unsigned-byte-p n b))
                  (unsigned-byte-p (+ 1 n) (+ (ash a n) b)))
         :hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs)))))

(local (defthm unsigned-byte-p-of-new-bit-on-the-front-alt
         (implies (and (unsigned-byte-p 1 a)
                       (unsigned-byte-p n b))
                  (unsigned-byte-p (+ 1 n) (+ b (ash a n))))
         :hints(("Goal"
                 :in-theory (disable unsigned-byte-p-of-new-bit-on-the-front)
                 :use ((:instance unsigned-byte-p-of-new-bit-on-the-front))))))

(local (defthm shift-left-of-sum-of-integers
         (implies (and (natp n)
                       (integerp a)
                       (integerp b))
                  (equal (ash (+ a b) n)
                         (+ (ash a n)
                            (ash b n))))
         :hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs
                                                  acl2::ihsext-inductions)))))

(local (defthm logtail-decreases
         (implies (and (posp n)
                       (posp x))
                  (< (acl2::logtail n x) x))
         :rule-classes ((:rewrite) (:linear))
         :hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs
                                                  acl2::ihsext-inductions
                                                  acl2::logcons)))))

(defsection binary
  :parents (numbers)
  :short "Functions for working with binary numbers in strings.")

(local (xdoc::set-default-parents binary))

(define bit-digitp (x)
  :short "Recognizer for characters #\\0 and #\\1."
  :returns bool
  :long "<p>@(call bit-digitp) is the binary alternative to @(see digitp).</p>"
  :inline t
  (or (eql x #\0)
      (eql x #\1))
  ///
  (defcong ichareqv equal (bit-digitp x) 1
    :hints(("Goal" :in-theory (enable ichareqv
                                      downcase-char
                                      char-fix))))
  (defthm characterp-when-bit-digitp
    (implies (bit-digitp char)
             (characterp char))
    :rule-classes :compound-recognizer))

(std::deflist bit-digit-listp (x)
  :short "Recognizes lists of @(see bit-digitp) characters."
  (bit-digitp x)
  ///
  (defcong icharlisteqv equal (bit-digit-listp x) 1
    :hints(("Goal" :in-theory (enable icharlisteqv)))))

(define bit-digit-val
  :short "Coerces a @(see bit-digitp) character into a number, 0 or 1."
  ((x bit-digitp :type character))
  :split-types t
  :returns (val natp :rule-classes :type-prescription)
  :inline t
  (if (eql x #\1)
      1
    0)
  ///
  (local (in-theory (enable bit-digitp)))
  (defcong ichareqv equal (bit-digit-val x) 1
    :hints(("Goal" :in-theory (enable ichareqv downcase-char char-fix))))
  (defthm bit-digit-val-upper-bound
    (< (bit-digit-val x) 2)
    :rule-classes ((:rewrite) (:linear)))
  (defthm bitp-of-bit-digit-val
    (acl2::bitp (bit-digit-val x)))
  (defthm unsigned-byte-p-of-bit-digit-val
    (unsigned-byte-p 1 (bit-digit-val x)))
  (defthm equal-of-bit-digit-val-and-bit-digit-val
    (implies (and (bit-digitp x)
                  (bit-digitp y))
             (equal (equal (bit-digit-val x) (bit-digit-val y))
                    (equal x y))))
  (defthm bit-digit-val-of-digit-to-char
    (implies (and (natp n)
                  (< n 2))
             (equal (bit-digit-val (digit-to-char n))
                    n))))

(define bit-digit-list-value1
  :parents (bit-digit-list-value)
  ((x bit-digit-listp)
   (val :type unsigned-byte))
  (mbe :logic (if (consp x)
                  (bit-digit-list-value1 (cdr x)
                                         (+ (bit-digit-val (car x))
                                            (ash (nfix val) 1)))
                (nfix val))
       :exec (if (consp x)
                 (bit-digit-list-value1
                  (cdr x)
                  (the unsigned-byte
                    (+ (the (unsigned-byte 8) (if (eql (car x) #\1) 1 0))
                       (the unsigned-byte (ash (the unsigned-byte val) 1)))))
               (the unsigned-byte val)))
  :guard-hints (("Goal" :in-theory (enable bit-digit-val bit-digitp))))

(define bit-digit-list-value
  :short "Coerces a list of bit digits into a natural number."
  ((x bit-digit-listp))
  :returns (value natp :rule-classes :type-prescription)
  :long "<p>For instance, @('(bit-digit-list-value '(#\1 #\0 #\0 #\0))') is 8.
See also @(see parse-bits-from-charlist) for a more flexible function that can
tolerate non-bit digits after the number.</p>"
  :inline t
  :verify-guards nil
  (mbe :logic (if (consp x)
                  (+ (ash (bit-digit-val (car x)) (1- (len x)))
                     (bit-digit-list-value (cdr x)))
                0)
       :exec (bit-digit-list-value1 x 0))
  ///
  (defcong icharlisteqv equal (bit-digit-list-value x) 1
    :hints(("Goal" :in-theory (e/d (icharlisteqv)))))
  (defthm unsigned-byte-p-of-bit-digit-list-value
    (unsigned-byte-p (len x) (bit-digit-list-value x)))
  (defthm bit-digit-list-value-upper-bound
    (< (bit-digit-list-value x)
       (expt 2 (len x)))
    :rule-classes ((:rewrite) (:linear))
    :hints(("Goal"
            :in-theory (e/d (unsigned-byte-p)
                            (unsigned-byte-p-of-bit-digit-list-value))
            :use ((:instance unsigned-byte-p-of-bit-digit-list-value)))))
  (defthm bit-digit-list-value-upper-bound-free
    (implies (equal n (len x))
             (< (bit-digit-list-value x) (expt 2 n))))
  (defthm bit-digit-list-value1-removal
    (equal (bit-digit-list-value1 x val)
           (+ (bit-digit-list-value x)
              (ash (nfix val) (len x))))
    :hints(("Goal"
            :in-theory (enable bit-digit-list-value1)
            :induct (bit-digit-list-value1 x val))))
  (verify-guards bit-digit-list-value$inline)
  (defthm bit-digit-list-value-of-append
    (equal (bit-digit-list-value (append x (list a)))
           (+ (ash (bit-digit-list-value x) 1)
              (bit-digit-val a))))
  (local
   (assert! (and (equal (bit-digit-list-value (explode "0")) #b0)
                 (equal (bit-digit-list-value (explode "1")) #b1)
                 (equal (bit-digit-list-value (explode "01")) #b01)
                 (equal (bit-digit-list-value (explode "0101011101")) #b0101011101)))))

(define skip-leading-bit-digits
  :short "Skip over any leading 0-1 characters at the start of a character list."
  ((x character-listp))
  :returns (tail character-listp :hyp :guard)
  (cond ((atom x)             nil)
        ((bit-digitp (car x)) (skip-leading-bit-digits (cdr x)))
        (t                    x))
  ///
  (defcong charlisteqv charlisteqv (skip-leading-bit-digits x) 1
    :hints(("Goal" :in-theory (enable charlisteqv))))
  (defcong icharlisteqv icharlisteqv (skip-leading-bit-digits x) 1
    :hints(("Goal" :in-theory (enable icharlisteqv))))
  (defthm len-of-skip-leading-bit-digits
    (implies (bit-digitp (car x))
             (< (len (skip-leading-bit-digits x))
                (len x)))))

(define take-leading-bit-digits
  :short "Collect any leading 0-1 characters from the start of a character list."
  ((x character-listp))
  :returns (head character-listp)
  (cond ((atom x)             nil)
        ((bit-digitp (car x)) (cons (car x) (take-leading-bit-digits (cdr x))))
        (t                    nil))
  ///
  (local (defthm l0 ;; Gross, but gets us an equal congruence
           (implies (bit-digitp x)
                    (equal (ichareqv x y)
                           (equal x y)))
           :hints(("Goal" :in-theory (enable ichareqv
                                             downcase-char
                                             bit-digitp
                                             char-fix)))))
  (defcong icharlisteqv equal (take-leading-bit-digits x) 1
    :hints(("Goal" :in-theory (enable icharlisteqv))))
  (defthm bit-digit-listp-of-take-leading-bit-digits
    (bit-digit-listp (take-leading-bit-digits x)))
  (defthm bound-of-len-of-take-leading-bit-digits
    (<= (len (take-leading-bit-digits x)) (len x))
    :rule-classes :linear)
  (defthm equal-of-take-leading-bit-digits-and-length
    (equal (equal (len (take-leading-bit-digits x)) (len x))
           (bit-digit-listp x)))
  (defthm take-leading-bit-digits-when-bit-digit-listp
    (implies (bit-digit-listp x)
             (equal (take-leading-bit-digits x)
                    (list-fix x))))
  (defthm consp-of-take-leading-bit-digits
    (equal (consp (take-leading-bit-digits x))
           (bit-digitp (car x)))))

(define bit-digit-string-p-aux
  :parents (bit-digit-string-p)
  ((x  stringp             :type string)
   (n  natp                :type unsigned-byte)
   (xl (eql xl (length x)) :type unsigned-byte))
  :guard (<= n xl)
  :measure (nfix (- (nfix xl) (nfix n)))
  :split-types t
  :verify-guards nil
  :enabled t
  (mbe :logic
       (bit-digit-listp (nthcdr n (explode x)))
       :exec
       (if (eql n xl)
           t
         (and (bit-digitp (char x n))
              (bit-digit-string-p-aux x
                                      (the unsigned-byte (+ 1 n))
                                      xl))))
  ///
  (verify-guards bit-digit-string-p-aux
    :hints(("Goal" :in-theory (enable bit-digit-listp)))))

(define bit-digit-string-p
  :short "Recognizer for strings whose characters are all 0 or 1."
  ((x :type string))
  :returns bool
  :long "<p>Corner case: this accepts the empty string since all of its
characters are bit digits.</p>

<p>Logically this is defined in terms of @(see bit-digit-listp).  But in the
execution, we use a @(see char)-based function that avoids exploding the
string.  This provides much better performance, e.g., on an AMD FX-8350 with
CCL:</p>

@({
    ;; 0.53 seconds, no garbage
    (let ((x \"01001\"))
      (time$ (loop for i fixnum from 1 to 10000000 do
                   (str::bit-digit-string-p x))))

    ;; 0.99 seconds, 800 MB allocated
    (let ((x \"01001\"))
      (time$ (loop for i fixnum from 1 to 10000000 do
                   (str::bit-digit-listp (explode x)))))
})"
  :inline t
  :enabled t
  (mbe :logic (bit-digit-listp (explode x))
       :exec (bit-digit-string-p-aux x 0 (length x)))
  ///
  (defcong istreqv equal (bit-digit-string-p x) 1))


(define basic-natchars2
  :parents (natchars2)
  :short "Logically simple definition that is similar to @(see natchars2)."
  ((n natp))
  :returns (chars bit-digit-listp)
  :long "<p>This <i>almost</i> computes @('(natchars2 n)'), but when @('n') is
zero it returns @('nil') instead of @('(#\\0)').  You would normally never call
this function directly, but it is convenient for reasoning about @(see
natchars2).</p>"
  (if (zp n)
      nil
    (cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
          (basic-natchars2 (ash n -1))))
  ///
  (defthm basic-natchars2-when-zp
    (implies (zp n)
             (equal (basic-natchars2 n)
                    nil)))
  (defthm true-listp-of-basic-natchars2
    (true-listp (basic-natchars2 n))
    :rule-classes :type-prescription)
  (defthm character-listp-of-basic-natchars2
    (character-listp (basic-natchars2 n)))
  (defthm basic-natchars2-under-iff
    (iff (basic-natchars2 n)
         (not (zp n))))
  (defthm consp-of-basic-natchars2
    (equal (consp (basic-natchars2 n))
           (if (basic-natchars2 n) t nil)))
  (local (defun my-induction (n m)
           (if (or (zp n)
                   (zp m))
               nil
             (my-induction (ash n -1) (ash m -1)))))
  (defthm basic-natchars2-one-to-one
    (equal (equal (basic-natchars2 n)
                  (basic-natchars2 m))
           (equal (nfix n)
                  (nfix m)))
    :hints(("Goal" :induct (my-induction n m)
            :in-theory (acl2::enable* acl2::ihsext-recursive-redefs)))))

(define natchars2-aux ((n natp) acc)
  :parents (natchars2)
  :verify-guards nil
  :enabled t
  (mbe :logic
       (revappend (basic-natchars2 n) acc)
       :exec
       (if (zp n)
           acc
         (natchars2-aux
          (the unsigned-byte (ash (the unsigned-byte n) -1))
          (cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
                acc))))
  ///
  (verify-guards natchars2-aux
    :hints(("Goal" :in-theory (enable basic-natchars2)))))

(define natchars2
  :short "Convert a natural number into a list of bits."
  ((n natp))
  :returns (chars bit-digit-listp)
  :long "<p>For instance, @('(natchars 8)') is @('(#\\1 #\\0 #\\0 #\\0)').</p>

<p>This is like ACL2's built-in function @(see explode-nonnegative-integer),
except that it doesn't deal with accumulators and is limited to base 2 numbers.
These simplifications lead to particularly nice rules, e.g., about @(see
bit-digit-list-value), and somewhat better performance:</p>

@({
  ;; Times reported by an AMD FX-8350, Linux, 64-bit CCL:

  ;; .204 seconds, 303 MB allocated
  (progn (gc$)
         (time (loop for i fixnum from 1 to 1000000 do
                     (str::natchars2 i))))

  ;; 1.04 seconds, 303 MB allocated
  (progn (gc$)
         (time (loop for i fixnum from 1 to 1000000 do
            (explode-nonnegative-integer i 2 nil))))
})"
  :inline t
  (or (natchars2-aux n nil) '(#\0))
  ///
  (defthm true-listp-of-natchars2
    (and (true-listp (natchars2 n))
         (consp (natchars2 n)))
    :rule-classes :type-prescription)
  (defthm character-listp-of-natchars2
    (character-listp (natchars2 n)))
  (local (defthm lemma1
           (equal (equal (rev x) (list y))
                  (and (consp x)
                       (not (consp (cdr x)))
                       (equal (car x) y)))
           :hints(("Goal" :in-theory (enable rev)))))
  (local (defthmd lemma2
           (not (equal (basic-natchars2 n) '(#\0)))
           :hints(("Goal" :in-theory (acl2::enable* basic-natchars2
                                                    acl2::ihsext-recursive-redefs)))))
  (defthm natchars2-one-to-one
    (equal (equal (natchars2 n) (natchars2 m))
           (equal (nfix n) (nfix m)))
    :hints(("Goal"
            :in-theory (disable basic-natchars2-one-to-one)
            :use ((:instance basic-natchars2-one-to-one)
                  (:instance lemma2)
                  (:instance lemma2 (n m))))))
  (local (defthm bit-digit-list-value-of-rev-of-basic-natchars2
           (equal (bit-digit-list-value (rev (basic-natchars2 n)))
                  (nfix n))
           :hints(("Goal"
                   :induct (basic-natchars2 n)
                   :in-theory (acl2::enable* basic-natchars2
                                             acl2::ihsext-recursive-redefs
                                             acl2::logcons)))))
  (defthm bit-digit-list-value-of-natchars2
    (equal (bit-digit-list-value (natchars2 n))
           (nfix n))))


(define revappend-natchars2-aux ((n natp) (acc))
  :parents (revappend-natchars2)
  :enabled t
  :verify-guards nil
  (mbe :logic
       (append (basic-natchars2 n) acc)
       :exec
       (if (zp n)
           acc
         (cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
               (revappend-natchars2-aux
                (the unsigned-byte (ash (the unsigned-byte n) -1))
                acc))))
  ///
  (verify-guards revappend-natchars2-aux
    :hints(("Goal" :in-theory (enable basic-natchars2)))))

(define revappend-natchars2
  :short "More efficient version of @('(revappend (natchars2 n) acc).')"
  ((n natp)
   (acc))
  :returns (new-acc)
  :long "<p>This strange operation can be useful when building strings by
consing together characters in reverse order.</p>"
  :inline t
  :enabled t
  :prepwork ((local (in-theory (enable natchars2))))
  (mbe :logic (revappend (natchars2 n) acc)
       :exec (if (zp n)
                 (cons #\0 acc)
               (revappend-natchars2-aux n acc))))

(define natstr2
  :short "Convert a natural number into a string with its bits."
  ((n natp))
  :returns (str stringp :rule-classes :type-prescription)
  :long "<p>For instance, @('(natstr2 8)') is @('\"1000\"').</p>"
  :inline t
  (implode (natchars2 n))
  ///
  (defthm bit-digit-listp-of-natstr
    (bit-digit-listp (explode (natstr2 n))))
  (defthm natstr2-one-to-one
    (equal (equal (natstr2 n) (natstr2 m))
           (equal (nfix n) (nfix m))))
  (defthm bit-digit-list-value-of-natstr
    (equal (bit-digit-list-value (explode (natstr2 n)))
           (nfix n)))
  (defthm natstr2-nonempty
    (not (equal (natstr2 n) ""))))

(define natstr2-list
  :short "Convert a list of natural numbers into a list of bit strings."
  ((x nat-listp))
  :returns (strs string-listp)
  (if (atom x)
      nil
    (cons (natstr2 (car x))
          (natstr2-list (cdr x))))
  ///
  (defthm natstr2-list-when-atom
    (implies (atom x)
             (equal (natstr2-list x)
                    nil)))
  (defthm natstr2-list-of-cons
    (equal (natstr2-list (cons a x))
           (cons (natstr2 a)
                 (natstr2-list x)))))

(define natsize2
  :short "Number of characters in the binary representation of a natural."
  ((x natp))
  :returns (size posp :rule-classes :type-prescription
                 :hints(("Goal" :in-theory (enable integer-length))))
  :inline t
  (if (zp x)
      1
    (integer-length x))
  ///
  (defthm len-of-natchars2
    (equal (len (natchars2 x))
           (natsize2 x))
    :hints(("Goal" :in-theory (acl2::enable* natchars2
                                             basic-natchars2
                                             acl2::ihsext-recursive-redefs))))
  (defthm length-of-natstr2
    (equal (length (natstr2 x))
           (natsize2 x))
    :hints(("Goal" :in-theory (enable natstr2)))))

(define parse-bits-from-charlist
  :short "Parse a binary number from the beginning of a character list."
  ((x   character-listp "Characters to read from.")
   (val natp            "Accumulator for the value of the bits we have read so
                         far; typically 0 to start with.")
   (len natp            "Accumulator for the number of bits we have read;
                         typically 0 to start with."))
  :returns
  (mv (val  "Value of the initial bits as a natural number.")
      (len  "Number of initial bits we read.")
      (rest "The rest of @('x'), past the leading bits."))
  :long "<p>This function is somewhat complicated.  See also @(call
bit-digit-list-value), which is a simpler way to interpret strings where all of
the characters are 0 or 1.</p>"
  :split-types t
  (declare (type unsigned-byte val len))
  :verify-guards nil
  (mbe :logic
       (cond ((atom x)
              (mv (nfix val) (nfix len) nil))
             ((bit-digitp (car x))
              (let ((digit-val (bit-digit-val (car x))))
                (parse-bits-from-charlist (cdr x)
                                          (+ digit-val (ash (nfix val) 1))
                                          (+ 1 (nfix len)))))
             (t
              (mv (nfix val) (nfix len) x)))
       :exec
       (b* (((when (atom x))
             (mv val len nil))
            (car (car x))
            ((when (equal car #\0))
             (parse-bits-from-charlist (cdr x)
                                       (the unsigned-byte (ash val 1))
                                       (the unsigned-byte (+ 1 len))))
            ((when (equal car #\1))
             (parse-bits-from-charlist (cdr x)
                                       (the unsigned-byte (+ 1 (the unsigned-byte (ash val 1))))
                                       (the unsigned-byte (+ 1 len)))))
         (mv val len x)))
  ///
  (verify-guards parse-bits-from-charlist
    :hints(("Goal" :in-theory (enable bit-digitp
                                      bit-digit-val
                                      char-fix))))
  (defthm val-of-parse-bits-from-charlist
    (equal (mv-nth 0 (parse-bits-from-charlist x val len))
           (+ (bit-digit-list-value (take-leading-bit-digits x))
              (ash (nfix val) (len (take-leading-bit-digits x)))))
    :hints(("Goal" :in-theory (enable take-leading-bit-digits
                                      bit-digit-list-value))))

  (defthm len-of-parse-bits-from-charlist
    (equal (mv-nth 1 (parse-bits-from-charlist x val len))
           (+ (nfix len) (len (take-leading-bit-digits x))))
    :hints(("Goal" :in-theory (enable take-leading-bit-digits))))

  (defthm rest-of-parse-bits-from-charlist
    (equal (mv-nth 2 (parse-bits-from-charlist x val len))
           (skip-leading-bit-digits x))
    :hints(("Goal" :in-theory (enable skip-leading-bit-digits)))))


(define parse-bits-from-string
  :short "Parse a binary number from a string, at some offset."
  ((x   stringp "The string to parse.")
   (val natp    "Accumulator for the value we have parsed so far; typically 0 to
                 start with.")
   (len natp    "Accumulator for the number of bits we have parsed so far; typically
                 0 to start with.")
   (n   natp    "Offset into @('x') where we should begin parsing.  Must be a valid
                 index into the string, i.e., @('0 <= n < (length x)').")
   (xl  (eql xl (length x)) "Pre-computed length of @('x')."))
  :guard (<= n xl)
  :returns
  (mv (val "The value of the bits we parsed."
           natp :rule-classes :type-prescription)
      (len "The number of bits we parsed."
           natp :rule-classes :type-prescription))
  :split-types t
  (declare (type string x)
           (type unsigned-byte val len n xl))
  :verify-guards nil
  :enabled t
  :long "<p>This function is flexible but very complicated.  See @(see strval2)
for a very simple alternative that may do what you want.</p>

<p>The final @('val') and @('len') are guaranteed to be natural numbers;
failure is indicated by a return @('len') of zero.</p>

<p>Because of leading zeroes, the @('len') may be much larger than you would
expect based on @('val') alone.  The @('len') argument is generally useful if
you want to continue parsing through the string, i.e., the @('n') you started
with plus the @('len') you got out will be the next position in the string
after the number.</p>

<p>See also @(see parse-bits-from-charlist) for a simpler function that reads a
number from the start of a character list.  This function also serves as part
of our logical definition.</p>"

  (mbe :logic
       (b* (((mv val len ?rest)
             (parse-bits-from-charlist (nthcdr n (explode x)) val len)))
         (mv val len))
       :exec
       (b* (((when (eql n xl))
             (mv val len))
            ((the character char) (char (the string x)
                                        (the unsigned-byte n)))
            ((when (equal char #\0))
             (parse-bits-from-string (the string x)
                                     (the unsigned-byte (ash val 1))
                                     (the unsigned-byte (+ 1 len))
                                     (the unsigned-byte (+ 1 n))
                                     (the unsigned-byte xl)))
            ((when (equal char #\1))
             (parse-bits-from-string (the string x)
                                     (the unsigned-byte (+ 1 (the unsigned-byte (ash val 1))))
                                     (the unsigned-byte (+ 1 len))
                                     (the unsigned-byte (+ 1 n))
                                     (the unsigned-byte xl))))
         (mv val len)))
  ///
  ;; Minor speed hint
  (local (in-theory (disable BOUND-OF-LEN-OF-TAKE-LEADING-BIT-DIGITS
                             ACL2::RIGHT-SHIFT-TO-LOGTAIL
                             BIT-DIGIT-LISTP-OF-CDR-WHEN-BIT-DIGIT-LISTP)))

  (verify-guards parse-bits-from-string
    :hints(("Goal" :in-theory (enable bit-digitp
                                      bit-digit-val
                                      bit-digit-list-value
                                      take-leading-bit-digits)))))


(define strval2
  :short "Interpret a string as a binary number."
  ((x stringp))
  :returns (value? (or (natp value?)
                       (not value?))
                   :rule-classes :type-prescription)
  :long "<p>For example, @('(strval2 \"1000\")') is 8.  If the string has any
characters other than 0 or 1, or is empty, we return @('nil').</p>"
  :split-types t
  (declare (type string x))
  (mbe :logic
       (let ((chars (explode x)))
         (and (consp chars)
              (bit-digit-listp chars)
              (bit-digit-list-value chars)))
       :exec
       (b* (((the unsigned-byte xl) (length x))
            ((mv (the unsigned-byte val) (the unsigned-byte len))
             (parse-bits-from-string x 0 0 0 xl)))
         (and (not (eql 0 len))
              (eql len xl)
              val)))
  ///
  (defcong istreqv equal (strval2 x) 1)
  (local (assert! (equal (strval2 "") nil)))
  (local (assert! (equal (strval2 "0") 0)))
  (local (assert! (equal (strval2 "0101") #b0101))))