1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
|
; ACL2 String Library
; Copyright (C) 2009-2014 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "STR")
(include-book "ieqv")
(include-book "std/basic/defs" :dir :system)
(include-book "std/util/deflist" :dir :system)
(include-book "ihs/basic-definitions" :dir :system)
(local (include-book "arithmetic"))
(local (include-book "misc/assert" :dir :system))
(local (include-book "centaur/bitops/ihsext-basics" :dir :system))
(local (in-theory (disable unsigned-byte-p)))
(local (in-theory (acl2::enable* acl2::arith-equiv-forwarding)))
(local (defthm loghead-of-1
(equal (acl2::loghead 1 n)
(acl2::logcar n))
:hints(("Goal" :in-theory (enable acl2::loghead**)))))
#!ACL2
(local (progn
;; BOZO re-prove things from ihs-extensions to avoid "apparent" dependency loop
;; with defs-program
(defthm logcar-possibilities
(or (equal (logcar a) 0)
(equal (logcar a) 1))
:rule-classes ((:forward-chaining :trigger-terms ((logcar a))))
:hints(("Goal" :use logcar-type)))
(defthm +-of-logcons-with-cin
(implies (bitp cin)
(equal (+ cin
(logcons b1 r1)
(logcons b2 r2))
(logcons (b-xor cin (b-xor b1 b2))
(+ (b-ior (b-and cin b1)
(b-ior (b-and cin b2)
(b-and b1 b2)))
(ifix r1)
(ifix r2)))))
:hints(("Goal" :in-theory (enable logcons b-ior b-and b-xor bitp))))
(defthm +-of-logcons
(equal (+ (logcons b1 r1)
(logcons b2 r2))
(logcons (b-xor b1 b2)
(+ (b-and b1 b2)
(ifix r1)
(ifix r2))))
:hints(("Goal" :use ((:instance +-of-logcons-with-cin (cin 0))))))
(defthm logcdr-of-+
(implies (and (integerp a)
(integerp b))
(equal (logcdr (+ a b))
(+ (logcdr a) (logcdr b)
(b-and (logcar a) (logcar b))))))))
(local (defthm unsigned-byte-p-of-new-bit-on-the-front
(implies (and (unsigned-byte-p 1 a)
(unsigned-byte-p n b))
(unsigned-byte-p (+ 1 n) (+ (ash a n) b)))
:hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs)))))
(local (defthm unsigned-byte-p-of-new-bit-on-the-front-alt
(implies (and (unsigned-byte-p 1 a)
(unsigned-byte-p n b))
(unsigned-byte-p (+ 1 n) (+ b (ash a n))))
:hints(("Goal"
:in-theory (disable unsigned-byte-p-of-new-bit-on-the-front)
:use ((:instance unsigned-byte-p-of-new-bit-on-the-front))))))
(local (defthm shift-left-of-sum-of-integers
(implies (and (natp n)
(integerp a)
(integerp b))
(equal (ash (+ a b) n)
(+ (ash a n)
(ash b n))))
:hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs
acl2::ihsext-inductions)))))
(local (defthm logtail-decreases
(implies (and (posp n)
(posp x))
(< (acl2::logtail n x) x))
:rule-classes ((:rewrite) (:linear))
:hints(("Goal" :in-theory (acl2::enable* acl2::ihsext-recursive-redefs
acl2::ihsext-inductions
acl2::logcons)))))
(defsection binary
:parents (numbers)
:short "Functions for working with binary numbers in strings.")
(local (xdoc::set-default-parents binary))
(define bit-digitp (x)
:short "Recognizer for characters #\\0 and #\\1."
:returns bool
:long "<p>@(call bit-digitp) is the binary alternative to @(see digitp).</p>"
:inline t
(or (eql x #\0)
(eql x #\1))
///
(defcong ichareqv equal (bit-digitp x) 1
:hints(("Goal" :in-theory (enable ichareqv
downcase-char
char-fix))))
(defthm characterp-when-bit-digitp
(implies (bit-digitp char)
(characterp char))
:rule-classes :compound-recognizer))
(std::deflist bit-digit-listp (x)
:short "Recognizes lists of @(see bit-digitp) characters."
(bit-digitp x)
///
(defcong icharlisteqv equal (bit-digit-listp x) 1
:hints(("Goal" :in-theory (enable icharlisteqv)))))
(define bit-digit-val
:short "Coerces a @(see bit-digitp) character into a number, 0 or 1."
((x bit-digitp :type character))
:split-types t
:returns (val natp :rule-classes :type-prescription)
:inline t
(if (eql x #\1)
1
0)
///
(local (in-theory (enable bit-digitp)))
(defcong ichareqv equal (bit-digit-val x) 1
:hints(("Goal" :in-theory (enable ichareqv downcase-char char-fix))))
(defthm bit-digit-val-upper-bound
(< (bit-digit-val x) 2)
:rule-classes ((:rewrite) (:linear)))
(defthm bitp-of-bit-digit-val
(acl2::bitp (bit-digit-val x)))
(defthm unsigned-byte-p-of-bit-digit-val
(unsigned-byte-p 1 (bit-digit-val x)))
(defthm equal-of-bit-digit-val-and-bit-digit-val
(implies (and (bit-digitp x)
(bit-digitp y))
(equal (equal (bit-digit-val x) (bit-digit-val y))
(equal x y))))
(defthm bit-digit-val-of-digit-to-char
(implies (and (natp n)
(< n 2))
(equal (bit-digit-val (digit-to-char n))
n))))
(define bit-digit-list-value1
:parents (bit-digit-list-value)
((x bit-digit-listp)
(val :type unsigned-byte))
(mbe :logic (if (consp x)
(bit-digit-list-value1 (cdr x)
(+ (bit-digit-val (car x))
(ash (nfix val) 1)))
(nfix val))
:exec (if (consp x)
(bit-digit-list-value1
(cdr x)
(the unsigned-byte
(+ (the (unsigned-byte 8) (if (eql (car x) #\1) 1 0))
(the unsigned-byte (ash (the unsigned-byte val) 1)))))
(the unsigned-byte val)))
:guard-hints (("Goal" :in-theory (enable bit-digit-val bit-digitp))))
(define bit-digit-list-value
:short "Coerces a list of bit digits into a natural number."
((x bit-digit-listp))
:returns (value natp :rule-classes :type-prescription)
:long "<p>For instance, @('(bit-digit-list-value '(#\1 #\0 #\0 #\0))') is 8.
See also @(see parse-bits-from-charlist) for a more flexible function that can
tolerate non-bit digits after the number.</p>"
:inline t
:verify-guards nil
(mbe :logic (if (consp x)
(+ (ash (bit-digit-val (car x)) (1- (len x)))
(bit-digit-list-value (cdr x)))
0)
:exec (bit-digit-list-value1 x 0))
///
(defcong icharlisteqv equal (bit-digit-list-value x) 1
:hints(("Goal" :in-theory (e/d (icharlisteqv)))))
(defthm unsigned-byte-p-of-bit-digit-list-value
(unsigned-byte-p (len x) (bit-digit-list-value x)))
(defthm bit-digit-list-value-upper-bound
(< (bit-digit-list-value x)
(expt 2 (len x)))
:rule-classes ((:rewrite) (:linear))
:hints(("Goal"
:in-theory (e/d (unsigned-byte-p)
(unsigned-byte-p-of-bit-digit-list-value))
:use ((:instance unsigned-byte-p-of-bit-digit-list-value)))))
(defthm bit-digit-list-value-upper-bound-free
(implies (equal n (len x))
(< (bit-digit-list-value x) (expt 2 n))))
(defthm bit-digit-list-value1-removal
(equal (bit-digit-list-value1 x val)
(+ (bit-digit-list-value x)
(ash (nfix val) (len x))))
:hints(("Goal"
:in-theory (enable bit-digit-list-value1)
:induct (bit-digit-list-value1 x val))))
(verify-guards bit-digit-list-value$inline)
(defthm bit-digit-list-value-of-append
(equal (bit-digit-list-value (append x (list a)))
(+ (ash (bit-digit-list-value x) 1)
(bit-digit-val a))))
(local
(assert! (and (equal (bit-digit-list-value (explode "0")) #b0)
(equal (bit-digit-list-value (explode "1")) #b1)
(equal (bit-digit-list-value (explode "01")) #b01)
(equal (bit-digit-list-value (explode "0101011101")) #b0101011101)))))
(define skip-leading-bit-digits
:short "Skip over any leading 0-1 characters at the start of a character list."
((x character-listp))
:returns (tail character-listp :hyp :guard)
(cond ((atom x) nil)
((bit-digitp (car x)) (skip-leading-bit-digits (cdr x)))
(t x))
///
(defcong charlisteqv charlisteqv (skip-leading-bit-digits x) 1
:hints(("Goal" :in-theory (enable charlisteqv))))
(defcong icharlisteqv icharlisteqv (skip-leading-bit-digits x) 1
:hints(("Goal" :in-theory (enable icharlisteqv))))
(defthm len-of-skip-leading-bit-digits
(implies (bit-digitp (car x))
(< (len (skip-leading-bit-digits x))
(len x)))))
(define take-leading-bit-digits
:short "Collect any leading 0-1 characters from the start of a character list."
((x character-listp))
:returns (head character-listp)
(cond ((atom x) nil)
((bit-digitp (car x)) (cons (car x) (take-leading-bit-digits (cdr x))))
(t nil))
///
(local (defthm l0 ;; Gross, but gets us an equal congruence
(implies (bit-digitp x)
(equal (ichareqv x y)
(equal x y)))
:hints(("Goal" :in-theory (enable ichareqv
downcase-char
bit-digitp
char-fix)))))
(defcong icharlisteqv equal (take-leading-bit-digits x) 1
:hints(("Goal" :in-theory (enable icharlisteqv))))
(defthm bit-digit-listp-of-take-leading-bit-digits
(bit-digit-listp (take-leading-bit-digits x)))
(defthm bound-of-len-of-take-leading-bit-digits
(<= (len (take-leading-bit-digits x)) (len x))
:rule-classes :linear)
(defthm equal-of-take-leading-bit-digits-and-length
(equal (equal (len (take-leading-bit-digits x)) (len x))
(bit-digit-listp x)))
(defthm take-leading-bit-digits-when-bit-digit-listp
(implies (bit-digit-listp x)
(equal (take-leading-bit-digits x)
(list-fix x))))
(defthm consp-of-take-leading-bit-digits
(equal (consp (take-leading-bit-digits x))
(bit-digitp (car x)))))
(define bit-digit-string-p-aux
:parents (bit-digit-string-p)
((x stringp :type string)
(n natp :type unsigned-byte)
(xl (eql xl (length x)) :type unsigned-byte))
:guard (<= n xl)
:measure (nfix (- (nfix xl) (nfix n)))
:split-types t
:verify-guards nil
:enabled t
(mbe :logic
(bit-digit-listp (nthcdr n (explode x)))
:exec
(if (eql n xl)
t
(and (bit-digitp (char x n))
(bit-digit-string-p-aux x
(the unsigned-byte (+ 1 n))
xl))))
///
(verify-guards bit-digit-string-p-aux
:hints(("Goal" :in-theory (enable bit-digit-listp)))))
(define bit-digit-string-p
:short "Recognizer for strings whose characters are all 0 or 1."
((x :type string))
:returns bool
:long "<p>Corner case: this accepts the empty string since all of its
characters are bit digits.</p>
<p>Logically this is defined in terms of @(see bit-digit-listp). But in the
execution, we use a @(see char)-based function that avoids exploding the
string. This provides much better performance, e.g., on an AMD FX-8350 with
CCL:</p>
@({
;; 0.53 seconds, no garbage
(let ((x \"01001\"))
(time$ (loop for i fixnum from 1 to 10000000 do
(str::bit-digit-string-p x))))
;; 0.99 seconds, 800 MB allocated
(let ((x \"01001\"))
(time$ (loop for i fixnum from 1 to 10000000 do
(str::bit-digit-listp (explode x)))))
})"
:inline t
:enabled t
(mbe :logic (bit-digit-listp (explode x))
:exec (bit-digit-string-p-aux x 0 (length x)))
///
(defcong istreqv equal (bit-digit-string-p x) 1))
(define basic-natchars2
:parents (natchars2)
:short "Logically simple definition that is similar to @(see natchars2)."
((n natp))
:returns (chars bit-digit-listp)
:long "<p>This <i>almost</i> computes @('(natchars2 n)'), but when @('n') is
zero it returns @('nil') instead of @('(#\\0)'). You would normally never call
this function directly, but it is convenient for reasoning about @(see
natchars2).</p>"
(if (zp n)
nil
(cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
(basic-natchars2 (ash n -1))))
///
(defthm basic-natchars2-when-zp
(implies (zp n)
(equal (basic-natchars2 n)
nil)))
(defthm true-listp-of-basic-natchars2
(true-listp (basic-natchars2 n))
:rule-classes :type-prescription)
(defthm character-listp-of-basic-natchars2
(character-listp (basic-natchars2 n)))
(defthm basic-natchars2-under-iff
(iff (basic-natchars2 n)
(not (zp n))))
(defthm consp-of-basic-natchars2
(equal (consp (basic-natchars2 n))
(if (basic-natchars2 n) t nil)))
(local (defun my-induction (n m)
(if (or (zp n)
(zp m))
nil
(my-induction (ash n -1) (ash m -1)))))
(defthm basic-natchars2-one-to-one
(equal (equal (basic-natchars2 n)
(basic-natchars2 m))
(equal (nfix n)
(nfix m)))
:hints(("Goal" :induct (my-induction n m)
:in-theory (acl2::enable* acl2::ihsext-recursive-redefs)))))
(define natchars2-aux ((n natp) acc)
:parents (natchars2)
:verify-guards nil
:enabled t
(mbe :logic
(revappend (basic-natchars2 n) acc)
:exec
(if (zp n)
acc
(natchars2-aux
(the unsigned-byte (ash (the unsigned-byte n) -1))
(cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
acc))))
///
(verify-guards natchars2-aux
:hints(("Goal" :in-theory (enable basic-natchars2)))))
(define natchars2
:short "Convert a natural number into a list of bits."
((n natp))
:returns (chars bit-digit-listp)
:long "<p>For instance, @('(natchars 8)') is @('(#\\1 #\\0 #\\0 #\\0)').</p>
<p>This is like ACL2's built-in function @(see explode-nonnegative-integer),
except that it doesn't deal with accumulators and is limited to base 2 numbers.
These simplifications lead to particularly nice rules, e.g., about @(see
bit-digit-list-value), and somewhat better performance:</p>
@({
;; Times reported by an AMD FX-8350, Linux, 64-bit CCL:
;; .204 seconds, 303 MB allocated
(progn (gc$)
(time (loop for i fixnum from 1 to 1000000 do
(str::natchars2 i))))
;; 1.04 seconds, 303 MB allocated
(progn (gc$)
(time (loop for i fixnum from 1 to 1000000 do
(explode-nonnegative-integer i 2 nil))))
})"
:inline t
(or (natchars2-aux n nil) '(#\0))
///
(defthm true-listp-of-natchars2
(and (true-listp (natchars2 n))
(consp (natchars2 n)))
:rule-classes :type-prescription)
(defthm character-listp-of-natchars2
(character-listp (natchars2 n)))
(local (defthm lemma1
(equal (equal (rev x) (list y))
(and (consp x)
(not (consp (cdr x)))
(equal (car x) y)))
:hints(("Goal" :in-theory (enable rev)))))
(local (defthmd lemma2
(not (equal (basic-natchars2 n) '(#\0)))
:hints(("Goal" :in-theory (acl2::enable* basic-natchars2
acl2::ihsext-recursive-redefs)))))
(defthm natchars2-one-to-one
(equal (equal (natchars2 n) (natchars2 m))
(equal (nfix n) (nfix m)))
:hints(("Goal"
:in-theory (disable basic-natchars2-one-to-one)
:use ((:instance basic-natchars2-one-to-one)
(:instance lemma2)
(:instance lemma2 (n m))))))
(local (defthm bit-digit-list-value-of-rev-of-basic-natchars2
(equal (bit-digit-list-value (rev (basic-natchars2 n)))
(nfix n))
:hints(("Goal"
:induct (basic-natchars2 n)
:in-theory (acl2::enable* basic-natchars2
acl2::ihsext-recursive-redefs
acl2::logcons)))))
(defthm bit-digit-list-value-of-natchars2
(equal (bit-digit-list-value (natchars2 n))
(nfix n))))
(define revappend-natchars2-aux ((n natp) (acc))
:parents (revappend-natchars2)
:enabled t
:verify-guards nil
(mbe :logic
(append (basic-natchars2 n) acc)
:exec
(if (zp n)
acc
(cons (if (eql (the bit (logand n 1)) 1) #\1 #\0)
(revappend-natchars2-aux
(the unsigned-byte (ash (the unsigned-byte n) -1))
acc))))
///
(verify-guards revappend-natchars2-aux
:hints(("Goal" :in-theory (enable basic-natchars2)))))
(define revappend-natchars2
:short "More efficient version of @('(revappend (natchars2 n) acc).')"
((n natp)
(acc))
:returns (new-acc)
:long "<p>This strange operation can be useful when building strings by
consing together characters in reverse order.</p>"
:inline t
:enabled t
:prepwork ((local (in-theory (enable natchars2))))
(mbe :logic (revappend (natchars2 n) acc)
:exec (if (zp n)
(cons #\0 acc)
(revappend-natchars2-aux n acc))))
(define natstr2
:short "Convert a natural number into a string with its bits."
((n natp))
:returns (str stringp :rule-classes :type-prescription)
:long "<p>For instance, @('(natstr2 8)') is @('\"1000\"').</p>"
:inline t
(implode (natchars2 n))
///
(defthm bit-digit-listp-of-natstr
(bit-digit-listp (explode (natstr2 n))))
(defthm natstr2-one-to-one
(equal (equal (natstr2 n) (natstr2 m))
(equal (nfix n) (nfix m))))
(defthm bit-digit-list-value-of-natstr
(equal (bit-digit-list-value (explode (natstr2 n)))
(nfix n)))
(defthm natstr2-nonempty
(not (equal (natstr2 n) ""))))
(define natstr2-list
:short "Convert a list of natural numbers into a list of bit strings."
((x nat-listp))
:returns (strs string-listp)
(if (atom x)
nil
(cons (natstr2 (car x))
(natstr2-list (cdr x))))
///
(defthm natstr2-list-when-atom
(implies (atom x)
(equal (natstr2-list x)
nil)))
(defthm natstr2-list-of-cons
(equal (natstr2-list (cons a x))
(cons (natstr2 a)
(natstr2-list x)))))
(define natsize2
:short "Number of characters in the binary representation of a natural."
((x natp))
:returns (size posp :rule-classes :type-prescription
:hints(("Goal" :in-theory (enable integer-length))))
:inline t
(if (zp x)
1
(integer-length x))
///
(defthm len-of-natchars2
(equal (len (natchars2 x))
(natsize2 x))
:hints(("Goal" :in-theory (acl2::enable* natchars2
basic-natchars2
acl2::ihsext-recursive-redefs))))
(defthm length-of-natstr2
(equal (length (natstr2 x))
(natsize2 x))
:hints(("Goal" :in-theory (enable natstr2)))))
(define parse-bits-from-charlist
:short "Parse a binary number from the beginning of a character list."
((x character-listp "Characters to read from.")
(val natp "Accumulator for the value of the bits we have read so
far; typically 0 to start with.")
(len natp "Accumulator for the number of bits we have read;
typically 0 to start with."))
:returns
(mv (val "Value of the initial bits as a natural number.")
(len "Number of initial bits we read.")
(rest "The rest of @('x'), past the leading bits."))
:long "<p>This function is somewhat complicated. See also @(call
bit-digit-list-value), which is a simpler way to interpret strings where all of
the characters are 0 or 1.</p>"
:split-types t
(declare (type unsigned-byte val len))
:verify-guards nil
(mbe :logic
(cond ((atom x)
(mv (nfix val) (nfix len) nil))
((bit-digitp (car x))
(let ((digit-val (bit-digit-val (car x))))
(parse-bits-from-charlist (cdr x)
(+ digit-val (ash (nfix val) 1))
(+ 1 (nfix len)))))
(t
(mv (nfix val) (nfix len) x)))
:exec
(b* (((when (atom x))
(mv val len nil))
(car (car x))
((when (equal car #\0))
(parse-bits-from-charlist (cdr x)
(the unsigned-byte (ash val 1))
(the unsigned-byte (+ 1 len))))
((when (equal car #\1))
(parse-bits-from-charlist (cdr x)
(the unsigned-byte (+ 1 (the unsigned-byte (ash val 1))))
(the unsigned-byte (+ 1 len)))))
(mv val len x)))
///
(verify-guards parse-bits-from-charlist
:hints(("Goal" :in-theory (enable bit-digitp
bit-digit-val
char-fix))))
(defthm val-of-parse-bits-from-charlist
(equal (mv-nth 0 (parse-bits-from-charlist x val len))
(+ (bit-digit-list-value (take-leading-bit-digits x))
(ash (nfix val) (len (take-leading-bit-digits x)))))
:hints(("Goal" :in-theory (enable take-leading-bit-digits
bit-digit-list-value))))
(defthm len-of-parse-bits-from-charlist
(equal (mv-nth 1 (parse-bits-from-charlist x val len))
(+ (nfix len) (len (take-leading-bit-digits x))))
:hints(("Goal" :in-theory (enable take-leading-bit-digits))))
(defthm rest-of-parse-bits-from-charlist
(equal (mv-nth 2 (parse-bits-from-charlist x val len))
(skip-leading-bit-digits x))
:hints(("Goal" :in-theory (enable skip-leading-bit-digits)))))
(define parse-bits-from-string
:short "Parse a binary number from a string, at some offset."
((x stringp "The string to parse.")
(val natp "Accumulator for the value we have parsed so far; typically 0 to
start with.")
(len natp "Accumulator for the number of bits we have parsed so far; typically
0 to start with.")
(n natp "Offset into @('x') where we should begin parsing. Must be a valid
index into the string, i.e., @('0 <= n < (length x)').")
(xl (eql xl (length x)) "Pre-computed length of @('x')."))
:guard (<= n xl)
:returns
(mv (val "The value of the bits we parsed."
natp :rule-classes :type-prescription)
(len "The number of bits we parsed."
natp :rule-classes :type-prescription))
:split-types t
(declare (type string x)
(type unsigned-byte val len n xl))
:verify-guards nil
:enabled t
:long "<p>This function is flexible but very complicated. See @(see strval2)
for a very simple alternative that may do what you want.</p>
<p>The final @('val') and @('len') are guaranteed to be natural numbers;
failure is indicated by a return @('len') of zero.</p>
<p>Because of leading zeroes, the @('len') may be much larger than you would
expect based on @('val') alone. The @('len') argument is generally useful if
you want to continue parsing through the string, i.e., the @('n') you started
with plus the @('len') you got out will be the next position in the string
after the number.</p>
<p>See also @(see parse-bits-from-charlist) for a simpler function that reads a
number from the start of a character list. This function also serves as part
of our logical definition.</p>"
(mbe :logic
(b* (((mv val len ?rest)
(parse-bits-from-charlist (nthcdr n (explode x)) val len)))
(mv val len))
:exec
(b* (((when (eql n xl))
(mv val len))
((the character char) (char (the string x)
(the unsigned-byte n)))
((when (equal char #\0))
(parse-bits-from-string (the string x)
(the unsigned-byte (ash val 1))
(the unsigned-byte (+ 1 len))
(the unsigned-byte (+ 1 n))
(the unsigned-byte xl)))
((when (equal char #\1))
(parse-bits-from-string (the string x)
(the unsigned-byte (+ 1 (the unsigned-byte (ash val 1))))
(the unsigned-byte (+ 1 len))
(the unsigned-byte (+ 1 n))
(the unsigned-byte xl))))
(mv val len)))
///
;; Minor speed hint
(local (in-theory (disable BOUND-OF-LEN-OF-TAKE-LEADING-BIT-DIGITS
ACL2::RIGHT-SHIFT-TO-LOGTAIL
BIT-DIGIT-LISTP-OF-CDR-WHEN-BIT-DIGIT-LISTP)))
(verify-guards parse-bits-from-string
:hints(("Goal" :in-theory (enable bit-digitp
bit-digit-val
bit-digit-list-value
take-leading-bit-digits)))))
(define strval2
:short "Interpret a string as a binary number."
((x stringp))
:returns (value? (or (natp value?)
(not value?))
:rule-classes :type-prescription)
:long "<p>For example, @('(strval2 \"1000\")') is 8. If the string has any
characters other than 0 or 1, or is empty, we return @('nil').</p>"
:split-types t
(declare (type string x))
(mbe :logic
(let ((chars (explode x)))
(and (consp chars)
(bit-digit-listp chars)
(bit-digit-list-value chars)))
:exec
(b* (((the unsigned-byte xl) (length x))
((mv (the unsigned-byte val) (the unsigned-byte len))
(parse-bits-from-string x 0 0 0 xl)))
(and (not (eql 0 len))
(eql len xl)
val)))
///
(defcong istreqv equal (strval2 x) 1)
(local (assert! (equal (strval2 "") nil)))
(local (assert! (equal (strval2 "0") 0)))
(local (assert! (equal (strval2 "0101") #b0101))))
|