1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
|
; ACL2 String Library
; Copyright (C) 2009-2014 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "STR")
(include-book "ieqv")
(include-book "std/basic/defs" :dir :system)
(include-book "std/util/deflist-base" :dir :system)
(include-book "std/lists/rev" :dir :system)
(include-book "std/lists/append" :dir :system)
(local (include-book "arithmetic"))
(local (include-book "misc/assert" :dir :system))
(local (include-book "ihs/quotient-remainder-lemmas" :dir :system))
(local (in-theory (disable floor mod truncate)))
(defsection decimal
:parents (numbers)
:short "Functions for working with decimal (base 10) numbers in strings.")
(local (xdoc::set-default-parents decimal))
(define digitp (x)
:short "Recognizer for numeric characters (0-9)."
:returns bool
:long "<p>ACL2 provides @(see digit-char-p) which is more flexible and can
recognize numeric characters in other bases. @(call digitp) only recognizes
base-10 digits, but is much faster, at least on CCL. Here is an experiment you
can run in raw lisp, with times reported in CCL on an AMD FX-8350.</p>
@({
(defconstant *chars*
(loop for i from 0 to 256 collect (code-char i)))
;; 17.130 seconds, no garbage
(time (loop for i fixnum from 1 to 10000000 do
(loop for c in *chars* do (digit-char-p c))))
;; 3.772 seconds, no garbage
(time (loop for i fixnum from 1 to 10000000 do
(loop for c in *chars* do (str::digitp c))))
})"
:inline t
(mbe :logic (let ((code (char-code (char-fix x))))
(and (<= (char-code #\0) code)
(<= code (char-code #\9))))
:exec (and (characterp x)
(let ((code (the (unsigned-byte 8)
(char-code (the character x)))))
(declare (type (unsigned-byte 8) code))
(and (<= (the (unsigned-byte 8) code)
(the (unsigned-byte 8) 57))
(<= (the (unsigned-byte 8) 48)
(the (unsigned-byte 8) code))))))
///
(defcong ichareqv equal (digitp x) 1
:hints(("Goal" :in-theory (enable ichareqv
downcase-char
char-fix))))
(defthm characterp-when-digitp
(implies (digitp char)
(characterp char))
:rule-classes :compound-recognizer))
(define nonzero-digitp (x)
:short "Recognizer for non-zero numeric characters (1-9)."
:returns bool
:inline t
(mbe :logic (let ((code (char-code (char-fix x))))
(and (<= (char-code #\1) code)
(<= code (char-code #\9))))
:exec (and (characterp x)
(let ((code (the (unsigned-byte 8)
(char-code (the character x)))))
(declare (type (unsigned-byte 8) code))
(and (<= (the (unsigned-byte 8) code)
(the (unsigned-byte 8) 57))
(<= (the (unsigned-byte 8) 49)
(the (unsigned-byte 8) code))))))
///
(defcong ichareqv equal (nonzero-digitp x) 1
:hints(("Goal" :in-theory (enable ichareqv
downcase-char
char-fix))))
(defthm digitp-when-nonzero-digitp
(implies (nonzero-digitp x)
(digitp x))
:hints(("Goal" :in-theory (enable digitp)))))
(define digit-val
:short "Coerces a @(see digitp) character into a number."
((x digitp :type character))
:split-types t
:returns (val natp :rule-classes :type-prescription)
:long "<p>For instance, @('(digit-val #\\3)') is 3. For any non-digitp, 0 is
returned.</p>"
:inline t
(mbe :logic
(if (digitp x)
(- (char-code (char-fix x))
(char-code #\0))
0)
:exec
(the (unsigned-byte 8)
(- (the (unsigned-byte 8) (char-code (the character x)))
(the (unsigned-byte 8) 48))))
:prepwork
((local (in-theory (enable digitp char-fix))))
///
(defcong ichareqv equal (digit-val x) 1
:hints(("Goal" :in-theory (enable ichareqv downcase-char))))
(defthm digit-val-upper-bound
(< (digit-val x) 10)
:rule-classes ((:rewrite) (:linear)))
(defthm equal-of-digit-val-and-digit-val
(implies (and (digitp x)
(digitp y))
(equal (equal (digit-val x) (digit-val y))
(equal x y))))
(defthm digit-val-of-digit-to-char
(implies (and (natp n)
(< n 10))
(equal (digit-val (digit-to-char n))
n))))
(std::deflist digit-listp (x)
:short "Recognizes lists of @(see digitp) characters."
(digitp x)
///
(defcong icharlisteqv equal (digit-listp x) 1
:hints(("Goal" :in-theory (enable icharlisteqv))))
(defthm character-listp-when-digit-listp
(implies (digit-listp x)
(equal (character-listp x)
(true-listp x)))
:rule-classes ((:rewrite :backchain-limit-lst 1))))
(define digit-list-value1
:parents (digit-list-value)
((x digit-listp)
(val :type unsigned-byte))
(mbe :logic (if (consp x)
(digit-list-value1 (cdr x)
(+ (digit-val (car x))
(* 10 (nfix val))))
(nfix val))
:exec (if (consp x)
(digit-list-value1
(cdr x)
(the unsigned-byte
(+ (the (unsigned-byte 8)
(- (the (unsigned-byte 8)
(char-code (the character (car x))))
(the (unsigned-byte 8) 48)))
(* (the unsigned-byte 10)
(the unsigned-byte val)))))
(the unsigned-byte val)))
:guard-hints (("Goal" :in-theory (enable digit-val digitp))))
(define digit-list-value
:short "Coerces a @(see digit-listp) into a natural number."
((x digit-listp))
:returns (value natp :rule-classes :type-prescription)
:long "<p>For instance, @('(digit-list-value '(#\1 #\0 #\3))') is 103. See
also @(see parse-nat-from-charlist) for a more flexible function that
can tolerate non-numeric characters after the number.</p>"
:inline t
:verify-guards nil
(mbe :logic (if (consp x)
(+ (* (expt 10 (1- (len x)))
(digit-val (car x)))
(digit-list-value (cdr x)))
0)
:exec (digit-list-value1 x 0))
///
(defcong icharlisteqv equal (digit-list-value x) 1
:hints(("Goal" :in-theory (e/d (icharlisteqv)))))
(defthm digit-list-value-upper-bound
(< (digit-list-value x)
(expt 10 (len x)))
:hints(("Goal" :nonlinearp t)))
(defthm digit-list-value-upper-bound-free
(implies (equal n (len x))
(< (digit-list-value x) (expt 10 n))))
(defthm digit-list-value1-removal
(equal (digit-list-value1 x val)
(+ (digit-list-value x)
(* (nfix val) (expt 10 (len x)))))
:hints(("Goal"
:in-theory (enable digit-list-value1)
:induct (digit-list-value1 x val))))
(verify-guards digit-list-value$inline)
(defthm digit-list-value-of-append
(equal (digit-list-value (append x (list a)))
(+ (* 10 (digit-list-value x))
(digit-val a)))))
(define skip-leading-digits
:short "Skip over any leading digits at the start of a character list."
(x)
:returns (tail character-listp :hyp (character-listp x))
(cond ((atom x) nil)
((digitp (car x)) (skip-leading-digits (cdr x)))
(t x))
///
(defcong charlisteqv charlisteqv (skip-leading-digits x) 1
:hints(("Goal" :in-theory (enable charlisteqv))))
(defcong icharlisteqv icharlisteqv (skip-leading-digits x) 1
:hints(("Goal" :in-theory (enable icharlisteqv))))
(defthm len-of-skip-leading-digits
(equal (< (len (skip-leading-digits x))
(len x))
(digitp (car x)))
:rule-classes ((:rewrite)
(:linear :corollary (implies (digitp (car x))
(< (len (skip-leading-digits x))
(len x)))))))
(define take-leading-digits
:short "Collect any leading digits from the start of a character list."
(x)
:returns (head character-listp :hyp (character-listp x))
(cond ((atom x) nil)
((digitp (car x)) (cons (car x) (take-leading-digits (cdr x))))
(t nil))
///
(local (defthm l0 ;; Gross, but gets us an equal congruence
(implies (digitp x)
(equal (ichareqv x y)
(equal x y)))
:hints(("Goal" :in-theory (enable ichareqv
downcase-char
digitp
char-fix)))))
(defcong icharlisteqv equal (take-leading-digits x) 1
:hints(("Goal" :in-theory (enable icharlisteqv))))
(defthm digit-listp-of-take-leading-digits
(digit-listp (take-leading-digits x)))
(defthm bound-of-len-of-take-leading-digits
(<= (len (take-leading-digits x)) (len x))
:rule-classes :linear)
(defthm equal-of-take-leading-digits-and-length
(equal (equal (len (take-leading-digits x)) (len x))
(digit-listp x)))
(defthm take-leading-digits-when-digit-listp
(implies (digit-listp x)
(equal (take-leading-digits x)
(list-fix x))))
(defthm consp-of-take-leading-digits
(equal (consp (take-leading-digits x))
(digitp (car x)))))
(define digit-string-p-aux
:parents (digit-string-p)
((x stringp :type string)
(n natp :type unsigned-byte)
(xl (eql xl (length x)) :type unsigned-byte))
:guard (<= n xl)
:measure (nfix (- (nfix xl) (nfix n)))
:split-types t
:verify-guards nil
:enabled t
(mbe :logic
(digit-listp (nthcdr n (explode x)))
:exec
(if (eql n xl)
t
(and (digitp (char x n))
(digit-string-p-aux x
(the unsigned-byte (+ 1 n))
xl))))
///
(verify-guards digit-string-p-aux
:hints(("Goal" :in-theory (enable digit-listp)))))
(define digit-string-p
:short "Recognizer for strings whose characters are all decimal digits."
((x :type string))
:returns bool
:long "<p>Corner case: this accepts the empty string since all of its
characters are decimal digits.</p>
<p>Logically this is defined in terms of @(see digit-listp). But in the
execution, we use a @(see char)-based function that avoids exploding the
string. This provides much better performance, e.g., on an AMD FX-8350
with CCL:</p>
@({
;; 0.48 seconds, no garbage
(let ((x \"1234\"))
(time$ (loop for i fixnum from 1 to 10000000 do
(str::digit-string-p x))))
;; 0.82 seconds, 640 MB allocated
(let ((x \"1234\"))
(time$ (loop for i fixnum from 1 to 10000000 do
(str::digit-listp (coerce x 'list)))))
})"
:inline t
:enabled t
(mbe :logic (digit-listp (explode x))
:exec (digit-string-p-aux x 0 (length x)))
///
(defcong istreqv equal (digit-string-p x) 1))
(define basic-natchars
:parents (natchars)
:short "Logically simple definition that is similar to @(see natchars)."
((n natp))
:returns (chars digit-listp)
:long "<p>This <i>almost</i> computes @('(natchars n)'), but when @('n') is
zero it returns @('nil') instead of @('(#\\0)'). You would normally never call
this function directly, but it is convenient for reasoning about @(see
natchars).</p>"
(if (zp n)
nil
(cons (digit-to-char (mod n 10))
(basic-natchars (floor n 10))))
:prepwork
((local (defthm l0
(implies (and (< a 10)
(< b 10)
(natp a)
(natp b))
(equal (equal (digit-to-char a) (digit-to-char b))
(equal a b)))))
(local (defthm l1
(implies (and (< a 10)
(natp a))
(digitp (digit-to-char a)))))
(local (in-theory (disable digit-to-char))))
///
(defthm basic-natchars-when-zp
(implies (zp n)
(equal (basic-natchars n)
nil)))
(defthm true-listp-of-basic-natchars
(true-listp (basic-natchars n))
:rule-classes :type-prescription)
(defthm character-listp-of-basic-natchars
(character-listp (basic-natchars n)))
(defthm basic-natchars-under-iff
(iff (basic-natchars n)
(not (zp n))))
(defthm consp-of-basic-natchars
(equal (consp (basic-natchars n))
(if (basic-natchars n) t nil)))
(local (defun my-induction (n m)
(if (or (zp n)
(zp m))
nil
(my-induction (floor n 10) (floor m 10)))))
(defthm basic-natchars-one-to-one
(equal (equal (basic-natchars n)
(basic-natchars m))
(equal (nfix n)
(nfix m)))
:hints(("Goal" :induct (my-induction n m)))))
(define natchars-aux ((n natp) acc)
:parents (natchars)
:verify-guards nil
:enabled t
(mbe :logic
(revappend (basic-natchars n) acc)
:exec
(if (zp n)
acc
(natchars-aux
(the unsigned-byte (truncate (the unsigned-byte n) 10))
(cons (the character (code-char
(the (unsigned-byte 8)
(+ (the (unsigned-byte 8) 48)
(the (unsigned-byte 8)
(rem (the unsigned-byte n) 10))))))
acc))))
///
(verify-guards natchars-aux
:hints(("Goal" :in-theory (enable basic-natchars)))))
(define natchars
:short "Convert a natural number into a list of characters."
((n natp))
:returns (chars digit-listp)
:long "<p>For instance, @('(natchars 123)') is @('(#\\1 #\\2 #\\3)').</p>
<p>This is like ACL2's built-in function @(see explode-nonnegative-integer),
except that it doesn't deal with accumulators and is limited to base 10
numbers. These simplifications lead to particularly nice rules, e.g., about
@(see digit-list-value), and somewhat better performance:</p>
@({
;; Times reported by an AMD FX-8350, Linux, 64-bit CCL:
;; 2.80 seconds, 1.1 GB allocated
(progn (gc$)
(time (loop for i fixnum from 1 to 10000000 do
(str::natchars i))))
;; 4.28 seconds, 1.1 GB allocated
(progn (gc$)
(time (loop for i fixnum from 1 to 10000000 do
(explode-nonnegative-integer i 10 nil))))
})"
:inline t
(or (natchars-aux n nil) '(#\0))
///
(defthm true-listp-of-natchars
(and (true-listp (natchars n))
(consp (natchars n)))
:rule-classes :type-prescription)
(defthm character-listp-of-natchars
(character-listp (natchars n)))
(local (defthm lemma1
(equal (equal (rev x) (list y))
(and (consp x)
(not (consp (cdr x)))
(equal (car x) y)))
:hints(("Goal" :in-theory (enable rev)))))
(local (defthmd lemma2
(not (equal (basic-natchars n) '(#\0)))
:hints(("Goal" :in-theory (enable basic-natchars)))))
(defthm natchars-one-to-one
(equal (equal (natchars n) (natchars m))
(equal (nfix n) (nfix m)))
:hints(("Goal"
:in-theory (disable basic-natchars-one-to-one)
:use ((:instance basic-natchars-one-to-one)
(:instance lemma2)
(:instance lemma2 (n m))))))
(local (defthm digit-list-value-of-rev-of-basic-natchars
(equal (digit-list-value (rev (basic-natchars n)))
(nfix n))
:hints(("Goal"
:induct (basic-natchars n)
:in-theory (e/d (basic-natchars)
(digit-to-char))))))
(defthm digit-list-value-of-natchars
(equal (digit-list-value (natchars n))
(nfix n))))
(define revappend-natchars-aux ((n natp) (acc))
:parents (revappend-natchars)
:enabled t
:verify-guards nil
(mbe :logic
(append (basic-natchars n) acc)
:exec
(if (zp n)
acc
(cons (the character (code-char
(the (unsigned-byte 8)
(+ (the (unsigned-byte 8) 48)
(the (unsigned-byte 8)
(rem (the unsigned-byte n) 10))))))
(revappend-natchars-aux
(the unsigned-byte (truncate (the unsigned-byte n) 10))
acc))))
///
(verify-guards revappend-natchars-aux
:hints(("Goal" :in-theory (enable basic-natchars)))))
(define revappend-natchars
:short "More efficient version of @('(revappend (natchars n) acc).')"
((n natp)
(acc))
:returns (new-acc)
:long "<p>This strange operation can be useful when building strings by
consing together characters in reverse order.</p>"
:enabled t
:inline t
:prepwork ((local (in-theory (enable natchars))))
(mbe :logic (revappend (natchars n) acc)
:exec (if (zp n)
(cons #\0 acc)
(revappend-natchars-aux n acc))))
(define natstr
:short "Convert a natural number into a string with its digits."
((n natp))
:returns (str stringp :rule-classes :type-prescription)
:long "<p>For instance, @('(natstr 123)') is @('\"123\"').</p>"
:inline t
(implode (natchars n))
///
(defthm digit-listp-of-natstr
(digit-listp (explode (natstr n))))
(defthm natstr-one-to-one
(equal (equal (natstr n) (natstr m))
(equal (nfix n) (nfix m))))
(defthm digit-list-value-of-natstr
(equal (digit-list-value (explode (natstr n)))
(nfix n)))
(defthm natstr-nonempty
(not (equal (natstr n) ""))))
(define natstr-list
:short "Convert a list of natural numbers into a list of strings."
((x nat-listp))
:returns (strs string-listp)
(if (atom x)
nil
(cons (natstr (car x))
(natstr-list (cdr x))))
///
(defthm natstr-list-when-atom
(implies (atom x)
(equal (natstr-list x)
nil)))
(defthm natstr-list-of-cons
(equal (natstr-list (cons a x))
(cons (natstr a)
(natstr-list x)))))
(define natsize-slow ((x natp))
:parents (natsize)
(if (< (lnfix x) 10)
1
(the unsigned-byte
(+ 1 (the unsigned-byte
(natsize-slow
(the unsigned-byte (truncate x 10))))))))
(local (defthm natsize-slow-bound
(implies (posp x)
(<= (natsize-slow x) x))
:rule-classes ((:rewrite) (:linear))
:hints(("Goal" :in-theory (enable natsize-slow)))))
(define natsize-fast ((x :type (unsigned-byte 29)))
:parents (natsize)
:verify-guards nil
:enabled t
(mbe :logic (natsize-slow x)
:exec
(if (< x 10)
1
(the (unsigned-byte 29)
(+ 1
(the (unsigned-byte 29)
(natsize-fast (the (unsigned-byte 29) (truncate x 10))))))))
///
(verify-guards natsize-fast
:hints(("Goal" :in-theory (enable natsize-slow)))))
(define natsize
:short "Number of characters in the decimal representation of a natural."
((x natp))
:returns (size posp :rule-classes :type-prescription)
:inline t
:verify-guards nil
(mbe :logic
(if (< (lnfix x) 10)
1
(+ 1 (natsize (truncate x 10))))
:exec
(if (<= (mbe :logic (nfix x) :exec x) 536870911)
(natsize-fast x)
(natsize-slow x)))
///
(defthm natsize-slow-removal
(equal (natsize-slow x)
(natsize x))
:hints(("Goal" :in-theory (enable natsize-slow))))
(defthm natsize-fast-removal
(equal (natsize-fast x)
(natsize x)))
(verify-guards natsize$inline))
(define parse-nat-from-charlist
:short "Parse a natural number from the beginning of a character list."
((x character-listp "Characters to read from.")
(val natp "Accumulator for the value of the digits we have read so
far; typically 0 to start with.")
(len natp "Accumulator for the number of digits we have read;
typically 0 to start with."))
:returns
(mv (val "Value of the initial digits as a natural number.")
(len "Number of initial digits we read.")
(rest "The rest of @('x'), past the leading digits."))
:long "<p>This function is somewhat complicated. See also @(call
digit-list-value), which is a simpler way to interpret strings where all of the
characters are digits.</p>"
:split-types t
(declare (type unsigned-byte val len))
:verify-guards nil
(mbe :logic
(cond ((atom x)
(mv (nfix val) (nfix len) nil))
((digitp (car x))
(let ((digit-val (digit-val (car x))))
(parse-nat-from-charlist (cdr x)
(+ digit-val (* 10 (nfix val)))
(+ 1 (nfix len)))))
(t
(mv (nfix val) (nfix len) x)))
:exec
(b* (((when (atom x))
(mv val len nil))
((the (unsigned-byte 8) code)
(char-code (the character (car x))))
((unless (and (<= (the (unsigned-byte 8) code) (the (unsigned-byte 8) 57))
(<= (the (unsigned-byte 8) 48) (the (unsigned-byte 8) code))))
(mv val len x))
((the (unsigned-byte 8) digit-val) (the (unsigned-byte 8)
(- (the (unsigned-byte 8) code)
(the (unsigned-byte 8) 48)))))
(parse-nat-from-charlist
(cdr x)
(the unsigned-byte (+ (the (unsigned-byte 8) digit-val)
(the unsigned-byte (* 10 val))))
(the unsigned-byte (+ 1 (the integer len))))))
///
(verify-guards parse-nat-from-charlist
:hints(("Goal" :in-theory (enable digitp digit-val char-fix))))
(defthm val-of-parse-nat-from-charlist
(equal (mv-nth 0 (parse-nat-from-charlist x val len))
(+ (digit-list-value (take-leading-digits x))
(* (nfix val) (expt 10 (len (take-leading-digits x))))))
:hints(("Goal" :in-theory (enable take-leading-digits
digit-list-value))))
(defthm len-of-parse-nat-from-charlist
(equal (mv-nth 1 (parse-nat-from-charlist x val len))
(+ (nfix len) (len (take-leading-digits x))))
:hints(("Goal" :in-theory (enable take-leading-digits))))
(defthm rest-of-parse-nat-from-charlist
(equal (mv-nth 2 (parse-nat-from-charlist x val len))
(skip-leading-digits x))
:hints(("Goal" :in-theory (enable skip-leading-digits)))))
(define parse-nat-from-string
:short "Parse a natural number from a string, at some offset."
((x stringp "The string to parse.")
(val natp "Accumulator for the value we have parsed so far; typically 0 to
start with.")
(len natp "Accumulator for the number of digits we have parsed so far; typically
0 to start with.")
(n natp "Offset into @('x') where we should begin parsing. Must be a valid
index into the string, i.e., @('0 <= n < (length x)').")
(xl (eql xl (length x)) "Pre-computed length of @('x')."))
:guard (<= n xl)
:returns
(mv (val "The value of the digits we parsed."
natp :rule-classes :type-prescription)
(len "The number of digits we parsed."
natp :rule-classes :type-prescription))
:split-types t
(declare (type string x)
(type unsigned-byte val len n xl))
:verify-guards nil
:enabled t
:long "<p>This function is flexible but very complicated. See @(see strval)
for a very simple alternative that may do what you want.</p>
<p>The final @('val') and @('len') are guaranteed to be natural numbers;
failure is indicated by a return @('len') of zero.</p>
<p>Because of leading zeroes, the @('len') may be much larger than you would
expect based on @('val') alone. The @('len') argument is generally useful if
you want to continue parsing through the string, i.e., the @('n') you started
with plus the @('len') you got out will be the next position in the string
after the number.</p>
<p>See also @(see parse-nat-from-charlist) for a simpler function that reads a
number from the start of a character list. This function also serves as part
of our logical definition.</p>"
(mbe :logic
(b* (((mv val len ?rest)
(parse-nat-from-charlist (nthcdr n (explode x)) val len)))
(mv val len))
:exec
(b* (((when (eql n xl))
(mv val len))
((the (unsigned-byte 8) code)
(char-code (the character
(char (the string x)
(the unsigned-byte n)))))
((unless (and (<= (the (unsigned-byte 8) code)
(the (unsigned-byte 8) 57))
(<= (the (unsigned-byte 8) 48)
(the (unsigned-byte 8) code))))
(mv val len))
((the (unsigned-byte 8) digit-val)
(the (unsigned-byte 8)
(- (the (unsigned-byte 8) code)
(the (unsigned-byte 8) 48)))))
(parse-nat-from-string
(the string x)
(the unsigned-byte
(+ (the (unsigned-byte 8) digit-val)
(the unsigned-byte (* 10 (the unsigned-byte val)))))
(the unsigned-byte (+ 1 (the unsigned-byte len)))
(the unsigned-byte (+ 1 (the unsigned-byte n)))
(the unsigned-byte xl))))
///
;; Speed hint
(local (in-theory (disable acl2::nth-when-bigger
acl2::negative-when-natp
default-+-2
default-+-1
default-<-2
commutativity-of-+
default-<-1
ACL2::|x < y => 0 < y-x|)))
(verify-guards parse-nat-from-string
:hints(("Goal" :in-theory (enable digitp
digit-val
take-leading-digits
digit-list-value
)))))
(define strval
:short "Interpret a string as a decimal number."
((x stringp))
:returns (value? (or (natp value?)
(not value?))
:rule-classes :type-prescription)
:long "<p>For example, @('(strval \"35\")') is 35. If the string has any
non-decimal digit characters or is empty, we return @('nil').</p>"
:split-types t
(declare (type string x))
(mbe :logic
(let ((chars (explode x)))
(and (consp chars)
(digit-listp chars)
(digit-list-value chars)))
:exec
(b* (((the unsigned-byte xl) (length x))
((mv (the unsigned-byte val) (the unsigned-byte len))
(parse-nat-from-string x 0 0 0 xl)))
(and (not (eql 0 len))
(eql len xl)
val)))
///
(defcong istreqv equal (strval x) 1)
(local (assert! (equal (strval "") nil)))
(local (assert! (equal (strval "0") 0)))
(local (assert! (equal (strval "1234") 1234))))
|