File: translate.lisp

package info (click to toggle)
acl2 7.2dfsg-3
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 198,968 kB
  • ctags: 182,300
  • sloc: lisp: 2,415,261; ansic: 5,675; perl: 5,577; xml: 3,576; sh: 3,255; cpp: 2,835; makefile: 2,440; ruby: 2,402; python: 778; ml: 763; yacc: 709; csh: 355; php: 171; lex: 162; tcl: 44; java: 24; asm: 23; haskell: 17
file content (9991 lines) | stat: -rw-r--r-- 445,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
; ACL2 Version 7.2 -- A Computational Logic for Applicative Common Lisp
; Copyright (C) 2016, Regents of the University of Texas

; This version of ACL2 is a descendent of ACL2 Version 1.9, Copyright
; (C) 1997 Computational Logic, Inc.  See the documentation topic NOTE-2-0.

; This program is free software; you can redistribute it and/or modify
; it under the terms of the LICENSE file distributed with ACL2.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
; LICENSE for more details.

; Written by:  Matt Kaufmann               and J Strother Moore
; email:       Kaufmann@cs.utexas.edu      and Moore@cs.utexas.edu
; Department of Computer Science
; University of Texas at Austin
; Austin, TX 78712 U.S.A.

(in-package "ACL2")

(mutual-recursion

(defun termp (x w)
  (declare (xargs :guard (plist-worldp-with-formals w)))
  (cond ((atom x) (legal-variablep x))
        ((eq (car x) 'quote)
         (and (consp (cdr x))
              (null (cddr x))))
        ((symbolp (car x))
         (let ((arity (arity (car x) w)))
           (and arity
                (true-listp (cdr x))
                (eql (length (cdr x)) arity)
                (term-listp (cdr x) w))))
        ((and (consp (car x))
              (true-listp (car x))
              (eq (car (car x)) 'lambda)
              (equal 3 (length (car x)))
              (arglistp (cadr (car x)))
              (termp (caddr (car x)) w)
              (null (set-difference-eq
                     (all-vars (caddr (car x)))
                     (cadr (car x))))
              (term-listp (cdr x) w)
              (equal (length (cadr (car x)))
                     (length (cdr x))))
         t)
        (t nil)))

(defun term-listp (x w)
  (declare (xargs :guard (plist-worldp-with-formals w)))
  (cond ((atom x) (equal x nil))
        ((termp (car x) w) (term-listp (cdr x) w))
        (t nil)))

)

(defun term-list-listp (l w)
  (declare (xargs :guard (plist-worldp-with-formals w)))
  (if (atom l)
      (equal l nil)
    (and (term-listp (car l) w)
         (term-list-listp (cdr l) w))))

(defun computed-hint-tuple-listp (x wrld)
  (cond
   ((consp x)
    (let ((tuple (car x)))
      (and (true-listp tuple)
           (eq (car tuple) 'EVAL-AND-TRANSLATE-HINT-EXPRESSION)
           (booleanp (caddr tuple))
           (termp (cadddr tuple) wrld)
           (computed-hint-tuple-listp (cdr x) wrld))))
   (t (null x))))

(table default-hints-table nil nil
       :guard
       (case key
         ((t) (true-listp val))
         (:override (computed-hint-tuple-listp val world))
         (t nil)))

(table default-hints-table nil nil :clear)

(defun macro-args (x w)
  (getpropc x 'macro-args
            '(:error "We thought macro-args was only called if there were ~
                      (zero or more) macro-args.")
            w))

(defconst *macro-expansion-ctx* "macro expansion")

(defun error-trace-suggestion (two-leading-spaces)

; Warning: Do not eliminate the message about print-gv without first reading
; the comment about it in ev-fncall-guard-er-msg.

  (declare (xargs :mode :program))
  (msg "~s0To debug see :DOC print-gv, see :DOC trace, and see :DOC wet."
       (if two-leading-spaces
           "  "
         "")))

(defun ignored-attachment-msg (ignored-attachment)
  (cond (ignored-attachment (msg "~|~%Note that because of logical ~
                                  considerations, attachments (including ~x0) ~
                                  must not be called in this context.  See ~
                                  :DOC ignored-attachment."
                                 ignored-attachment))
        (t "")))

(defun ev-fncall-null-body-er-msg (ignored-attachment fn args)
  (cond
   ((eq fn :non-exec)

; This is a special case for calls of (non-exec form), where in this case, args
; is form.

    (assert$
     (null ignored-attachment) ; This case has nothing to do with attachments.
     (msg "ACL2 has been instructed to cause an error because of an attempt ~
           to evaluate the following form (see :DOC non-exec):~|~%  ~
           ~x0.~|~%~@1"
          args ; actually, the form
          (error-trace-suggestion nil))))
   (t (msg "ACL2 cannot ev the call of undefined function ~x0 on argument ~
            list:~|~%~x1~@2~|~%~@3"
           fn
           args
           (ignored-attachment-msg ignored-attachment)
           (error-trace-suggestion nil)))))

(defun ev-fncall-null-body-er (ignored-attachment fn args latches)
  (mv t
      (ev-fncall-null-body-er-msg ignored-attachment fn args)
      latches))

(defun ev-fncall-creator-er-msg (fn)
  (msg
   "An attempt has been made to call the stobj creator function ~x0.  This ~
    error is being reported even though guard-checking may have been turned ~
    off, because ACL2 does not support non-compliant live stobj manipulation. ~
    ~ If you did not explicitly call ~x0 then this error is probably due to ~
    an attempt to evaluate a with-local-stobj form directly in the top-level ~
    loop.  Such forms are only allowed in the bodies of functions and in ~
    theorems.  Also see :DOC with-local-stobj.~@1"
   fn
   (error-trace-suggestion t)))

(defun unknown-pkg-error-msg (fn pkg-name)
  (msg
   "The call ~x0 is illegal because the argument is not the name of a package ~
    currently known to ACL2."
   (list fn pkg-name)))

(defun illegal-msg ()
  (msg "Evaluation aborted.~@0"
       (error-trace-suggestion t)))

(defun program-only-er-msg (fn args safe-mode)
  (msg
   "The call ~x0 is an illegal call of a function that has been marked as ~
    ``program-only,'' and hence has special raw Lisp code.  This call is ~
    illegal because program-only functions are only allowed to invoke their ~
    raw Lisp code, but in this case there was an attempt to invoke executable ~
    counterpart code ~#1~[because of guard-checking (see :DOC ~
    guard-evaluation-table)~/because it is being called under a ``safe mode'' ~
    that is used, for example, during macroexpansion~]."
   (cons fn args)
   (if safe-mode 1 0)))

(defconst *safe-mode-guard-er-addendum*
  "  The guard is being checked because this function is a primitive and a ~
   \"safe\" mode is being used for defconst, defpkg, macroexpansion, or ~
   another operation where safe mode is required.")

(defun find-first-non-nil (lst)
  (cond ((endp lst) nil)
        (t (or (car lst)
               (find-first-non-nil (cdr lst))))))

; For a discussion of stobj latching, see Stobj Latching below.

(defun latch-stobjs1 (stobjs-out vals latches)
  (cond ((endp stobjs-out) latches)
        ((car stobjs-out)
         (let ((temp (assoc-eq (car stobjs-out) latches)))
           (cond

; Suppose (car stobjs-out) is some stobj, $st, and (car vals) is the
; new value, val.  We wish to bind '$st in latches to val.  It is an
; error if we can't find a binding for '$st.  Otherwise, put-assoc-eq
; will do the job.  But in the special, live, case, val is EQ to the
; current binding of '$st in latches, because all the objects are
; live.  In this case, we can avoid the put-assoc-eq and just leave
; latches unchanged.  The clause below is safe whether val is a live
; object or not: if it's the same thing as what is there, the
; put-assoc-eq won't change latches anyway.  But the real intent of
; this clause is make the final value of latches, in general, EQ to
; the original value of latches.


            ((not temp)
             (er hard! 'latch-stobjs
                 "We are trying to latch a value for the single-threaded ~
                  object named ~x0, but there is no entry for that name in ~
                  the stobj latches provided.  The possible latch names are ~
                  ~&1.~#2~[~/  This error most likely is caused by the ~
                  attempt to ev a form that is not ``supposed'' to mention ~
                  stobjs but does.  Often when dealing with forms that are ~
                  not supposed to mention stobjs we call ev with last ~
                  argument NIL and then ignore the resulting latches.~]"
                 (car stobjs-out)
                 (strip-cars latches)
                 (if latches 0 1)))
            #-acl2-loop-only
            ((eq (cdr temp) (car vals))
             (latch-stobjs1 (cdr stobjs-out)
                            (cdr vals)
                            latches))
            (t
             #-acl2-loop-only
             (er hard! 'latch-stobjs1
                 "We had thought that the values in user-stobj-alist match up ~
                  with the values of corresponding stobjs.  Please contact ~
                  the ACL2 implementors.")
             #+acl2-loop-only
             (latch-stobjs1 (cdr stobjs-out)
                            (cdr vals)
                            (put-assoc-eq (car stobjs-out)
                                          (car vals)
                                          latches))))))
        (t (latch-stobjs1 (cdr stobjs-out)
                          (cdr vals)
                          latches))))

(defun latch-stobjs (stobjs-out vals latches)

; Update the latches so that it contains the stobj objects returned in
; val.  Val is either a single value or a list of 2 or more values, as
; indicated by stobjs-out.  If stobjs-out is nil it is treated as a
; list of as many nils as necessary and no change is made to val.  If
; latches is nil, we do nothing.  This means that we are not recording
; the ``current'' stobjs and one must be careful to obey the
; restrictions in the Essay on EV.

  (cond ((null latches) latches)
        ((null stobjs-out) latches)
        ((null (cdr stobjs-out))
         (cond ((car stobjs-out)
; We call latch-stobjs1 rather than put-assoc-eq to get the error check.
                (latch-stobjs1 stobjs-out (list vals) latches))
               (t latches)))
        (t (latch-stobjs1 stobjs-out vals latches))))

#-acl2-loop-only
; We deliberately do not assign a value for the following.  It is let-bound in
; ev and friends and assigned during the evaluation of *1* functions.  If we
; call *1* functions directly in raw Lisp, we will presumably get an
; unbound-variable error, but at least that will call our attention to the fact
; that it should be bound before calling *1* functions.
(defvar *raw-guard-warningp*)

(defun actual-stobjs-out1 (stobjs-in args user-stobj-alist)
  (cond ((endp stobjs-in)
         (assert$ (null args) nil))
        (t (let ((rest (actual-stobjs-out1 (cdr stobjs-in) (cdr args)
                                           user-stobj-alist)))
             (cond ((or (null (car stobjs-in))
                        (eq (car stobjs-in) 'state))
                    rest)
                   (t (let ((pair (rassoc-equal (car args) user-stobj-alist)))
                        (assert$ pair
                                 (cond ((eq (car stobjs-in) (car pair))
                                        rest)
                                       (t (acons (car stobjs-in)
                                                 (car pair)
                                                 rest)))))))))))

(defun apply-symbol-alist (alist lst acc)

; Alist represents a function to apply to each element of lst, a list of
; symbols.  (This function is the identity on elements not in the domain of
; alist.)  The resulting list is accumulated into acc and reversed.

  (cond ((endp lst) (reverse acc))
        (t (apply-symbol-alist alist
                               (cdr lst)
                               (cons (let ((pair (assoc-eq (car lst) alist)))
                                       (cond (pair (cdr pair))
                                             (t (car lst))))
                                     acc)))))

(defun apply-inverse-symbol-alist (alist lst acc)

; See apply-symbol-alist.  Here, though, we apply the inverse of the mapping
; represented by alist.  We assume that the cdrs of alist are suitable for
; testing with eq (i.e., symbols or stobjs).

  (cond ((endp lst) (reverse acc))
        (t (apply-inverse-symbol-alist
            alist
            (cdr lst)
            (cons (let ((pair (rassoc-eq (car lst) alist)))
                    (cond (pair (car pair))
                          (t (car lst))))
                  acc)))))

(defun actual-stobjs-out (fn args wrld user-stobj-alist)
  (let ((stobjs-out (stobjs-out fn wrld)))
    (cond ((all-nils stobjs-out) ; optimization for common case
           stobjs-out)
          (t (let ((stobjs-in (stobjs-in fn wrld)))
               (let ((alist
                      (actual-stobjs-out1 stobjs-in args user-stobj-alist)))
                 (cond (alist (apply-symbol-alist alist stobjs-out nil))
                       (t stobjs-out))))))))

#-acl2-loop-only
(defvar **1*-as-raw*

; When a *1* function is called and this variable is true, that function should
; behave as its corresponding raw Lisp function, except that critical guards
; for stobj updaters are checked.  We can live with that rather vague
; specification because this variable is nil unless we are under the call of a
; program mode function.

; For the sake of simplicity in the discussion below, we ignore the possibility
; that guard-checking is set to :none or :all and we ignore safe-mode.  Also,
; we assume that the value of state global 'check-invariant-risk is non-nil, as
; should always be the case unless someone is hacking; otherwise, the effect of
; this variable is defeated.

; Oneify-cltl-code uses this variable, **1*-as-raw*, to arrange that when a
; *1* :logic-mode function that calls mbe is itself called under a *1*
; :program-mode function, then the :exec code of that mbe call is evaluated,
; not the :logic code.  Our approach is basically as follows.  Globally,
; **1*-as-raw* is nil.  But we arrange the following, and explain below.
; 
; (a) The *1* code for an invariant-risk :program mode function binds
;     **1*-as-raw* to t.
; 
; (b) The *1* code for an mbe call reduces to its :exec code when **1*-as-raw*
;     is true.
;
; (c) Raw-ev-fncall binds **1*-as-raw* to nil for :logic mode functions.
;
; (d) Oneify binds **1*-as-raw* to nil when ec-call is applied to a :logic
;     mode function.

; Without invariant-risk, none of this would be necessary: a :program mode
; function call would lead to raw Lisp evaluation, where each mbe call
; macroexpands to its :exec code.  But with invariant-risk, we need to stick
; with *1* execution in order to avoid making ill-guarded stobj updater calls,
; in which case (a) and (b) save us from execution of :logic code from an mbe
; call.  Note that the use of :exec code from mbe calls can be important for
; performance, as pointed out by Jared Davis.

; To see why we need (c), consider the following example.

;   (defstobj st (fld :type integer :initially 0))
;   
;   (defun lgc (st)
;     (declare (xargs :mode :logic
;                     :stobjs st
;                     :verify-guards nil))
;     (mbe :logic (prog2$ (cw "@@@LOGIC@@@~%")
;                         (update-fld 3 st))
;          :exec (prog2$ (cw "@@@EXEC@@@~%")
;                        (update-fld 4 st))))
;   
;   (defun foo (state st)
;     (declare (xargs :mode :program :stobjs (state st)))
;     (let ((st (update-fld 7 st)))
;       (mv-let (erp val state)
;               (trans-eval
;                '(thm (equal (with-local-stobj
;                              st
;                              (mv-let (val st)
;                                      (let ((st (lgc st)))
;                                        (mv (fld st) st))
;                                      val))
;                             4)) 'top state t)
;               (mv erp val state st))))

; The proof should fail when calling (foo state st), since logically, the value
; of the with-local-stobj form is 3, not 4.  But since foo has invariant-risk,
; **1*-as-raw* is bound to t when calling *1*foo, so we might expect that
; evaluation of the mbe form under (lgc st) would use the :exec form, leading
; erroneously to a successful proof!  However, we bind **1*-as-raw* to nil in
; raw-ev-fncall precisely to avoid such a probem.

; To see why we need (d), see the example in a comment in oneify that starts
; with "(defun f-log".

  nil)

#-acl2-loop-only
(defun raw-ev-fncall (fn args latches w user-stobj-alist
                         hard-error-returns-nilp aok)
  (the #+acl2-mv-as-values (values t t t)
       #-acl2-mv-as-values t
       (let* ((*aokp*

; We expect the parameter aok, here and in all functions in the "ev family"
; that take aok as an argument, to be Boolean.  If it's not, then there is no
; real harm done: *aokp* would be bound here to a non-Boolean value, suggesting
; that an attachment has been used when that isn't necessarily the case; see
; *aokp*.

               aok)
              (pair (assoc-eq 'state latches))
              (w (if pair (w (cdr pair)) w)) ; (cdr pair) = *the-live-state*
              (throw-raw-ev-fncall-flg t)
              (**1*-as-raw*

; We defeat the **1*-as-raw* optimization so that when we use raw-ev-fncall to
; evaluate a call of a :logic mode term, all of the evaluation will take place
; in the logic.  Note that we don't restrict this special treatment to
; :common-lisp-compliant functions, because such a function might call an
; :ideal mode function wrapped in ec-call.  But we do restrict to :logic mode
; functions, since they cannot call :program mode functions and hence there
; cannot be a subsidiary rebinding of **1*-as-raw* to t.

               (if (logicalp fn w)
                   nil
                 **1*-as-raw*))
              (*1*fn (*1*-symbol fn))
              (applied-fn (cond
                           ((fboundp *1*fn) *1*fn)
                           ((and (global-val 'boot-strap-flg w)
                                 (not (global-val 'boot-strap-pass-2 w)))
                            fn)
                           (t
                            (er hard 'raw-ev-fncall
                                "We had thought that *1* functions were ~
                                 always defined outside the first pass of ~
                                 initialization, but the *1* function for ~
                                 ~x0, which should be ~x1, is not."
                                fn *1*fn))))
              (stobjs-out
               (cond ((eq fn 'return-last)

; Things can work out fine if we imagine that return-last returns a single
; value: in the case of (return-last ... (mv ...)), the mv returns a list and
; we just pass that along.

                      '(nil))
; The next form was originally conditionalized with #+acl2-extra-checks, but we
; want to do this unconditionally.
                     (latches ; optimization
                      (actual-stobjs-out fn args w user-stobj-alist))
                     (t (stobjs-out fn w))))
              (val (catch 'raw-ev-fncall
                     (cond ((not (fboundp fn))
                            (er hard 'raw-ev-fncall
                                "A function, ~x0, that was supposed to be ~
                                 defined is not.  Supposedly, this can only ~
                                 arise because of aborts during undoing.  ~
                                 There is no recovery from this erroneous ~
                                 state."
                                fn)))
                     (prog1
                         (let ((*hard-error-returns-nilp*
                                hard-error-returns-nilp))
                           #-acl2-mv-as-values
                           (apply applied-fn args)
                           #+acl2-mv-as-values
                           (cond ((null (cdr stobjs-out))
                                  (apply applied-fn args))
                                 (t (multiple-value-list
                                     (apply applied-fn args)))))
                       (setq throw-raw-ev-fncall-flg nil))))

; It is important to rebind w here, since we may have updated state since the
; last binding of w.

              (w (if pair

; We use the live state now if and only if we used it above, in which case (cdr
; pair) = *the-live-state*.

                     (w (cdr pair))
                   w)))

; Observe that if a throw to 'raw-ev-fncall occurred during the
; (apply fn args) then the local variable throw-raw-ev-fncall-flg
; is t and otherwise it is nil.  If a throw did occur, val is the
; value thrown.

         (cond
          (throw-raw-ev-fncall-flg
           (mv t (ev-fncall-msg val w user-stobj-alist) latches))
          (t #-acl2-mv-as-values ; adjust val for the multiple value case
             (let ((val
                    (cond
                     ((null (cdr stobjs-out)) val)
                     (t (cons val
                              (mv-refs (1- (length stobjs-out))))))))
               (mv nil
                   val
; The next form was originally conditionalized with #+acl2-extra-checks, with
; value latches when #-acl2-extra-checks; but we want this unconditionally.
                   (latch-stobjs stobjs-out ; adjusted to actual-stobjs-out
                                 val
                                 latches)))
             #+acl2-mv-as-values ; val already adjusted for multiple value case
             (mv nil
                 val
; The next form was originally conditionalized with #+acl2-extra-checks, with
; value latches when #-acl2-extra-checks; but we want this unconditionally.
                 (latch-stobjs stobjs-out ; adjusted to actual-stobjs-out
                               val
                               latches)))))))

(defun translated-acl2-unwind-protectp4 (term)

; This hideous looking function recognizes those terms that are the
; translations of (acl2-unwind-protect "expl" body cleanup1 cleanup2).  The
; acl2-unwind-protect macro expands into an MV-LET and that MV-LET is
; translated in one of two ways, depending on whether or not the two cleanup
; forms are equal.  We look for both translations.  We return 4 results.  The
; first is t or nil according to whether term is of one of the two forms.  If
; nil, the other results are nil.  If term is of either form, we return in the
; other three results: body, cleanup1 and cleanup2 such that term is equivalent
; to (acl2-unwind-protect "expl" body cleanup1 cleanup2).

; WARNING: This function must be kept in sync with the defmacro of
; acl2-unwind-protect, the translate1 clauses dealing with mv-let and let, and
; the defmacro of mv-let.

  (case-match
   term
   ((('LAMBDA (mv . vars)
      (('LAMBDA ('ACL2-UNWIND-PROTECT-ERP
                 'ACL2-UNWIND-PROTECT-VAL 'STATE . vars)
        ('IF 'ACL2-UNWIND-PROTECT-ERP
             ('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
                              ACL2-UNWIND-PROTECT-ERP)
                       (CONS ACL2-UNWIND-PROTECT-ERP
                             (CONS ACL2-UNWIND-PROTECT-VAL
                                   (CONS STATE 'NIL))))
              cleanup1 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP)
             ('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
                              ACL2-UNWIND-PROTECT-ERP)
                       (CONS ACL2-UNWIND-PROTECT-ERP
                             (CONS ACL2-UNWIND-PROTECT-VAL
                                   (CONS STATE 'NIL))))
              cleanup2 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP)))
       '(MV-NTH '0 mv)
       '(MV-NTH '1 mv)
       '(MV-NTH '2 mv)
       . vars))
     body . vars)
    (declare (ignore mv vars))

; Does it matter what mv is?  In principle it surely does: if mv is some
; screwy variable then it might be that this term doesn't actually have the
; semantics we are about to ascribe to it.  We know mv is not in vars since
; this is a termp and mv and vars are used in the same lambda arglist.  But
; what if mv is, say, ACL2-UNWIND-PROTECT-ERP?  Is the semantics affected?
; No: mv's binding, no matter what name we chose outside of vars, is
; unaffected.  Similarly, the names in vars are irrelevant, given that we know
; they don't include ACL2-UNWIND-PROTECT-ERP, etc., which is assured by the
; same observation that term is a termp.

    (mv t body cleanup1 cleanup2))
   ((('LAMBDA (mv . vars)
      (('LAMBDA ('ACL2-UNWIND-PROTECT-ERP
                 'ACL2-UNWIND-PROTECT-VAL 'STATE . vars)
                ('(LAMBDA (STATE ACL2-UNWIND-PROTECT-VAL
                                 ACL2-UNWIND-PROTECT-ERP)
                          (CONS ACL2-UNWIND-PROTECT-ERP
                                (CONS ACL2-UNWIND-PROTECT-VAL
                                      (CONS STATE 'NIL))))
                 cleanup1 'ACL2-UNWIND-PROTECT-VAL 'ACL2-UNWIND-PROTECT-ERP))
       '(MV-NTH '0 mv)
       '(MV-NTH '1 mv)
       '(MV-NTH '2 mv)
       . vars))
     body . vars)
    (declare (ignore mv vars))

; See comment above.

    (mv t body cleanup1 cleanup1))
   (& (mv nil nil nil nil))))

(defun translated-acl2-unwind-protectp (term)

; Just for convenience we define the predicate version of translated-acl2-
; unwind-protectp4 to return t or nil according to whether term is the
; translation of an acl2-unwind-protect expression.

  (mv-let (ans body cleanup1 cleanup2)
          (translated-acl2-unwind-protectp4 term)
          (declare (ignore body cleanup1 cleanup2))
          ans))

; Essay on EV

; Ev, below, will take the following arguments:

; (ev form alist state latches hard-error-returns-nilp aok)

; It returns (mv erp val latches').

; Ev is actually defined in terms of ev-rec, an analogous function that
; takes the ACL2 world rather than state.

; Hard-error-returns-nil is explained in the comment in hard-error.
; We do not deal with it further below.

; Aok is short for "Attachments are OK", and as the name suggests,
; allows the use of attachments when non-nil.  This parameter is discussed at
; some length near the end of this Essay.  Till then, we assume that its value
; is nil.

; Imprecise Spec: If erp is t, some evaluation error occurred (e.g.,
; an unbound variable was encountered).  Otherwise, erp is nil, val is
; the value of form under alist, and latches' is the final value of
; all the single-threaded objects after the evaluation of form.

; But there are many subtle issues here having to do with the handling
; of single-threaded objects.  In the following discussion we use
; (bump state) as a generic function that changes state, as by
; incrementing a global variable in state and returning the modified
; state.

; Assumptions on the input to EV:

; (0) If latches is nil, then either form is known not to modify any
;     stobjs (in which case it really doesn't matter what latches is) or
;     else there are no live stobjs in alist.  In short, if latches is
;     nil, we don't keep track of the current values of the stobjs but you
;     better not ev a form on a live object (because it will actually
;     change the object but not record the new current value on latches).

; (1) If latches is non-nil, then if a stobj name, such as STATE, is bound
;     in alist to some value s then
;     (1a) s is of the correct shape for that stobj and
;     (1b) that stobj name is bound in latches to s.
;     Informally, the initial values of the stobjs in alist are identical
;     to their initial current values and consistent with the stobj
;     definitions.

; (2) If alist binds a stobj name to a live object, then form must be
;     single-threaded.

; Clarification of the output spec:

; If no stobj names are bound in alist to live objects, then the
; latches on input may be nil and the final latches may
; be ignored.

; If form is not single-threaded, the meaning of the final latches
; is essentially random.

; In the most common case (where we are using ev to evaluate a form
; typed by the user at the top-level), state is *the-live-state*, all
; the stobj names are bound in alist to their current live objects
; (including 'state to *the-live-state*), and form is single-threaded.

; Observations about the Assumptions

; The only way alist can bind a stobj name to a live object is if we
; did that in our own source code.  In particular, a user cannot write
; (list (cons 'state state) (cons '$s $s)), unless the user has access to
; something like coerce-state-to-object.  These comments assume such
; magic functions have been made untouchable.

; No live object can be in the final latches unless they were
; there to begin with.  If a live object is in the final current
; stobjs, then it was put there by a stobj producing fncall.  But that
; would mean there was a live stobj in alist.  That, in turn, means
; the same live object was originally in the initial current stobjs.

; Thus, the only time live objects appear in the final latches
; is if we're in our own source code.

; We guarantee, via functions like trans-eval, that assumptions (1)
; and (2) are met in all our calls of ev.

; Further Discussion of the Assumptions:

; Suppose that the symbol 'state is bound in alist to s.  Suppose the
; value of the formal parameter state is d.  Both s and d are
; state-ps.  We call the latter state d because it is the state from
; which ev obtains the definitions of the functions.  We also use d to
; determine whether guards should be checked.  D is not changed in ev,
; except to decrement the big clock in it to ensure termination.

; By assumption (1), we know that the binding of state in
; latches is s, initially.  But in general, the two bindings
; can differ: the binding of state in alist is the initial value of
; state and the binding in the final latches is the final value
; of state.

; Generally speaking, d is *the-live-state*.  Indeed, at one point we
; believed:

; The Bogus Live State Claim for :Program Mode Functions: If a
; :program mode function takes STATE as an argument then the function
; can only be evaluated on the live state.

; Below I give a ``proof'' of this claim, for a call of ev stemming
; from a legal form typed by the user to the top-level ACL2 loop.
; Then I give a counterexample!

; ``PROOF:'' The call was translated.  Since ev is a :program mode
; function, the call cannot appear in a theorem or other context in
; which the stobj restrictions were not enforced.  Hence, the only
; allowable term in the state slot is state itself.  Hence, state must
; be *the-live-state*, as it is at the top of LP.

; Now here is a way to run ev from within the loop on a state other
; than the live state: Ev a call of ev.  Here is a concrete form.
; First, go outside the loop and call (build-state) to obtain a dummy
; state.  I will write that '(NIL ... NIL).  At present, it has 15
; components, most of which are nil, but some, like the initial global
; table, are non-trivial.  Then inside the loop execute:

; (let ((st (build-state)))
;    (ev `(ev 'a '((a . 1)) ',st 'nil 'nil 't) nil state nil nil t))

; The outermost state above is indeed the live one, but the inner ev is
; executed on a dummy state.  The computation above produces the result
; (NIL (NIL 1 NIL) NIL).

; The inner state object has to pass the state-p predicate if guard
; checking is enabled in the outer state.  If guard checking is turned
; off in the live state, the following example shows the inner ev
; running on something that is not even a state-p.  To make this
; example work, first evaluate :set-guard-checking nil.

; (ev '(ev 'a '((a . 1)) '(nil nil nil nil nil 0) 'nil 'nil 't)
;     nil state nil nil t)

; The 0, above, is the big-clock-entry and must be a non-negative
; integer.  The result is (NIL (NIL 1 NIL) NIL).

; Finally, the example below shows the inner ev running a function,
; foo, defined in the dummy world.  It doesn't matter if foo is
; defined in the live state or not.  The example below shows the state
; returned by build-state at the time of this writing, but modified to
; have a non-trivial CURRENT-ACL2-WORLD setting giving FORMALS and a
; BODY to the symbol FOO.

;   (ev '(ev '(foo a)
;            '((a . 1))
;            '(NIL NIL
;                  ((ACCUMULATED-TTREE)
;                   (AXIOMSP)
;                   (BDDNOTES)
;                   (CERTIFY-BOOK-FILE)
;                   (CONNECTED-BOOK-DIRECTORY)
;                   (CURRENT-ACL2-WORLD
;                    . ((foo formals . (x)) (foo body . (cons 'dummy-foo x))))
;                   (CURRENT-PACKAGE . "ACL2")
;                   (EVISCERATE-HIDE-TERMS)
;                   (FMT-HARD-RIGHT-MARGIN . 77)
;                   (FMT-SOFT-RIGHT-MARGIN . 65)
;                   (GSTACKP)
;                   (GUARD-CHECKING-ON . T)
;                   (INFIXP)
;                   (INHIBIT-OUTPUT-LST SUMMARY)
;                   (IN-LOCAL-FLG . NIL)
;                   (LD-LEVEL . 0)
;                   (LD-REDEFINITION-ACTION)
;                   (LD-SKIP-PROOFSP)
;                   (PROMPT-FUNCTION . DEFAULT-PRINT-PROMPT)
;                   (PROOF-TREE-CTX)
;                   (PROOFS-CO
;                    . ACL2-OUTPUT-CHANNEL::STANDARD-CHARACTER-OUTPUT-0)
;                   (SKIPPED-PROOFSP)
;                   (STANDARD-CO
;                    . ACL2-OUTPUT-CHANNEL::STANDARD-CHARACTER-OUTPUT-0)
;                   (STANDARD-OI
;                    . ACL2-OUTPUT-CHANNEL::STANDARD-OBJECT-INPUT-0)
;                   (TIMER-ALIST)
;                   (TRIPLE-PRINT-PREFIX . " ")
;                   (UNDONE-WORLDS-KILL-RING NIL NIL NIL)
;                   (UNTOUCHABLE-FNS)
;                   (UNTOUCHABLE-VARS)
;                   (WINDOW-INTERFACEP)
;                   (WORMHOLE-NAME))
;                  NIL NIL 4000000
;                  NIL NIL 1 NIL NIL NIL NIL NIL NIL)
;            'nil 'nil 't) nil state nil nil t)

; The output of the ev above is (NIL (NIL (DUMMY-FOO . 1) NIL) NIL).

; The above example can be made slightly more interesting by replacing
; the three occurrences of FOO by EV.  It still produces the same
; thing and illustrate the fact that EV doesn't mean what you might
; think it means once you get into an EV!

; The intuition that ``d must be *the-live-state*'' is only true at
; the outermost call of EV.  But things take care of themselves inside
; subsequent calls because, if d is not *the-live-state*, EV just runs
; as defined, whatever that means.

; Stobj Latching:  How Do We Compute the Final Latches?

; This is simpler than it at first appears: First, we map over the
; term in evaluation order.  Every time we apply a function symbol to
; a list of (evaluated) terms, we ``latch'' into latches each of
; the stobj values indicated by the symbol's stobjs-out.

; The order of the sweep is controlled by ev and ev-lst.  But all the
; latching is done by ev-fncall.  This is surprising because ev-fncall
; does not handle LAMBDAs and translation has entirely eliminated all
; MV-LETs and MVs.

; Let us consider some examples to see why this works -- and to drive
; home some points it took me a while to see.  In the following,

; (defun bump (state) (f-put-global 'bump (@ bump) state))
; (defun bump3 (x state) (let ((state (bump state))) (mv nil x state)))

; Consider the translate (==>) of

; :trans (let ((state (bump state)))
;             (mv a state b))
; ==>
; ((LAMBDA (STATE B A)
;          (CONS A (CONS STATE (CONS B 'NIL))))
;  (BUMP STATE)
;  B A)

; Sweep order is (BUMP STATE), B, A, and then the CONS nest.  Of these, only
; the BUMP has a non-trivial stobjs-out.  We latch the state coming out of
; (BUMP STATE).

; :trans (mv-let (erp val state)
;                (bump3 x state)
;                (mv (and erp val) (cons erp val) state))

; ==>
; ((LAMBDA (MV)
;          ((LAMBDA (ERP VAL STATE)
;                   (CONS (IF ERP VAL 'NIL)
;                         (CONS (CONS ERP VAL)
;                               (CONS STATE 'NIL))))
;           (MV-NTH '0 MV)
;           (MV-NTH '1 MV)
;           (MV-NTH '2 MV)))
;  (BUMP3 X STATE))

; We latch the third value of (BUMP3 X STATE), when we ev-fncall
; BUMP3.  No other function causes us to latch, so that is the final
; latches.

; :trans (mv-let (erp val state)
;                (bump3 x state)
;                (let ((state (bump state)))
;                  (mv erp val state)))
; ==>
; ((LAMBDA (MV)
;          ((LAMBDA (ERP VAL STATE)
;                   ((LAMBDA (STATE VAL ERP)
;                            (CONS ERP (CONS VAL (CONS STATE 'NIL))))
;                    (BUMP STATE)
;                    VAL ERP))
;           (MV-NTH '0 MV)
;           (MV-NTH '1 MV)
;           (MV-NTH '2 MV)))
;  (BUMP3 X STATE))

; We latch the third value of (BUMP3 X STATE), when we ev-fncall BUMP3.
; The next non-trivial stobjs-out function we ev-fncall is the BUMP.
; We latch its result, which gives us the final latches.

; The restrictions imposed by translate ensure that we will never
; encounter terms like (fn a (bump state) b (bump state) c) where
; there is more than one latched stobj coming out of an arglist.  But
; we do not exploit this fact.  We just latch every stobj-out as we go
; across the args.  Similarly, the translate restrictions ensure that
; if a stobj is returned by some function, then it gets out.  So we
; can latch it when it is returned by the function, even though it
; apparently goes into a CONS nest, say, from which it may not, a
; priori, get out.

; We close with a discussion of the final argument of ev and many other
; evaluator functions, aok.  In short: The safe value for aok is nil, but it is
; more powerful (fewer aborts) to use t rather than nil for aok, if that is
; sound.  Unless you are writing ACL2 system code, it probably is sound to use
; t.  But now we discuss in more depth the question of assigning a value to
; aok.

; Most or all of the evaluator functions (ev, ev-fncall, trans-eval,
; simple-translate-and-eval, etc.) have a final argument called aok, which is
; mnemonic for "attachments OK".  The conservative value to use is nil, which
; means that no attachments (in the sense of defattach) will be used by the
; evaluator.  But if you want attachments to be allowed by the evaluator, then
; use aok = t.

; In ACL2's own source code, aok is usually t, but it is (and must of course,
; be) nil whenever we are simplifying terms during a proof.  See the Essay on
; Defattach for related discussion.

; Here, in brief, is the logical story (which is important to understand when
; deciding to use aok=t).  The evaluator functions can all be thought of as
; producing a result that is provably equal to a given term.  But the question
; is: Provably equal in what formal theory?  The "official" theory of the
; current ACL2 world has nothing to do with attachments, and is the theory for
; which we have a prover.  So if the rewriter, say, wants to use ev-fncall to
; replace one term by another, the input and output terms should be provably
; equal without attachments, which is why we use aok=nil in the call of
; ev-fncall under rewrite.  On the other hand, in the top-level loop we
; presumably want to use all attachments -- the whole point of (defattach f g)
; for an encapsulated f and defined g is to evaluate under the equation (equal
; (f x) (g x)).  So the call of trans-eval under ld-read-eval-print has aok=t.

; Thus, if you are calling simple-translate-and-eval for something like hints,
; then probably it's fine to use aok=t -- hints don't affect soundness and one
; might want to take advantage of attachments.  As ACL2 evolves, many of its
; system functions may be encapsulated with default attachments, so one will
; want to use aok=t whenever possible in order to avoid an "undefined function"
; error when such a system function is called.

(defun acl2-system-namep (name wrld)

; Warning: keep this in sync with acl2-system-namep-state.

; Name is a name defined in wrld.  We determine whether it is one of ours or is
; user-defined.

; If name is not defined -- more precisely, if we have not yet laid down an
; 'absolute-event-number property for it -- then we return nil except in the
; boot-strap world.

  (cond ((global-val 'boot-strap-flg wrld) t)
        (t (getpropc name 'predefined nil wrld))))

(defun acl2-system-namep-state (name state)

; Warning: keep this in sync with acl2-system-namep.  See comments there.

  (cond ((f-get-global 'boot-strap-flg state) t)
        (t (getpropc name 'predefined))))

#+acl2-loop-only
(encapsulate

; We introduce big-n and decrement-big-n with no axioms.  We could certainly
; add axioms, namely that (big-n) is a positive integer and decrement-big-n
; decrements, but we choose not to do so.  Instead, we keep these axiom-free
; and introduce executable versions in program mode, just below.  We imagine
; that n is a positive integer larger than the lengths of all computations that
; will ever take place with ACL2, and that decrement-big-n is 1-.  We also make
; big-n untouchable, since without that we have been able to prove nil, as
; follows:

;  (in-package "ACL2")
;  (defun foo () (big-n))
;  (defthm bad1 (equal (foo) '(nil)) :rule-classes nil)
;  (defthm bad2
;    (equal (big-n) '(nil))
;    :hints (("Goal" :use bad1 :in-theory (disable (foo))))
;    :rule-classes nil)
;  (defun bar () 0)
;  (defthm bad3
;    (equal (bar) '(nil))
;    :hints (("Goal" :by (:functional-instance bad2 (big-n bar))))
;    :rule-classes nil)
;  (defthm bad
;    nil
;    :hints (("Goal" :use bad3))
;    :rule-classes nil)

; We also make decrement-big-n and zp-big-n untouchable, just because we are a
; bit paranoid here.

 (((big-n) => *)
  ((decrement-big-n *) => *)
  ((zp-big-n *) => *))
 (local (defun big-n ()
          0))
 (local (defun decrement-big-n (n)
          (declare (ignore n))
          0))
 (local (defun zp-big-n (n)
          (declare (ignore n))
          nil)))

#-acl2-loop-only
(progn

; (defconstant *big-n-special-object* '(nil . nil)) has been moved to
; acl2.lisp, to avoid a CLISP compiler warning.

  (defun big-n () *big-n-special-object*)
  (defmacro decrement-big-n (n)
    `(if (eq ,n *big-n-special-object*)
         *big-n-special-object*
       (1- ,n)))
  (defmacro zp-big-n (n)
    `(if (eq ,n *big-n-special-object*)
         nil
       (zp ,n))))

#-acl2-loop-only
(defparameter *ev-shortcut-okp*

; The code for ev-fncall-rec has a shortcut, calling raw-ev-fncall to execute
; using *1* functions.  Because the *1* functions use (live) state globals
; guard-checking-on and safe-mode, these need to agree with the corresponding
; parameters of ev-fncall-rec in order for it to be sound to call
; raw-ev-fncall.  We may bind *ev-shortcut-okp* to t when we know that this
; agreement is ensured.

; There are times where avoiding the shortcut can get us into trouble.  In
; particular, we have seen a case where the logic code for an ev-nest function
; produced nil for a call of state-p or state-p1 on *the-live-state*.

  nil)

(defun w-of-any-state (st)

; This returns (w state) but, unlike w, st is not (known to be)
; single-threaded, so it can be used on the binding of 'STATE in the latches of
; a call of a function in the ev nest.  In the raw Lisp case, we have the same
; f-get-global code as in the definition of w.  For the logic, we open up
; f-get-global and then get-global to get the body below.

  #-acl2-loop-only
  (cond ((live-state-p st)
        (return-from w-of-any-state (f-get-global 'current-acl2-world st))))
  (cdr (assoc 'current-acl2-world (global-table st))))

(defun untranslate-preprocess-fn (wrld)
  (declare (xargs :guard (plist-worldp wrld)))
  (cdr (assoc-eq 'untranslate-preprocess (table-alist
                                          'user-defined-functions-table
                                          wrld))))

(defmacro untranslate* (term iff-flg wrld)

; We need to call untranslate in ev-fncall-guard-er and ev-fncall-msg, where we
; have not yet called ev-fncall.  So we define this version of untranslate now
; and defer untranslate (and untranslate-lst) until after defining the ev
; family of functions.  We document in the guard below our expectation that
; wrld is a symbol, in order to avoid any overhead (e.g., from defabbrev).

  (declare (xargs :guard (symbolp wrld)))
  `(untranslate1 ,term
                 ,iff-flg
                 (untrans-table ,wrld)
                 (untranslate-preprocess-fn ,wrld)
                 ,wrld))

#-acl2-loop-only
(defmacro raw-guard-warningp-binding ()

; We bind *raw-guard-warningp* in calls of ev-fncall, ev, ev-lst, ev-w,
; ev-w-lst, and ev-fncall-w.  The initial binding is t if guard-checking is on,
; else nil.  When a *1* function is poised to call warn-for-guard-body to print
; a warning related to guard violations, it first checks that
; *raw-guard-warningp*.  Hence, we do not want to re-assign this variable once
; it is bound to nil by warn-for-guard-body, because we only want to see the
; corresponding guard warning once per top-level evaluation.  We do however
; want to re-assign this variable from t to nil once the warning has been
; printed and also if guard-checking has been turned off, in particular for the
; situation involving the prover that is described in the next paragraph.  (But
; if guard-checking were, surprisingly, to transition instead from nil to t,
; and we failed to re-assign this variable from nil to t, we could live with
; that.)

; Note that *raw-guard-warningp* will be bound to t just under the trans-eval
; at the top level.  If we then enter the prover we will bind guard-checking-on
; to nil, and we then want to re-bind *raw-guard-warningp* to nil if we enter
; ev-fncall during the proof, so that the proof output will not contain guard
; warning messages.  (This was handled incorrectly in Version_2.9.1.)

  '(if (and (boundp '*raw-guard-warningp*)
            (null *raw-guard-warningp*))
       nil
     (eq (f-get-global 'guard-checking-on *the-live-state*)
         t)))

(defun save-ev-fncall-guard-er (fn guard stobjs-in args)
  (wormhole-eval 'ev-fncall-guard-er-wormhole
                 '(lambda (whs)
                    (make-wormhole-status
                     whs
                     :ENTER
                     (list fn guard stobjs-in args)))
                 nil))

(defrec attachment

; See the Essay on Merging Attachment Records.

  ((g . ext-succ) . (components . pairs))
  nil)

(defrec attachment-component

; See the Essay on Merging Attachment Records.

  ((ext-anc . ord-anc) . path)
  nil)

(defun attachment-record-pairs (records acc)
  (cond ((endp records)
         acc)
        (t (attachment-record-pairs
            (cdr records)
            (append (access attachment (car records) :pairs)
                    acc)))))

(defun all-attachments (wrld)
  (attachment-record-pairs (global-val 'attachment-records wrld)
                           nil))

(defun gc-off1 (guard-checking-on)
  (member-eq guard-checking-on
             '(nil :none)))

(defun gc-off (state)
  (gc-off1 (f-get-global 'guard-checking-on state)))

#-acl2-loop-only
(progn
  (defvar *return-last-arg2*)
  (defvar *return-last-arg3*)
  (defvar *return-last-alist*)
  (defvar *return-last-fn-w*)
  (defvar *return-last-fn-user-stobj-alist*)
  (defvar *return-last-fn-big-n*)
  (defvar *return-last-fn-safe-mode*)
  (defvar *return-last-fn-gc-off*)
  (defvar *return-last-fn-latches*)
  (defvar *return-last-fn-hard-error-returns-nilp*)
  (defvar *return-last-fn-aok*))

(defun return-last-lookup (sym wrld)

; Keep this in sync with chk-return-last-entry and with the comment about these
; macros in *initial-return-last-table*.

  (assert$
   (and (symbolp sym) sym) ; otherwise we shouldn't call return-last-lookup
   (case sym
     (progn 'prog2$)
     (mbe1-raw 'mbe1)
     (ec-call1-raw 'ec-call1)
     (with-guard-checking1-raw 'with-guard-checking1)
     (otherwise
      (cdr (assoc-eq sym (table-alist 'return-last-table wrld)))))))

(defun make-let-or-let* (bindings body)
  (declare (xargs :guard (doubleton-list-p bindings)))
  (cond ((and bindings (null (cdr bindings)))
         (case-match body
           (('let ((& &)) x)
            `(let* (,@bindings
                    ,@(cadr body))
               ,x))
           (('let* rest-bindings x)
            `(let* ,(cons (car bindings) rest-bindings)
               ,x))
           (& (make-let bindings body))))
        (t (make-let bindings body))))

(defmacro untranslate*-lst (lst iff-flg wrld)

; See untranslate*.

  (declare (xargs :guard (symbolp wrld)))
  `(untranslate1-lst ,lst
                     ,iff-flg
                     (untrans-table ,wrld)
                     (untranslate-preprocess-fn ,wrld)
                     ,wrld))

(defun live-state-symbolp (x)
  (declare (xargs :guard t))
  (and (symbolp x)
       (equal (symbol-package-name x)
              "ACL2_INVISIBLE")
       (equal (symbol-name x)
              "The Live State Itself")))

(defun apply-user-stobj-alist-or-kwote (user-stobj-alist lst acc)

; This function accumulates into acc (eventually reversing the accumulation)
; the result of replacing each element of lst with:

; - state, if it is *the-live-state*;

; - with its reverse lookup in user-stobj-alist, if it is
;   a bad-atom (i.e., a stobj); else,

; - with the result of quoting that element.

; We considered using rassoc-eq in place of rassoc-equal below, but that would
; prevent guard verification down the road (unless we change to guard of eq to
; allow bad-atoms in place of symbols).  So we are content to use rassoc-equal,
; which may be quite fast on bad atoms, and since (as of this writing) we only
; use this function for occasional user-level error and debug messages.

  (cond ((endp lst) (reverse acc))
        (t (apply-user-stobj-alist-or-kwote
            user-stobj-alist
            (cdr lst)
            (cons (cond ((live-state-symbolp (car lst))
			 'state)
			((bad-atom (car lst))
                         (let ((pair (rassoc-equal (car lst)
                                                   user-stobj-alist)))
                           (cond (pair (car pair))
                                 (t

; We are looking at a local stobj or a stobj bound by stobj-let.

                                  '|<some-stobj>|))))
                        (t (kwote (car lst))))
                  acc)))))

; Next, we introduce many events to support the definition of
; ev-fncall-rec-logical -- specifically, the definition of function guard-raw,
; which is called by ev-fncall-guard-er, which in turn is called by
; ev-fncall-rec-logical.  Most of these events were previously located in file
; history-management.lisp.

; Event Tuples

; Every time an event occurs we store a new 'global-value for the
; variable 'event-landmark in stop-event.  The value of
; 'event-landmark is an "event tuple."  Abstractly, an event tuple
; contains the following fields:

; n:     the absolute event number
; d:     the embedded event depth (the number of events containing the event)
; form:  the form evaluated that created the event.  (This is often a form
;        typed by the user but might have been a form generated by a macro.
;        The form may be a call of a primitive event macro, e.g., defthm,
;        or may be itself a macro call, e.g., prove-lemma.)
; type:  the name of the primitive event macro we normally use, e.g.,
;        defthm, defuns, etc.
; namex: the name or names of the functions, rules, etc., introduced by
;        the event.  This may be a single object, e.g., 'APP, or "MY-PKG",
;        or may be a true list of objects, e.g., '(F1 F2 F3) as in the case
;        of a mutually recursive clique.  0 (zero) denotes the empty list of
;        names.  The unusual event enter-boot-strap-mode has a namex containing
;        both symbols and strings.
; symbol-class:
;        One of nil, :program, :ideal, or :compliant-common-lisp, indicating
;        the symbol-class of the namex.  (All names in the namex have the same
;        symbol-class.)

; All event tuples are constructed by make-event-tuple, below.  By searching
; for all calls of that function you will ascertain all possible event types
; and namex combinations.  You will find the main call in add-event-landmark,
; which is used to store an event landmark in the world.  There is another call
; in primordial-world-globals, where the bogus initial value of the
; 'event-landmark 'global-value is created with namex 0 and event type nil.
; Add-event-landmark is called in install-event, which is the standard (only)
; way to finish off an ACL2 event.  If you search for calls of install-event
; you will find the normal combinations of event types and namex.  There are
; two other calls of add-event-landmark.  One, in in primordial-world where it
; is called to create the enter-boot-strap-mode event type landmark with namex
; consisting of the primitive functions and known packages.  The other, in
; end-prehistoric-world, creates the exit-boot-strap-mode event type landmark
; with namex 0.

; As of this writing the complete list of type and namex pairs
; is shown below, but the algorithm described above will generate
; it for you if you wish to verify this.

;               type                namex
;           enter-boot-strap-mode    *see below
;           verify-guards            0 (no names introduced)
;           defun                    fn
;           defuns                   (fn1 ... fnk)
;           defaxiom                 name
;           defthm                   name
;           defconst                 name
;           defstobj                 (name the-live-var fn1 ... fnk)
;             [Note: defstobj is the type used for both defstobj and
;              defabsstobj events.]
;           defmacro                 name
;           defpkg                   "name"
;           deflabel                 name
;           deftheory                name
;           in-theory                0 (no name introduced)
;           in-arithmetic-theory     0 (no name introduced)
;           push-untouchable         0
;           regenerate-tau-database  0 (no name introduced)
;           remove-untouchable       0
;           reset-prehistory         0
;           set-body                 0 (no name introduced)
;           table                    0 (no name introduced)
;           encapsulate              (fn1 ... fnk) - constrained fns
;           include-book             "name"
;           exit-boot-strap-mode     0

; *Enter-boot-strap-mode introduces the names in *primitive-formals-and-guards*
; and *initial-known-package-alist*.  So its namex is a proper list containing
; both symbols and strings.

; To save space we do not actually represent each event tuple as a 6-tuple but
; have several different forms.  The design of our forms makes the following
; assumptions, aimed at minimizing the number of conses in average usage.  (1)
; Most events are not inside other events, i.e., d is often 0.  (2) Most events
; use the standard ACL2 event macros, e.g., defun and defthm rather than user
; macros, e.g., DEFN and PROVE-LEMMA.  (3) Most events are introduced with the
; :program symbol-class.  This last assumption is just the simple observation
; that until ACL2 is reclassified from :program to :logic, the ACL2
; system code will outweigh any application.

(defun signature-fns (signatures)

; Assuming that signatures has been approved by chk-signatures, we
; return a list of the functions signed.  Before we added signatures
; of the form ((fn * * STATE) => *) this was just strip-cars.
; Signatures is a list of elements, each of which is either of the
; form ((fn ...) => val) or of the form (fn ...).

  (cond ((endp signatures) nil)
        ((consp (car (car signatures)))
         (cons (car (car (car signatures)))
               (signature-fns (cdr signatures))))
        (t (cons (car (car signatures))
                 (signature-fns (cdr signatures))))))

(defun make-event-tuple (n d form ev-type namex symbol-class skipped-proofs-p)

; An event tuple is always a cons.  Except in the initial case created by
; primordial-world-globals, the car is always either a natural (denoting n and
; implying d=0) or a cons of two naturals, n and d.  Its cadr is either a
; symbol, denoting its type and signalling that the cdr is the form, the
; symbol-class is :program and that the namex can be recovered from the form,
; or else the cadr is the pair (ev-type namex . symbol-class) signalling that
; the form is the cddr.

; Generally, the val encodes:
;  n - absolute event number
;  d - embedded event depth
;  form - form that created the event
;  ev-type - name of the primitive event macro we use, e.g., defun, defthm, defuns
;  namex - name or names introduced (0 is none)
;  symbol-class - of names (or nil)
;  skipped-proofs-p - t when the symbol-class is not :program (for simplicity
;                     of implementation, below) and skipped-proofs-p is t; else
;                     nil.  Note that skipped-proofs-p will be nil for certain
;                     events that cannot perform proofs (see install-event) and
;                     otherwise indicates that proofs were skipped (except by
;                     the system only, as for include-book).

; In what we expect is the normal case, where d is 0 and the form is one of our
; standard ACL2 event macros, this concrete representation costs one cons.  If
; d is 0 but the user has his own event macros, it costs 3 conses.

; Warning: If we change the convention that n is the car of a concrete event
; tuple if the car is an integer, then change the default value given getprop
; in max-absolute-event-number.

  (cons (if (= d 0) n (cons n d))
        (if (and (eq symbol-class :program)
                 (consp form)
                 (or (eq (car form) ev-type)
                     (and (eq ev-type 'defuns)
                          (eq (car form) 'mutual-recursion)))
                 (equal namex
                        (case (car form)
                              (defuns (strip-cars (cdr form)))
                              (mutual-recursion (strip-cadrs (cdr form)))
                              ((verify-guards in-theory
                                              in-arithmetic-theory
                                              regenerate-tau-database
                                              push-untouchable
                                              remove-untouchable
                                              reset-prehistory
                                              set-body
                                              table)
                               0)
                              (encapsulate (signature-fns (cadr form)))
                              (otherwise (cadr form)))))
            form
          (cons (cons (cons ev-type
                            (and (not (eq symbol-class :program))
                                 skipped-proofs-p))
                      (cons namex symbol-class))
                form))))

(defun access-event-tuple-number (x)

; Warning: If we change the convention that n is (car x) when (car x)
; is an integerp, then change the default value given getprop in
; max-absolute-event-number.

  (if (integerp (car x)) (car x) (caar x)))

(defun access-event-tuple-depth (x)
  (if (integerp (car x)) 0 (cdar x)))

(defun access-event-tuple-type (x)
  (cond ((symbolp (cdr x)) ;eviscerated event
         nil)
        ((symbolp (cadr x))
         (if (eq (cadr x) 'mutual-recursion)
             'defuns
           (cadr x)))
        (t (caaadr x))))

(defun access-event-tuple-skipped-proofs-p (x)
  (cond ((symbolp (cdr x)) ;eviscerated event
         nil)
        ((symbolp (cadr x))
         nil)
        (t (cdaadr x))))

(defun access-event-tuple-namex (x)

; Note that namex might be 0, a single name, or a list of names.  Included in
; the last case is the possibility of the list being nil (as from an
; encapsulate event introducing no constrained functions).

  (cond
   ((symbolp (cdr x)) ;eviscerated event
    nil)
   ((symbolp (cadr x))
    (case (cadr x)
          (defuns (strip-cars (cddr x)))
          (mutual-recursion (strip-cadrs (cddr x)))
          ((verify-guards in-theory
                          in-arithmetic-theory
                          regenerate-tau-database
                          push-untouchable remove-untouchable reset-prehistory
                          set-body table)
           0)
          (encapsulate (signature-fns (caddr x)))
          (t (caddr x))))
   (t (cadadr x))))

(defun access-event-tuple-form (x)
  (if (symbolp (cadr x))
      (cdr x)
    (cddr x)))

(defun access-event-tuple-symbol-class (x)
  (if (symbolp (cadr x))
      :program
    (cddadr x)))

; Command Tuples

; When LD has executed a world-changing form, it stores a "command tuple" as
; the new 'global-value of 'command-landmark.  These landmarks divide the world
; up into "command blocks" and each command block contains one or or event
; blocks.  Command blocks are important when the user queries the system about
; his current state, wishes to undo, etc.  Commands are enumerated sequentially
; from 0 with "absolute command numbers."

; We define command tuples in a way analogous to event tuples, although
; commands are perhaps simpler because most of their characteristics are
; inherited from the event tuples in the block.  We must store the current
; default-defun-mode so that we can offer to redo :program functions after ubt.
; (A function is offered for redoing if its defun-mode is :program.  But the
; function is redone by executing the command that created it.  The command may
; recreate many functions and specify a :mode for each.  We must re-execute the
; command with the same default-defun-mode we did last to be sure that the
; functions it creates have the same defun-mode as last time.)

(defrec command-tuple

; Warning: Keep this in sync with the definitions of
; safe-access-command-tuple-number and pseudo-command-landmarkp in community
; book books/system/pseudo-good-worldp.lisp, and function
; safe-access-command-tuple-form in the ACL2 sources.

; See make-command-tuple for a discussion of defun-mode/form.

; If form is an embedded event form, then last-make-event-expansion is nil
; unless form contains a call of make-event whose :check-expansion field is not
; a cons, in which case last-make-event-expansion is the result of removing all
; make-event calls from form.

  (number defun-mode/form cbd . last-make-event-expansion)
  t)

(defun make-command-tuple (n defun-mode form cbd last-make-event-expansion)

; Defun-Mode is generally the default-defun-mode of the world in which this
; command is being executed.  But there are two possible exceptions.  See
; add-command-tuple.

; We assume that most commands are executed with defun-mode :program.  So we
; optimize our representation of command tuples accordingly.  No form that
; creates a function can have a keyword as its car.

  (make command-tuple
        :number n
        :defun-mode/form (if (eq defun-mode :program)
                             form
                           (cons defun-mode form))
        :cbd cbd
        :last-make-event-expansion last-make-event-expansion))

(defun access-command-tuple-number (x)
  (access command-tuple x :number))

(defun access-command-tuple-defun-mode (x)
  (let ((tmp (access command-tuple x :defun-mode/form)))
    (if (keywordp (car tmp))
        (car tmp)
      :program)))

(defun access-command-tuple-form (x)

; See also safe-access-command-tuple-form for a safe version (i.e., with guard
; t).

  (let ((tmp (access command-tuple x :defun-mode/form)))
    (if (keywordp (car tmp))
        (cdr tmp)
      tmp)))

(defun safe-access-command-tuple-form (x)

; This is just a safe version of access-command-tuple-form.

  (declare (xargs :guard t))
  (let ((tmp (and (consp x)
                  (consp (cdr x))
                  (access command-tuple x :defun-mode/form))))
    (if (and (consp tmp)
             (keywordp (car tmp)))
        (cdr tmp)
      tmp)))

(defun access-command-tuple-last-make-event-expansion (x)
  (access command-tuple x :last-make-event-expansion))

(defun access-command-tuple-cbd (x)
  (access command-tuple x :cbd))

; Absolute Event and Command Numbers

(defun max-absolute-event-number (wrld)

; This is the maximum absolute event number in use at the moment.  It
; is just the number found in the most recently completed event
; landmark.  We initialize the event-landmark with number -1 (see
; primordial-world-globals) so that next-absolute-event-number returns
; 0 the first time.

  (access-event-tuple-number (global-val 'event-landmark wrld)))

(defun next-absolute-event-number (wrld)
  (1+ (max-absolute-event-number wrld)))

(defun max-absolute-command-number (wrld)

; This is the largest absolute command number in use in wrld.  We
; initialize it to -1 (see primordial-world-globals) so that
; next-absolute-command-number works.

  (access-command-tuple-number (global-val 'command-landmark wrld)))

(defun next-absolute-command-number (wrld)
  (1+ (max-absolute-command-number wrld)))

(defun scan-to-landmark-number (flg n wrld)

; We scan down wrld looking for a binding of 'event-landmark with n as
; its number or 'command-landmark with n as its number, depending on
; whether flg is 'event-landmark or 'command-landmark.

  #+acl2-metering
  (setq meter-maid-cnt (1+ meter-maid-cnt))
  (cond ((null wrld)
         (er hard 'scan-to-landmark-number
             "We have scanned the world looking for absolute ~
              ~#0~[event~/command~] number ~x1 and failed to find it. ~
               There are two likely errors.  Either ~#0~[an event~/a ~
              command~] with that number was never stored or the ~
              index has somehow given us a tail in the past rather ~
              than the future of the target world."
             (if (equal flg 'event-landmark) 0 1)
             n))
        ((and (eq (caar wrld) flg)
              (eq (cadar wrld) 'global-value)
              (= n (if (eq flg 'event-landmark)
                       (access-event-tuple-number (cddar wrld))
                       (access-command-tuple-number (cddar wrld)))))
         #+acl2-metering
         (meter-maid 'scan-to-landmark-number 500 flg n)
         wrld)
        (t (scan-to-landmark-number flg n (cdr wrld)))))

; For information about the next few events, through lookup-world-index, see
; "The Event and Command Indices" in history-management.lisp.  As noted above,
; events below were originally located in that file, but are needed here to
; support ev-fncall-rec-logical.

(defun add-to-zap-table (val zt)

; Given a zap table, zt, that associates values to the indices
; 0 to n, we extend the table to associate val to n+1.

  (cond ((null zt) (list 0 val))
        (t (cons (1+ (car zt)) (cons val (cdr zt))))))

(defun fetch-from-zap-table (n zt)

; Retrieve the value associated with n in the zap table zt, or
; nil if there is no such association.

  (cond ((null zt) nil)
        ((> n (car zt)) nil)
        (t (nth (- (car zt) n) (cdr zt)))))

; These 7 lines of code took 3 days to write -- because we first implemented
; balanced binary trees and did the experiments described in the discussion on
; "The Event and Command Indices" found in history-management.lisp.

; Using zap tables we'll keep an index mapping absolute event numbers
; to tails of world.  We'll also keep such an index for commands typed
; by the user at the top-level of the ld loop.  The following two
; constants determine how often we save events and commands in their
; respective indices.

(defconst *event-index-interval* 10)
(defconst *command-index-interval* 10)

(defun lookup-world-index1 (n interval index wrld)

; Let index be a zap table that maps the integers 0 to k to worlds.
; Instead of numbering those worlds 0, 1, 2, ..., number them 0,
; 1*interval, 2*interval, etc.  So for example, if interval is 10 then
; the worlds are effectively numbered 0, 10, 20, ...  Now n is some
; world number (but not necessarily a multiple of interval).  We wish
; to find the nearest world in the index that is in the future of the
; world numbered by n.

; For example, if n is 2543 and interval is 10, then we will look for
; world 2550, which will be found in the table at 255.  Of course, the
; table might not contain an entry for 255 yet, in which case we return
; wrld.

  (let ((i (floor (+ n (1- interval))
                  interval)))
    (cond ((or (null index)
               (> i (car index)))
           wrld)
          (t (fetch-from-zap-table i index)))))

(defun lookup-world-index (flg n wrld)

; This is the general-purpose function that takes an arbitrary
; absolute command or event number (flg is 'COMMAND or 'EVENT) and
; returns the world that starts with the indicated number.

  (cond ((eq flg 'event)
         (let ((n (min (max-absolute-event-number wrld)
                       (max n 0))))
           (scan-to-landmark-number 'event-landmark
                                    n
                                    (lookup-world-index1
                                     n
                                     *event-index-interval*
                                     (global-val 'event-index wrld)
                                     wrld))))
        (t
         (let ((n (min (max-absolute-command-number wrld)
                       (max n 0))))
           (scan-to-landmark-number 'command-landmark
                                    n
                                    (lookup-world-index1
                                     n
                                     *command-index-interval*
                                     (global-val 'command-index wrld)
                                     wrld))))))

(defconst *unspecified-xarg-value*

; Warning: This must be a consp.  See comments in functions that use this
; constant.

  '(unspecified))

(defun get-unambiguous-xargs-flg1/edcls1 (key v edcls event-msg)

; V is the value specified so far for key in the XARGSs of this or previous
; edcls, or else the consp *unspecified-xarg-value* if no value has been
; specified yet.  We return an error message if any non-symbol is used for the
; value of key or if a value different from that specified so far is specified.
; Otherwise, we return either *unspecified-xarg-value* or the uniformly agreed
; upon value.  Event-msg is a string or message for fmt's tilde-atsign and is
; used only to indicate the event in an error message; for example, it may be
; "DEFUN" to indicate a check for a single definition, or "DEFUN event" or
; "MUTUAL-RECURSION" to indicate a check that is made for an entire clique.

  (cond
   ((null edcls) v)
   ((eq (caar edcls) 'xargs)
    (let ((temp (assoc-keyword key (cdar edcls))))
      (cond ((null temp)
             (get-unambiguous-xargs-flg1/edcls1 key v (cdr edcls) event-msg))
            ((not (symbolp (cadr temp)))
             (msg "It is illegal to specify ~x0 to be ~x1.  The value must be ~
                   a symbol."
                  key (cadr temp)))
            ((or (consp v)
                 (eq v (cadr temp)))
             (get-unambiguous-xargs-flg1/edcls1 key (cadr temp) (cdr edcls)
                                                event-msg))
            (t
             (msg "It is illegal to specify ~x0 ~x1 in one place and ~x2 in ~
                   another within the same ~@3.  The functionality controlled ~
                   by that flag operates on the entire ~@3."
                  key v (cadr temp) event-msg)))))
   (t (get-unambiguous-xargs-flg1/edcls1 key v (cdr edcls) event-msg))))

(defun get-unambiguous-xargs-flg1/edcls (key v edcls event-msg ctx state)

; This is just a version of get-unambiguous-xargs-flg1/edcls1 that returns an
; error triple.

  (let ((ans (get-unambiguous-xargs-flg1/edcls1 key v edcls event-msg)))
    (cond ((or (equal ans *unspecified-xarg-value*)
               (atom ans))
           (value ans))
          (t (er soft ctx "~@0" ans)))))

(defun get-unambiguous-xargs-flg1 (key lst event-msg ctx state)

; We scan the edcls of lst and either extract a single uniformly agreed upon
; value for key among the XARGS and return that value, or else no value is
; specified and we return the consp *unspecified-xarg-value*, or else two or
; more values are specified and we cause an error.  We also cause an error if
; any edcls specifies a non-symbol for the value of key.  Thus, if we return a
; symbol it is the uniformly agreed upon value and if we return a consp there
; was no value specified.

  (cond ((null lst) (value *unspecified-xarg-value*))
        (t (er-let*
               ((v (get-unambiguous-xargs-flg1 key (cdr lst) event-msg ctx
                                               state))
             (ans (get-unambiguous-xargs-flg1/edcls key v (fourth (car lst))
                                                    event-msg ctx state)))
            (value ans)))))

(defun get-unambiguous-xargs-flg (key lst default ctx state)

; Lst is a list of mutually recursive defun tuples of the form (name args doc
; edcls body).  We scan the edcls for the settings of the XARGS keyword key.
; If at least one entry specifies a setting, x, and all entries that specify a
; setting specify x, we return x.  If no entry specifies a setting, we return
; default.  If two or more entries specify different settings, we cause an
; error.

; See also get-unambiguous-xargs-flg-lst for a similar function that instead
; allows a different value for each defun tuple, and returns the list of these
; values instead of a single value.

; We assume every legal value of key is a symbol.  If you supply a consp
; default and the default is returned, then no value was specified for key.

; Just to be concrete, suppose key is :mode and default is :logic.  The
; user has the opportunity to specify :mode in each element of lst, i.e., he
; may say to make the first fn :logic and the second fn :program.  But
; that is nonsense.  We have to process the whole clique or none at all.
; Therefore, we have to meld all of his various :mode specs together to come
; up with a setting for the DEFUNS event.  This function explores lst and
; either comes up with an unambiguous :mode or else causes an error.

  (let ((event-msg (if (cdr lst) "MUTUAL-RECURSION" "DEFUN event")))
    (er-let* ((x (get-unambiguous-xargs-flg1 key lst event-msg ctx state)))
      (cond ((consp x) (value default))
            (t (value x))))))

(defun get-unambiguous-xargs-flg-lst (key lst default ctx state)

; See get-unambiguous-xargs-flg.  Unlike that function, this function allows a
; different value for each defun tuple, and returns the list of these values
; instead of a single value.

  (cond ((null lst) (value nil))
        (t (er-let*
               ((ans (get-unambiguous-xargs-flg1/edcls key
                                                       *unspecified-xarg-value*
                                                       (fourth (car lst))
                                                       "DEFUN"
                                                       ctx
                                                       state))
                (rst (get-unambiguous-xargs-flg-lst key (cdr lst) default ctx
                                                    state)))
             (value (cons (if (consp ans) ; ans = *unspecified-xarg-value*
                              default
                            ans)
                          rst))))))

(defun remove-strings (l)
  (cond ((null l) nil)
        ((stringp (car l))
         (remove-strings (cdr l)))
        (t (cons (car l) (remove-strings (cdr l))))))

(defun rev-union-equal (x y)
  (declare (xargs :guard (and (true-listp x)
                              (true-listp y))))
  (cond ((endp x) y)
        ((member-equal (car x) y)
         (rev-union-equal (cdr x) y))
        (t
         (rev-union-equal (cdr x) (cons (car x) y)))))

(defun translate-declaration-to-guard-var-lst (x var-lst wrld)

; It is assumed that (translate-declaration-to-guard x 'var wrld) is
; non-nil.  This function translates the declaration x for each of the
; vars in var-lst and returns the list of translations.

  (declare (xargs :guard (and (true-listp var-lst)
                              (plist-worldp wrld))))
  (cond ((null var-lst) nil)
        (t (cons (translate-declaration-to-guard x (car var-lst) wrld)
                 (translate-declaration-to-guard-var-lst x
                                                         (cdr var-lst)
                                                         wrld)))))

(defun get-guards2 (edcls targets wrld stobjs-acc guards-acc)

; Targets is a subset of (GUARDS TYPES), where we pick up expressions from
; :GUARD and :STOBJS XARGS declarations if GUARDS is in the list and we pick up
; expressions corresponding to TYPE declaraions if TYPES is in the list.

; See get-guards for an example of what edcls looks like.  We require that
; edcls contains only valid type declarations, as explained in the comment
; below about translate-declaration-to-guard-var-lst.

; We are careful to preserve the order, except that we consider :stobjs as
; going before :guard.  (An example is (defun load-qs ...) in community book
; books/defexec/other-apps/qsort/programs.lisp.)  Before Version_3.5, Jared
; Davis sent us the following example, for which guard verification failed on
; the guard of the guard, because the :guard conjuncts were unioned into the
; :type contribution to the guard, leaving a guard of (and (natp n) (= (length
; x) n) (stringp x)).  It seems reasonable to accumulate the guard conjuncts in
; the order presented by the user.

; (defun f (x n)
;   (declare (xargs :guard (and (stringp x)
;                               (natp n)
;                               (= (length x) n)))
;            (type string x)
;            (ignore x n))
;   t)

  (cond ((null edcls)
         (revappend stobjs-acc (reverse guards-acc)))
        ((and (eq (caar edcls) 'xargs)
              (member-eq 'guards targets))

; We know (from chk-dcl-lst) that (cdar edcls) is a "keyword list"
; and so we can assoc-keyword up it looking for :GUARD.  We also know
; that there is at most one :GUARD entry.

         (let* ((temp1 (assoc-keyword :GUARD (cdar edcls)))
                (guard-conjuncts
                 (if temp1
                     (if (and (true-listp (cadr temp1))
                              (eq (car (cadr temp1)) 'AND))
                         (or (cdr (cadr temp1))
; The following (list t) avoids ignoring :guard (and).
                             (list t))
                       (list (cadr temp1)))
                   nil))
                (temp2 (assoc-keyword :STOBJS (cdar edcls)))
                (stobj-conjuncts
                 (if temp2
                     (stobj-recognizer-terms
                      (cond
                       ((symbol-listp (cadr temp2))
                        (cadr temp2))
                       ((and (cadr temp2)
                             (symbolp (cadr temp2)))
                        (list (cadr temp2)))
                       (t nil))
                      wrld)
                   nil)))
           (get-guards2 (cdr edcls)
                        targets
                        wrld
                        (rev-union-equal stobj-conjuncts
                                         stobjs-acc)
                        (rev-union-equal guard-conjuncts
                                         guards-acc))))
        ((and (eq (caar edcls) 'type)
              (member-eq 'types targets))
         (get-guards2 (cdr edcls)
                      targets
                      wrld

; The call of translate-declaration-to-guard-var-lst below assumes that
; (translate-declaration-to-guard (cadr (car edcls)) 'var wrld) is non-nil.
; This is indeed the case, because edcls is as created by chk-defuns-tuples,
; which leads to a call of chk-dcl-lst to check that the type declarations are
; legal.

                      stobjs-acc
                      (rev-union-equal (translate-declaration-to-guard-var-lst
                                        (cadr (car edcls))
                                        (cddr (car edcls))
                                        wrld)
                                       guards-acc)))
        (t (get-guards2 (cdr edcls) targets wrld stobjs-acc guards-acc))))

(defun get-guards1 (edcls targets wrld)
  (get-guards2 edcls targets wrld nil nil))

(defun get-guards (lst split-types-lst split-types-p wrld)

; Warning: see :DOC guard-miscellany for a specification of how conjuncts are
; ordered when forming the guard from :xargs and type declarations.

; Each element of lst is a 5-tuple (name args doc edcls body), where every TYPE
; declaration in edcls is valid (see get-guards2 for an explanation of why that
; is important).  We return a list in 1:1 correspondence with lst.  Each
; element is the untranslated guard or type expressions extracted from the
; edcls of the corresponding element of lst.  A typical value of edcls might be

; '((IGNORE X Y)
;   (XARGS :GUARD g1 :MEASURE m1 :HINTS ((id :USE ... :IN-THEORY ...)))
;   (TYPE ...)
;   (XARGS :GUARD g2 :MEASURE m2))

; The guard extracted from such an edcls is the conjunction of all the guards
; mentioned.

; We extract only the split-types expressions if split-types-p is true.
; Otherwise, we extract the guard expressions.  In both of these cases, the
; result depends on whether or not :split-types was assigned value t in the
; definition for the corresponding member of lst.

  (cond ((null lst) nil)
        (t (cons (let ((targets
                        (cond (split-types-p

; We are collecting type declarations for 'split-types-term properties.  Thus,
; we only collect these when the user has specified :split-types for a
; definition.

                               (and (car split-types-lst) '(types)))

; Otherwise, we are collecting terms for 'guard properties.  We skip type
; declarations when the user has specified :split-types for a definition.

                              ((car split-types-lst) '(guards))
                              (t '(guards types)))))
                   (conjoin-untranslated-terms
                    (and targets ; optimization
                         (get-guards2 (fourth (car lst)) targets wrld
                                      nil nil))))
                 (get-guards (cdr lst) (cdr split-types-lst) split-types-p
                             wrld)))))

(defun dcls-guard-raw-from-def (def wrld)
  (let* ((dcls (append-lst (strip-cdrs (remove-strings
                                        (butlast (cddr def) 1)))))
         (split-types (get-unambiguous-xargs-flg1/edcls1
                       :split-types
                       *unspecified-xarg-value*
                       dcls
                       "irrelevant-error-string"))
         (guards (get-guards1
                  dcls
                  (cond ((or (equal split-types
                                    *unspecified-xarg-value*) ; default
                             (eq split-types nil))
                         '(guards types))
                        (t (assert$ (eq split-types t)

; By the time we get here, we have already done our checks for the defun,
; including the check that split-types above is not an error message, and is
; Boolean.  So if the assertion just above fails, then something has gone
; terribly wrong!

                                    '(guards))))
                  wrld))
         (guard (cond ((null guards) t)
                      ((null (cdr guards)) (car guards))
                      (t (cons 'and guards)))))
    (mv dcls guard)))

(defun get-event (name wrld)

; This function returns nil when name was not introduced by an ACL2 event.  For
; primitives without definitions, we believe that the absolute-event-number is
; 0 and, as laid down in primordial-world, the corresponding event-tuple is
; (list 'enter-boot-strap-mode operating-system).

  (let ((index (getpropc name 'absolute-event-number nil wrld)))
    (and index
         (access-event-tuple-form
          (cddr
           (car
            (lookup-world-index 'event index wrld)))))))

(defun get-skipped-proofs-p (name wrld)

; Keep this in sync with get-event.

  (declare (xargs :mode :program))
  (let ((index (getpropc name 'absolute-event-number nil wrld)))
    (and index
         (access-event-tuple-skipped-proofs-p
          (cddr
           (car
            (lookup-world-index 'event index wrld)))))))

(mutual-recursion

; Here we combine what may naturally be thought of as two separate
; mutual-recursion nests: One for evaluation and one for untranslate.  However,
; functions in the ev nest call untranslate1 for error messages, and
; untranslate1 calls ev-fncall-w.  We are tempted to place the definitions of
; the untranslate functions first, but Allegro CL (6.2 and 7.0) produces a
; bogus warning in that case (which goes away if the char-code case is
; eliminated from ev-fncall-rec-logical!).

(defun guard-raw (fn wrld)

; Fn is a function symbol of wrld that is a primitive or is defined, hence is
; not merely constrained.  This function is responsible for returning a guard
; expression, g, suitable to print in messages reporting guard violations for
; calls of fn.

  (let ((trip (assoc-eq fn *primitive-formals-and-guards*)))
    (cond
     (trip (untranslate* (caddr trip) t wrld))
     (t (let ((ev (get-event fn wrld)))
          (cond
           ((atom ev)
            (er hard! 'guard-raw
                "Unable to find defining event for ~x0."
                fn))
           (t (let ((def ; strip off leading defun
                     (case (car ev)
                       (defun (cdr ev))
                       (mutual-recursion (assoc-eq fn (strip-cdrs (cdr ev))))
                       (otherwise (er hard! 'guard-raw
                                      "Implementation error for ~x0: ~
                                       Unexpected event type, ~x1"
                                      `(guard-raw ',fn <wrld>)
                                      (car ev))))))
                (mv-let
                 (dcls guard)
                 (dcls-guard-raw-from-def def wrld)
                 (declare (ignore dcls))
                 guard)))))))))

(defun ev-fncall-guard-er (fn args w user-stobj-alist latches extra)

; This function is called only by ev-fncall-rec-logical, which do not expect to
; be executed.

; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.

  (mv t
      (ev-fncall-guard-er-msg fn

; We call guard-raw both here and in oneify-cltl-code (more precisely, the
; subroutine dcls-guard-raw-from-def of guard-raw is called in
; oneify-cltl-code), so that the logical behavior for guard violations agrees
; with what is actually executed.

                              (guard-raw fn w)
                              (stobjs-in fn w) args w user-stobj-alist extra)
      latches))

(defun ev-fncall-rec-logical (fn args w user-stobj-alist big-n safe-mode gc-off
                                 latches hard-error-returns-nilp aok)

; This is the "slow" code for ev-fncall-rec, for when raw-ev-fncall is not
; called.

; The following guard is simply a way to trick ACL2 into not objecting
; to the otherwise irrelevant hard-error-returns-nilp.  See the comment
; in ev, below, for a brief explanation.  See hard-error for a more
; elaborate one.

; Keep this function in sync with *primitive-formals-and-guards*.

  (declare (xargs :guard (and (plist-worldp w)
                              (equal hard-error-returns-nilp
                                     hard-error-returns-nilp))))
  (cond
   ((zp-big-n big-n)
    (mv t
        (cons "Evaluation ran out of time." nil)
        latches))
   (t
    (let* ((x (car args))
           (y (cadr args))
           (pair (assoc-eq 'state latches))
           (w (if pair (w-of-any-state (cdr pair)) w))
           (safe-mode-requires-check
            (and safe-mode
                 (acl2-system-namep fn w)
                 (not (equal (symbol-package-name fn) "ACL2"))))
           (stobj-primitive-p
            (let ((st (getpropc fn 'stobj-function nil w)))
              (and st
                   (member-eq st (stobjs-in fn w)))))
           (guard-checking-off
            (and gc-off

; Safe-mode defeats the turning-off of guard-checking, as does calling a stobj
; primitive that takes its live stobj as an argument.  If the latter changes,
; consider also changing oneify-cltl-code.

                 (not safe-mode-requires-check)
                 (not stobj-primitive-p)))
           (extra (if gc-off
                      (cond (safe-mode-requires-check t)
                            ((not guard-checking-off)
                             :live-stobj)
                            (t nil))
                    (and stobj-primitive-p
                         :live-stobj-gc-on))))

; Keep this in sync with *primitive-formals-and-guards*.

      (case fn
        (ACL2-NUMBERP
         (mv nil (acl2-numberp x) latches))
        (BAD-ATOM<=
         (cond ((or guard-checking-off
                    (and (bad-atom x)
                         (bad-atom y)))
                (mv nil (bad-atom<= x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (BINARY-*
         (cond ((or guard-checking-off
                    (and (acl2-numberp x)
                         (acl2-numberp y)))
                (mv nil
                    (* x y)
                    latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (BINARY-+
         (cond ((or guard-checking-off
                    (and (acl2-numberp x)
                         (acl2-numberp y)))
                (mv nil (+ x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (UNARY--
         (cond ((or guard-checking-off
                    (acl2-numberp x))
                (mv nil (- x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (UNARY-/
         (cond ((or guard-checking-off
                    (and (acl2-numberp x)
                         (not (= x 0))))
                (mv nil (/ x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (<
         (cond ((or guard-checking-off
                    (and (real/rationalp x)
                         (real/rationalp y)))
                (mv nil (< x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (CAR
         (cond ((or guard-checking-off
                    (or (consp x)
                        (eq x nil)))
                (mv nil (car x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (CDR
         (cond ((or guard-checking-off
                    (or (consp x)
                        (eq x nil)))
                (mv nil (cdr x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (CHAR-CODE
         (cond ((or guard-checking-off
                    (characterp x))
                (mv nil (char-code x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (CHARACTERP
         (mv nil (characterp x) latches))
        (CODE-CHAR
         (cond ((or guard-checking-off
                    (and (integerp x)
                         (<= 0 x)
                         (< x 256)))
                (mv nil (code-char x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (COMPLEX
         (cond ((or guard-checking-off
                    (and (real/rationalp x)
                         (real/rationalp y)))
                (mv nil (complex x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (COMPLEX-RATIONALP
         (mv nil (complex-rationalp x) latches))
        #+:non-standard-analysis
        (COMPLEXP
         (mv nil (complexp x) latches))
        (COERCE
         (cond ((or guard-checking-off
                    (or (and (stringp x)
                             (eq y 'list))
                        (and (character-listp x)
                             (eq y 'string))))
                (mv nil (coerce x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (CONS
         (mv nil (cons x y) latches))
        (CONSP
         (mv nil (consp x) latches))
        (DENOMINATOR
         (cond ((or guard-checking-off
                    (rationalp x))
                (mv nil (denominator x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (EQUAL
         (mv nil (equal x y) latches))
        #+:non-standard-analysis
        (FLOOR1
         (cond ((or guard-checking-off
                    (realp x))
                (mv nil (floor x 1) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (IF
         (mv nil
             (er hard 'ev-fncall-rec
                 "This function should not be called with fn = 'IF!")
             latches))
        (IMAGPART
         (cond ((or guard-checking-off
                    (acl2-numberp x))
                (mv nil (imagpart x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (INTEGERP
         (mv nil (integerp x) latches))
        (INTERN-IN-PACKAGE-OF-SYMBOL
         (cond ((or guard-checking-off
                    (and (stringp x)
                         (symbolp y)))
                (mv nil (intern-in-package-of-symbol x y) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (NUMERATOR
         (cond ((or guard-checking-off
                    (rationalp x))
                (mv nil (numerator x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (PKG-IMPORTS
         (cond ((or guard-checking-off
                    (stringp x))
                (mv nil (pkg-imports x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (PKG-WITNESS
         (cond ((or guard-checking-off
                    (and (stringp x) (not (equal x ""))))
                (mv nil (pkg-witness x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (RATIONALP
         (mv nil (rationalp x) latches))
        #+:non-standard-analysis
        (REALP
         (mv nil (realp x) latches))
        (REALPART
         (cond ((or guard-checking-off
                    (acl2-numberp x))
                (mv nil (realpart x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (STRINGP
         (mv nil (stringp x) latches))
        (SYMBOL-NAME
         (cond ((or guard-checking-off
                    (symbolp x))
                (mv nil (symbol-name x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (SYMBOL-PACKAGE-NAME
         (cond ((or guard-checking-off
                    (symbolp x))
                (mv nil (symbol-package-name x) latches))
               (t (ev-fncall-guard-er fn args w user-stobj-alist latches
                                      extra))))
        (SYMBOLP
         (mv nil (symbolp x) latches))

; The next two functions have the obvious behavior on standard objects, which
; are the only ones ever present inside ACL2.

        #+:non-standard-analysis
        (STANDARDP
         (mv nil t latches))
        #+:non-standard-analysis
        (STANDARD-PART
         (mv nil x latches))
        #+:non-standard-analysis
        (I-LARGE-INTEGER ; We could omit this case, allowing a fall-through.
         (ev-fncall-null-body-er nil fn nil latches))
        (otherwise
         (cond
          ((and (null args)
                (car (stobjs-out fn w)))
           (mv t
               (ev-fncall-creator-er-msg fn)
               latches))
          (t
           (let ((alist (pairlis$ (formals fn w) args))
                 (body (body fn nil w))
                 (attachment (and aok
                                  (cdr (assoc-eq fn (all-attachments w))))))
             (mv-let
              (er val latches)
              (ev-rec (if guard-checking-off
                          ''t
                        (guard fn nil w))
                      alist w user-stobj-alist
                      (decrement-big-n big-n) (eq extra t) guard-checking-off
                      latches
                      hard-error-returns-nilp
                      aok)
              (cond
               (er (mv er val latches))
               ((null val)
                (ev-fncall-guard-er fn args w user-stobj-alist latches extra))
               ((and (eq fn 'hard-error)
                     (not hard-error-returns-nilp))

; Before we added this case, the following returned nil even though the result
; was t if we replaced ev-fncall-rec-logical by ev-fncall-rec.  That wasn't
; quite a soundness bug, event though the latter is defined to be the former,
; because ev-fncall-rec is untouchable; nevertheless the discrepancy was
; troubling.

;   (mv-let (erp val ign)
;           (ev-fncall-rec-logical 'hard-error '(top "ouch" nil) (w state)
;                                  (user-stobj-alist state)
;                                  100000 nil nil nil nil t)
;           (declare (ignore ign val))
;           erp)


                (mv t (illegal-msg) latches))
               ((eq fn 'throw-nonexec-error)
                (ev-fncall-null-body-er nil
                                        (car args)  ; fn
                                        (cadr args) ; args
                                        latches))
               ((member-eq fn '(pkg-witness pkg-imports))
                (mv t (unknown-pkg-error-msg fn (car args)) latches))
               (attachment
                (ev-fncall-rec-logical attachment args w user-stobj-alist
                                       (decrement-big-n big-n)
                                       safe-mode gc-off latches
                                       hard-error-returns-nilp aok))
               ((null body)
                (ev-fncall-null-body-er
                 (and (not aok) attachment)
                 fn args latches))
               (t
                (mv-let
                 (er val latches)
                 (ev-rec body alist w user-stobj-alist
                         (decrement-big-n big-n) (eq extra t)
                         guard-checking-off
                         latches
                         hard-error-returns-nilp
                         aok)
                 (cond
                  (er (mv er val latches))
                  ((eq fn 'return-last) ; avoid stobjs-out for return-last
                   (mv nil val latches))
                  (t (mv nil
                         val
                         (latch-stobjs
                          (actual-stobjs-out fn args w user-stobj-alist)
                          val
                          latches)))))))))))))))))

(defun ev-fncall-rec (fn args w user-stobj-alist big-n safe-mode gc-off latches
                         hard-error-returns-nilp aok)

; WARNING: This function should only be called with *raw-guard-warningp* bound.

  (declare (xargs :guard (plist-worldp w)))
  #-acl2-loop-only
  (cond (*ev-shortcut-okp*
         (cond ((fboundp fn)

; If fn is unbound and we used the logical code below, we'd get a
; hard error as caused by (formals fn w).

                (return-from ev-fncall-rec
                             (raw-ev-fncall fn args latches w user-stobj-alist
                                            hard-error-returns-nilp aok)))))
        (t
         (let ((pair (assoc-eq 'state latches)))
           (if (and pair
                    (eq (cdr pair) *the-live-state*))
               (progn
                 (er hard 'ev-fncall-rec
                     "ACL2 implementation error:  An attempt is being made to ~
                      evaluate a form involving the live state when ~
                      *ev-shortcut-okp* is nil. Please contact the ACL2 ~
                      implementors.")
                 (return-from ev-fncall-rec
                              (mv t
                                  (cons "Implementation error" nil)
                                  latches)))))))
  (ev-fncall-rec-logical fn args w user-stobj-alist big-n safe-mode gc-off
                         latches hard-error-returns-nilp aok))

#-acl2-loop-only
(progn
  (defvar *return-last-arg2*)
  (defvar *return-last-arg3*)
  (defvar *return-last-alist*)
  (defvar *return-last-fn-w*)
  (defvar *return-last-fn-user-stobj-alist*)
  (defvar *return-last-fn-big-n*)
  (defvar *return-last-fn-safe-mode*)
  (defvar *return-last-fn-gc-off*)
  (defvar *return-last-fn-latches*)
  (defvar *return-last-fn-hard-error-returns-nilp*)
  (defvar *return-last-fn-aok*))

(defun ev-rec-return-last (fn arg2 arg3 alist w user-stobj-alist big-n
                              safe-mode gc-off latches hard-error-returns-nilp
                              aok)

; This function should only be called when fn is a key of return-last-table,
; and is not mbe1-raw (which is handled directly in ev-rec, to avoid executing
; the :exec code).  Moreover, we get here only when the original return-last
; form is given a quoted first argument, so that ev-rec evaluation will treat
; return-last similarly to how it is treated in raw Lisp.  See the comment in
; ev-rec about how we leave it to the user not to remove a key from
; return-last-table before passing quotation of that key as the first argument
; of a return-last call.

  (assert$
   (not (eq fn 'mbe1-raw))
   (mv-let
    (er arg2-val latches)
    (let (#-acl2-loop-only (*aokp*

; See the #-acl2-loop-only definition of return-last and the comment just
; below.  Note that fn is not mbe1-raw, so this binding is appropriate.

                            t))
      (ev-rec arg2 alist w user-stobj-alist
              (decrement-big-n big-n)
              safe-mode gc-off latches hard-error-returns-nilp

; There is no logical problem with using attachments when evaluating the second
; argument of return-last, because logically the third argument provides the
; value(s) of a return-last call.  See related treatment of aokp in the
; #-acl2-loop-only definition of return-last.

              t))
    (cond (er (mv er arg2-val latches))
          (t (case fn

; We provide efficient handling for some common primitive cases.  Keep these
; cases in sync with corresponding cases in the #-acl2-loop-only definition of
; return-last.  Note however that mbe1-raw is already handled in ev-rec; we
; thus know that fn is not mbe1-raw.

; In the case of ec-call1 we expect ev-rec to call the appropriate *1* function
; anyhow, so we can treat it as a progn.

               ((progn ec-call1-raw)
                (ev-rec arg3 alist w user-stobj-alist
                        (decrement-big-n big-n)
                        safe-mode gc-off latches hard-error-returns-nilp aok))
               (with-guard-checking1-raw
                (return-last
                 'with-guard-checking1-raw
                 arg2-val
                 (ev-rec arg3 alist w user-stobj-alist
                         (decrement-big-n big-n)
                         safe-mode
                         (gc-off1 arg2-val)
                         latches hard-error-returns-nilp aok)))
               (otherwise
                #+acl2-loop-only
                (ev-rec arg3 alist w user-stobj-alist
                        (decrement-big-n big-n)
                        safe-mode gc-off latches hard-error-returns-nilp aok)

; The following raw Lisp code is a bit odd in its use of special variables.
; Our original motivation was to work around problems that SBCL had with large
; quoted constants in terms passed to eval (SBCL bug 654289).  While this issue
; was fixed in SBCL 1.0.43.19, nevertheless we believe that it is still an
; issue for CMUCL and, for all we know, it could be an issue for future Lisps.
; The use of special variables keeps the terms small that are passed to eval.

                #-acl2-loop-only
                (let ((*return-last-arg2* arg2-val)
                      (*return-last-arg3* arg3)
                      (*return-last-alist* alist)
                      (*return-last-fn-w* w)
                      (*return-last-fn-user-stobj-alist* user-stobj-alist)
                      (*return-last-fn-big-n* big-n)
                      (*return-last-fn-safe-mode* safe-mode)
                      (*return-last-fn-gc-off* gc-off)
                      (*return-last-fn-latches* latches)
                      (*return-last-fn-hard-error-returns-nilp*
                       hard-error-returns-nilp)
                      (*return-last-fn-aok* aok))
                  (eval `(,fn *return-last-arg2*
                              (ev-rec *return-last-arg3*
                                      *return-last-alist*
                                      *return-last-fn-w*
                                      *return-last-fn-user-stobj-alist*
                                      *return-last-fn-big-n*
                                      *return-last-fn-safe-mode*
                                      *return-last-fn-gc-off*
                                      *return-last-fn-latches*
                                      *return-last-fn-hard-error-returns-nilp*
                                      *return-last-fn-aok*)))))))))))

(defun ev-rec (form alist w user-stobj-alist big-n safe-mode gc-off latches
                    hard-error-returns-nilp aok)

; WARNING: This function should only be called with *raw-guard-warningp* bound.

; See also ev-respecting-ens.

; Note: Latches includes a binding of 'state.  See the Essay on EV.
; If you provide no latches and form changes some stobj, a hard error
; occurs.  Thus, if you provide no latches and no error occurs, you
; may ignore the output latches.

; Hard-error-returns-nilp is explained in the comment in hard-error.
; Essentially, two behaviors of (hard-error ...) are possible: return
; nil or signal an error.  Both are sound.  If hard-error-returns-nilp
; is t then hard-error just returns nil; this is desirable setting if
; you are evaluating a form in a conjecture being proved: its logical
; meaning really is nil.  But if you are evaluating a form for other
; reasons, e.g., to compute something, then hard-error should probably
; signal an error, because something is wrong.  In that case,
; hard-error-returns-nilp should be set to nil.  Nil is the
; conservative setting.

  (declare (xargs :guard (and (plist-worldp w)
                              (termp form w)
                              (symbol-alistp alist))))
  (cond ((zp-big-n big-n)
         (mv t (cons "Evaluation ran out of time." nil) latches))
        ((variablep form)
         (let ((pair (assoc-eq form alist)))
           (cond (pair (mv nil (cdr pair) latches))
                 (t (mv t
                        (msg "Unbound var ~x0."
                             form)
                        latches)))))
        ((fquotep form)
         (mv nil (cadr form) latches))
        ((translated-acl2-unwind-protectp form)

; We relegate this special case to a separate function, even though it could be
; open-coded, because it is so distracting.

         (ev-rec-acl2-unwind-protect form alist w user-stobj-alist
                                     (decrement-big-n big-n)
                                     safe-mode gc-off
                                     latches
                                     hard-error-returns-nilp
                                     aok))
        ((eq (ffn-symb form) 'wormhole-eval)

; Because this form has been translated, we know it is of the form
; (wormhole-eval 'name '(lambda ...) term) where the quoted lambda is either
; (lambda (whs) body) or (lambda () body), where body has also been translated.
; Furthermore, we know that all the free variables of the lambda are bound in
; the current environment.  Logically this term returns nil.  Actually, it
; applies the lambda expression to the most recent output of the named wormhole
; and stores the result as the most recent output.

         #+acl2-loop-only
         (mv nil nil latches)
         #-acl2-loop-only
         (progn
           (cond (*wormholep*
                  (setq *wormhole-status-alist*
                        (put-assoc-equal
                         (f-get-global 'wormhole-name
                                       *the-live-state*)
                         (f-get-global 'wormhole-status
                                       *the-live-state*)
                         *wormhole-status-alist*))))
           (let* ((*wormholep* t)
                  (name (cadr (fargn form 1)))
                  (formals (lambda-formals (cadr (fargn form 2))))
                  (whs (car formals)) ; will be nil if formals is nil!
                  (body (lambda-body (cadr (fargn form 2))))
                  (alist (if formals
                             (cons (cons whs
                                         (cdr (assoc-equal
                                               name
                                               *wormhole-status-alist*)))
                                   alist)
                             alist)))
             (mv-let (body-er body-val latches)
                     (ev-rec body alist w user-stobj-alist
                             (decrement-big-n big-n) safe-mode gc-off latches
                             hard-error-returns-nilp
                             aok)
                     (cond
                      (body-er (mv t body-val latches))
                      (t (setq *wormhole-status-alist*
                               (put-assoc-equal name body-val
                                                *wormhole-status-alist*))
                         (mv nil nil latches)))))))
        ((eq (ffn-symb form) 'if)
         (mv-let (test-er test latches)
                 (ev-rec (fargn form 1) alist w user-stobj-alist
                         (decrement-big-n big-n) safe-mode gc-off
                         latches
                         hard-error-returns-nilp
                         aok)
                 (cond
                  (test-er (mv t test latches))
                  (test
                   (ev-rec (fargn form 2) alist w user-stobj-alist
                           (decrement-big-n big-n) safe-mode gc-off
                           latches
                           hard-error-returns-nilp
                           aok))
                  (t (ev-rec (fargn form 3) alist w user-stobj-alist
                             (decrement-big-n big-n) safe-mode gc-off
                             latches
                             hard-error-returns-nilp
                             aok)))))
        ((eq (ffn-symb form) 'mv-list)
         (ev-rec (fargn form 2) alist w user-stobj-alist
                 (decrement-big-n big-n) safe-mode gc-off
                 latches hard-error-returns-nilp aok))
        ((and (eq (ffn-symb form) 'return-last)
              (not (and (equal (fargn form 1) ''mbe1-raw)

; We generally avoid running the :exec code for an mbe call.  But in safe-mode,
; it is critical to run the exec code and check its equality to the logic code
; (respecting the guard of return-last in the case that the first argument is
; 'mbe1-raw).  See the comments in note-4-3 for an example showing why it is
; unsound to avoid this check in safe-mode, and see (defun-*1* return-last ...)
; for a discussion of why we do not consider the case (not gc-off) here.

                        safe-mode)))
         (let ((fn (and (quotep (fargn form 1))
                        (unquote (fargn form 1)))))
           (cond
            ((and fn (symbolp fn))

; Translate11 will generally ensure that the value of (return-last-lookup fn w)
; is not nil.  What happens if the user (with an active trust tag) removes the
; association of a key in return-last-table with a non-nil value?  The
; resulting state will be a weird one, in which a direct evaluation of the
; return-last form in raw Lisp will continue to take effect.  So we match that
; behavior here, rather than requiring (return-last-lookup fn w) to be non-nil.
; We leave it to translate11 to enforce this requirement on return-last calls,
; and we leave it to the user not to remove a key from return-last-table before
; passing quotation of that key as the first argument of a return-last call.

             (cond
              ((eq fn 'mbe1-raw)

; We avoid running the exec code (see comment above).

               (ev-rec (fargn form 3) ; optimization: avoid exec argument
                       alist w user-stobj-alist
                       (decrement-big-n big-n) safe-mode gc-off latches
                       hard-error-returns-nilp aok))
              (t (ev-rec-return-last fn (fargn form 2) (fargn form 3)
                                     alist w user-stobj-alist
                                     big-n safe-mode gc-off latches
                                     hard-error-returns-nilp aok))))
            (t ; first arg is not quotep with special behavior; treat as progn
             (mv-let (args-er args latches)
                     (ev-rec-lst (fargs form) alist w user-stobj-alist
                                 (decrement-big-n big-n) safe-mode gc-off
                                 latches
                                 hard-error-returns-nilp
                                 aok)
                     (cond (args-er (mv t args latches))
                           (t (mv nil (car (last args)) latches))))))))
        (t (mv-let (args-er args latches)
                   (ev-rec-lst (fargs form) alist w user-stobj-alist
                               (decrement-big-n big-n) safe-mode gc-off
                               latches
                               hard-error-returns-nilp
                               aok)
                   (cond
                    (args-er (mv t args latches))
                    ((flambda-applicationp form)
                     (ev-rec (lambda-body (ffn-symb form))
                             (pairlis$ (lambda-formals (ffn-symb form)) args)
                             w user-stobj-alist
                             (decrement-big-n big-n) safe-mode gc-off
                             latches
                             hard-error-returns-nilp
                             aok))
                    (t (ev-fncall-rec (ffn-symb form) args w user-stobj-alist
                                      (decrement-big-n big-n)
                                      safe-mode gc-off latches
                                      hard-error-returns-nilp aok)))))))

(defun ev-rec-lst (lst alist w user-stobj-alist big-n safe-mode gc-off latches
                       hard-error-returns-nilp aok)

; WARNING: This function should only be called with *raw-guard-warningp* bound.

  (declare (xargs :guard (and (plist-worldp w)
                              (term-listp lst w)
                              (symbol-alistp alist))))
  (cond
   ((zp-big-n big-n)
    (mv t (cons "Evaluation ran out of time." nil) latches))
   ((null lst) (mv nil nil latches))
   (t (mv-let (first-er first-val first-latches)
              (ev-rec (car lst) alist w user-stobj-alist
                      (decrement-big-n big-n) safe-mode gc-off
                      latches
                      hard-error-returns-nilp
                      aok)
              (cond
               (first-er (mv first-er first-val first-latches))
               (t
                (mv-let (rest-er rest-val rest-latches)
                        (ev-rec-lst (cdr lst) alist w user-stobj-alist
                                    (decrement-big-n big-n) safe-mode gc-off
                                    first-latches
                                    hard-error-returns-nilp
                                    aok)
                        (cond
                         (rest-er (mv rest-er rest-val rest-latches))
                         (t (mv nil
                                (cons first-val rest-val)
                                rest-latches))))))))))

(defun ev-rec-acl2-unwind-protect (form alist w user-stobj-alist big-n
                                        safe-mode gc-off latches
                                        hard-error-returns-nilp aok)

; WARNING: This function should only be called with *raw-guard-warningp* bound.

; Sketch: We know that form is a termp wrt w and that it is recognized by
; translated-acl2-unwind-protectp.  We therefore unpack it into its body and
; two cleanup forms and give it special attention.  If the body evaluates
; without either an abort or any kind of "evaluation error" (e.g., ubv, udf, or
; guard error) then we return exactly what we would have returned had we
; evaluated form without special treatment.  But if body causes an evaluation
; error we run the cleanup1 code, just as Common Lisp would had the body been
; compiled and caused a hard lisp error.  Furthermore, if the evaluation of
; body is aborted, we ensure that the cleanup1 code is EV'd upon unwinding.

; See the Essay on Unwind-Protect in axioms.lisp.

  (declare (xargs :guard (and (plist-worldp w)
                              (termp form w)
                              (symbol-alistp alist))))
  (let ((temp nil))
    #+acl2-loop-only
    (declare (ignore temp))
    (mv-let
     (ans body cleanup1 cleanup2)
     (translated-acl2-unwind-protectp4 form)
     (declare (ignore ans))
     #-acl2-loop-only
     (cond ((live-state-p (cdr (assoc-eq 'STATE alist)))

; This code implements our unwind-protection from aborts.  Intuitively, we wish
; to push the cleanup form onto the unwind-protect stack provided the STATE
; being modified is the live state.  It is possible that STATE is not bound in
; alist.  If this happens then it is certainly not the live state and we do not
; push anything.

; The next problem, however, is what do we push?  In normal circumstances --
; i.e., body terminating without an evaluation error but signalling an error --
; cleanup1 is evaluated by ev.  But cleanup1 is evaluated in w, which may or
; may not be the installed world.  Hence, the meaning in w of the function
; symbol in the car of cleanup1 may be different from the raw lisp definition
; (if any) of that symbol.  So we can't do the usual and just push the car of
; cleanup1 and the values (in alist) of the arguments.  Furthermore, there is
; delicacy concerning the possibility that not all of the argument variables
; are bound in alist.  To make matters slightly worse, we can't cause any
; errors right now, no matter how screwed up cleanup1 might be, because no
; abort has happened and we are obliged to respect the semantics unless an
; abort happens.  To make a long story short, we do what is pretty obvious: we
; push onto the undo stack a form that calls EV to do the cleanup!  We use
; FUNCTION to capture the local environment, e.g., alist, which contains the
; values of all the variables occurring in the cleanup form.

            (setq temp
                  (cons "ev-rec-acl2-unwind-protect"
                        #'(lambda nil

; The Essay on Unwind-Protect says that we have the freedom to give arbitrary
; semantics to acl2-unwind-protect in the face of an abort.  So in this raw
; Lisp code, we take the liberty of binding *ev-shortcut-okp* to t even though
; when this cleanup code is executed, we may violate the requirement that the
; values of state globals guard-checking-on and safe-mode are respected in the
; arguments to ev-rec when *ev-shortcut-okp* is t.  This seems like quite a
; minor violation when doing cleanup.

                            (let ((*ev-shortcut-okp* t))
                              (mv-let (erp val latches)
                                (ev-rec cleanup1 alist
                                        w user-stobj-alist
                                        big-n safe-mode gc-off
                                        latches
                                        hard-error-returns-nilp
                                        aok)
                                (declare (ignore latches))
; Since 'STATE in alist is the live state, latches must be too.
                                (cond
                                 (erp
                                  (let ((state *the-live-state*))
                                    (er soft 'acl2-unwind-protect "~@0" val))))))
                            *the-live-state*)))
            (push-car temp
                      *acl2-unwind-protect-stack*
                      'ev-rec-acl2-unwind-protect)))
     (mv-let
      (body-erp body-val body-latches)
      (ev-rec body alist w user-stobj-alist big-n safe-mode gc-off latches
              hard-error-returns-nilp aok)
      (cond
       (body-erp ; "hard error", e.g., guard error in body

; It is possible that the evaluation of body pushed some additional
; cleanup forms before the abort occurred.  We must get back down to
; the form we pushed.  This is analogous to the similar situation in
; acl2-unwind-protect itself.

        #-acl2-loop-only
        (cond (temp (acl2-unwind -1 temp)))

        (mv-let
         (clean-erp clean-val clean-latches)
         (ev-rec cleanup1
                 (put-assoc-eq 'state
                               (cdr (assoc-eq 'state body-latches))
                               alist)
                 w user-stobj-alist big-n safe-mode gc-off
                 body-latches hard-error-returns-nilp aok)

         #-acl2-loop-only
         (cond (temp
                (pop (car *acl2-unwind-protect-stack*))))
         (cond
          (clean-erp ; "hard error," e.g., guard error in cleanup!
           (mv t
               (msg "An evaluation error, ``~@0'', occurred while ~
                     evaluating the body of an acl2-unwind-protect ~
                     form.  While evaluating the first cleanup form a ~
                     second evaluation error occurred, ``~@1''.  The ~
                     body of the acl2-unwind-protect is ~p2 and the ~
                     first cleanup form is ~p3.  Because the cleanup ~
                     form failed, the state being returned may not be ~
                     fully cleaned up."
                    body-val
                    clean-val
                    (untranslate* body nil w)
                    (untranslate* cleanup1 nil w))
               clean-latches))
          (t

; In this case, clean-val is the binding of 'state in
; clean-latches because the cleanup form produces a state.

           (mv body-erp body-val clean-latches)))))
       ((car body-val) ; "soft error," i.e., body signalled error

; We think this call of acl2-unwind is unnecessary.  It is here in
; case the evaluation of body pushed some additional forms onto the
; unwind protect stack and it removes those forms down to the one we
; pushed.  But if a soft error has arisen, any forms pushed would have
; been popped on the way back to here.  But this code is safer.

        #-acl2-loop-only
        (cond (temp (acl2-unwind -1 temp)))

; Because body is known to produce an error triple we know its car is
; the error flag, the cadr is the value, and the caddr is a state
; The test above therefore detects that the body signalled an error.

        (mv-let
         (clean-erp clean-val clean-latches)
         (ev-rec cleanup1
                 (put-assoc-eq 'state
                               (cdr (assoc-eq 'state body-latches))
                               alist)
                 w user-stobj-alist big-n safe-mode gc-off
                 body-latches hard-error-returns-nilp aok)
         #-acl2-loop-only
         (cond (temp
                (pop (car *acl2-unwind-protect-stack*))))
         (cond
          (clean-erp ; "hard error," e.g., guard error in cleanup!
           (mv t
               (msg "An evaluation error, ``~@0'', occurred while ~
                     evaluating the first cleanup form of an ~
                     acl2-unwind-protect.  The body of the ~
                     acl2-unwind-protect is ~p1 and the first cleanup ~
                     form is ~p2.  Because the cleanup form failed, ~
                     the state being returned may not be fully cleaned ~
                     up."
                    clean-val
                    (untranslate* body nil w)
                    (untranslate* cleanup1 nil w))
               clean-latches))
          (t

; We pass a SOFT error up, containing the cleaned up state.

           (mv nil
               (list (car body-val)
                     (cadr body-val)
                     (cdr (assoc-eq 'state clean-latches)))
               clean-latches)))))
       (t ; no hard or soft error

; Same safety check described above.

        #-acl2-loop-only
        (cond (temp (acl2-unwind -1 temp)))

        (mv-let
         (clean-erp clean-val clean-latches)
         (ev-rec cleanup2
                 (put-assoc-eq 'state
                               (cdr (assoc-eq 'state body-latches))
                               alist)
                 w user-stobj-alist big-n safe-mode gc-off
                 body-latches hard-error-returns-nilp aok)

         #-acl2-loop-only
         (cond (temp
                (pop (car *acl2-unwind-protect-stack*))))
         (cond
          (clean-erp ; "hard error," e.g., guard error in cleanup!
           (mv t
               (msg "An evaluation error, ``~@0'', occurred while ~
                     evaluating the second cleanup form of an ~
                     acl2-unwind-protect.  The body of the ~
                     acl2-unwind-protect is ~p1 and the second cleanup ~
                     form is ~p2.  Because the cleanup form failed, ~
                     the state being returned may not be fully cleaned ~
                     up."
                    clean-val
                    (untranslate* body nil w)
                    (untranslate* cleanup2 nil w))
               clean-latches))
          (t
           (mv nil
               (list (car body-val)
                     (cadr body-val)
                     (cdr (assoc-eq 'state clean-latches)))
               clean-latches))))))))))

(defun ev-fncall-w (fn args w user-stobj-alist safe-mode gc-off
                       hard-error-returns-nilp aok)
  (declare (xargs :guard (ev-fncall-w-guard fn args w nil)))

; WARNING: Do not call this function if args contains the live state
; or any other live stobjs and evaluation of form could modify any of
; those stobjs.  Otherwise, the calls of ev-fncall-rec below violate
; requirement (1) in The Essay on EV, which is stated explicitly for
; ev but, in support of ev, is applicable to ev-fncall-rec as well.
; Note that users cannot make such a call because they cannot put live
; stobjs into args.

; It may see inappropriate that we temporarily modify state in a
; function that does not take state.  But what we are really doing is
; writing a function that has nothing to do with state, yet handles
; guards in a way appropriate to the current world.  We need to modify
; the state to match the inputs safe-mode and gc-off.

; Keep the two ev-fncall-rec calls below in sync.

  #-acl2-loop-only
  (let ((*ev-shortcut-okp* t)
        (*raw-guard-warningp* (raw-guard-warningp-binding)))
    (state-free-global-let*
     ((safe-mode safe-mode)
      (guard-checking-on

; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none, but it
; doesn't seem that this would be a problem.

       (not gc-off)))
     (mv-let
      (erp val latches)
      (ev-fncall-rec fn args w user-stobj-alist (big-n) safe-mode gc-off
                     nil ; latches
                     hard-error-returns-nilp
                     aok)
      (progn (when latches
               (er hard 'ev-fncall-w
                   "The call ~x0 returned non-nil latches."
                   (list 'ev-fncall-w
                         fn
                         args
                         '<wrld>
                         (if user-stobj-alist
                             '<user-stobj-alist>
                           nil)
                         safe-mode gc-off hard-error-returns-nilp aok)))
             (mv erp val)))))
  #+acl2-loop-only
  (mv-let
   (erp val latches)
   (ev-fncall-rec fn args w user-stobj-alist (big-n) safe-mode gc-off
                  nil ; latches
                  hard-error-returns-nilp
                  aok)
   (declare (ignore latches))
   (mv erp val)))

(defun ev-w (form alist w user-stobj-alist safe-mode gc-off
                  hard-error-returns-nilp aok)

; WARNING: Do not call this function if alist contains the live state or any
; other live stobjs and evaluation of form could modify any of those stobjs.
; Otherwise, the calls of ev-rec below violate requirement (1) in The Essay on
; EV, which is stated explicitly for ev but, in support of ev, is applicable to
; ev-rec as well.  Note that users cannot make such a call because they cannot
; put live stobjs into alist.

; Also see related functions ev-fncall-w and oracle-apply (and macro
; oracle-funcall).  Their guards pay attention to avoiding calls of untouchable
; functions, and hence are not themselves untouchable.  But ev-w is untouchable
; because we don't make any such check, even in the guard.

; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.  Probably user-stobj-alist
; could be replaced as nil because of the stobj restriction on alist.

  (declare (xargs :guard (and (plist-worldp w)
                              (termp form w)
                              (symbol-alistp alist))))

; See the comment in ev for why we don't check the time limit here.

  #-acl2-loop-only
  (let ((*ev-shortcut-okp* t)
        (*raw-guard-warningp* (raw-guard-warningp-binding)))
    (state-free-global-let*
     ((safe-mode safe-mode)
      (guard-checking-on

; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none -- but it
; doesn't seem that this would be a problem, provided the call is made with
; gc-off set to t if guard-checking-on is either nil or :none (don't forget
; :none!).

       (not gc-off)))
     (mv-let
      (erp val latches)
      (ev-rec form alist w user-stobj-alist (big-n) safe-mode gc-off
              nil ; latches
              hard-error-returns-nilp
              aok)
      (progn (when latches
               (er hard! 'ev-w
                   "The call ~x0 returned non-nil latches."
                   (list 'ev-w form alist '<wrld>
                         (if user-stobj-alist '<user-stobj-alist> nil)
                         safe-mode gc-off
                         hard-error-returns-nilp aok)))
             (mv erp val)))))
  #+acl2-loop-only
  (mv-let (erp val latches)
          (ev-rec form alist w user-stobj-alist (big-n) safe-mode gc-off
                  nil ; latches
                  hard-error-returns-nilp
                  aok)
          (declare (ignore latches))
          (mv erp val)))

(defun guard-er-message-coda (fn stobjs-in args w extra erp)
  (msg "~@0~@1~@2~@3"
       (cond ((and (eq fn 'return-last)
                   (eq (car args) 'mbe1-raw))
              (msg "  This offending call is equivalent to the more common ~
                    form, ~x0."
                   `(mbe :logic
                         ,(untranslate* (kwote (caddr args)) nil w)
                         :exec
                         ,(untranslate* (kwote (cadr args)) nil w))))
             (t ""))
       (cond ((eq extra :live-stobj)

; This case occurs if we attempt to execute the call of a "oneified" function
; on a live stobj (including state) when the guard of the fn is not satisfied,
; where the function is either a primitive listed in *super-defun-wart-table*
; or is defined by defstobj or defabsstobj.

; Warning: Before removing this error, consider that in general guard-checking
; may be defeated by :set-guard-checking :none, so we may be relying on this
; error for built-in functions like aset-t-stack that rely on guard-checking to
; validate their arguments.

              (msg "~|This error is being reported even though guard-checking ~
                    has been turned off, because a stobj argument of ~x0 is ~
                    the ``live'' ~p1 and ACL2 does not support non-compliant ~
                    live stobj manipulation."
                   fn
                   (find-first-non-nil stobjs-in)))
             ((eq extra :live-stobj-gc-on)
              (msg "~|This error will be reported even if guard-checking is ~
                    turned off, because a stobj argument of ~x0 is the ~
                    ``live'' ~p1 and ACL2 does not support non-compliant live ~
                    stobj manipulation."
                   fn
                   (find-first-non-nil stobjs-in)))
             ((eq extra :no-extra) "") ; :no-extra is unused as of late 10/2013
             (extra *safe-mode-guard-er-addendum*)
             (t "~|See :DOC set-guard-checking for information about ~
                 suppressing this check with (set-guard-checking :none), as ~
                 recommended for new users."))
       (error-trace-suggestion t)
       (if erp
           (msg "~|~%Note: Evaluation has resulted in an error for the form ~
                 associated with ~x0 in the table, ~x1, to obtain a custom ~
                 guard error message.  Consider modifying that table entry; ~
                 see :doc set-guard-msg."
                fn 
                'guard-msg-table)
         "")))

(defun ev-fncall-guard-er-msg (fn guard stobjs-in args w user-stobj-alist
                                  extra)

; Guard is printed directly, so should generally be in untranslated form.

; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.

  (prog2$
   (save-ev-fncall-guard-er fn guard stobjs-in args)
   (let ((form (cdr (assoc-eq fn (table-alist 'guard-msg-table w)))))
     (mv-let
      (erp msg)
      (cond (form (ev-w form
                        (list (cons 'world w)
                              (cons 'args args)
                              (cons 'coda
                                    (guard-er-message-coda
                                     fn
                                     stobjs-in
                                     args
                                     w
                                     extra
                                     nil ; erp [no error yet!]
                                     )))
                        w
                        user-stobj-alist
                        nil ; safe-mode
                        t   ; gc-off
                        t   ; hard-error-returns-nilp
                        t   ; aok
                        ))
            (t (mv nil nil)))
      (or msg
          (msg
           "The guard for the~#0~[ :program~/~] function call ~x1, which is ~
            ~P23, is violated by the arguments in the call ~P45.~@6"
           (if (programp fn w) 0 1)
           (cons fn (formals fn w))
           guard
           nil ; might prefer (term-evisc-tuple nil state) if we had state here
           (cons fn
                 (untranslate*-lst
                  (apply-user-stobj-alist-or-kwote user-stobj-alist args nil)
                  nil
                  w))
           (evisc-tuple 3 4 nil nil)
           (guard-er-message-coda fn stobjs-in args w extra erp)))))))

(defun ev-fncall-msg (val wrld user-stobj-alist)

; Warning: Keep this in sync with ev-fncall-rec-logical.

; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.

  (cond
   ((and (consp val)
         (eq (car val) 'ev-fncall-null-body-er))
    (ev-fncall-null-body-er-msg (cadr val) (caddr val) (cdddr val)))
   ((and (consp val)
         (eq (car val) 'ev-fncall-guard-er))

; We get here if val is of the form (ev-fncall-guard-er fn args guard
; stobjs-in safep).  This happens if a :program function finds its
; guard violated or a :logic function finds its guard violated while
; guard-checking is on.

    (ev-fncall-guard-er-msg (cadr val) (cadddr val) (car (cddddr val))
                            (caddr val) wrld user-stobj-alist
                            (cadr (cddddr val))))
   ((and (consp val)
         (eq (car val) 'ev-fncall-creator-er))

; This is similar to the preceding case, except that there are no stobjs-in.

    (ev-fncall-creator-er-msg
     (cadr val)))
   ((and (consp val)
         (member-eq (car val) '(pkg-witness pkg-imports)))
    (unknown-pkg-error-msg (car val) (cadr val)))

; At one time we had the following case:

;  ((and (consp val)
;        (eq (car val) 'program-only-er))

; In this case we (essentially) returned (program-only-er-msg (cadr val) (caddr
; val) (cadr (cddddr val))).  But we get here by catching a throw of val, which
; no longer is of the form (program-only-er ...); see the comment about the
; call of oneify-fail-form on 'program-only-er (and other arguments) in
; oneify-cltl-code.

   ((eq val 'illegal)
    (illegal-msg))
   (t (er hard 'raw-ev-fncall
          "An unrecognized value, ~x0, was thrown to 'raw-ev-fncall.~@1"
          val
          (error-trace-suggestion t)))))

(defun untranslate1 (term iff-flg untrans-tbl preprocess-fn wrld)

; Warning: It would be best to keep this in sync with
; obviously-iff-equiv-terms, specifically, giving similar attention in both to
; functions like implies, iff, and not, which depend only on the propositional
; equivalence class of each argument.

; Warning: Consider keeping in sync with community book
; books/misc/rtl-untranslate.lisp.

; We return a Lisp form that translates to term if iff-flg is nil and
; that translates to a term iff-equivalent to term if iff-flg is t.
; Wrld is an ACL2 logical world, which may be used to improve the
; appearance of the result, in particular to allow (nth k st) to be
; printed as (nth *field-name* st) if st is a stobj name and
; field-name is the kth field name of st; similarly for update-nth.
; It is perfectly appropriate for wrld to be nil if such extra
; information is not important.

; Note: The only reason we need the iff-flg is to let us translate (if
; x1 t x2) into (or x1 x2) when we are in an iff situation.  We could
; ask type-set to check that x1 is Boolean, but that would require
; passing wrld into untranslate.  That, in turn, would require passing
; wrld into such syntactic places as prettyify-clause and any other
; function that might want to print a term.

; Warning: This function may not terminate.  We should consider making it
; primitive recursive by adding a natural number ("count") parameter.

  (let ((term (if preprocess-fn
                  (mv-let (erp term1)
                          (ev-fncall-w preprocess-fn
                                       (list term wrld)
                                       wrld
                                       nil ; user-stobj-alist
                                       nil ; safe-mode
                                       nil ; gc-off
                                       nil ; hard-error-returns-nilp
                                       t   ; aok
                                       )
                          (or (and (null erp) term1)
                              term))
                term)))
    (cond ((variablep term) term)
          ((fquotep term)
           (cond ((or (acl2-numberp (cadr term))
                      (stringp (cadr term))
                      (characterp (cadr term))
                      (eq (cadr term) nil)
                      (eq (cadr term) t)
                      (keywordp (cadr term)))
                  (cadr term))
                 (t term)))
          ((flambda-applicationp term)
           (make-let-or-let*
            (collect-non-trivial-bindings (lambda-formals (ffn-symb term))
                                          (untranslate1-lst (fargs term)
                                                            nil
                                                            untrans-tbl
                                                            preprocess-fn
                                                            wrld))
            (untranslate1 (lambda-body (ffn-symb term)) iff-flg untrans-tbl
                          preprocess-fn wrld)))
          ((eq (ffn-symb term) 'if)
           (case-match term
             (('if x1 *nil* *t*)
              (list 'not (untranslate1 x1 t untrans-tbl preprocess-fn wrld)))
             (('if x1 x2  *nil*)
              (untranslate-and (untranslate1 x1 t untrans-tbl preprocess-fn wrld)
                               (untranslate1 x2 iff-flg untrans-tbl preprocess-fn
                                             wrld)
                               iff-flg))
             (('if x1 *nil* x2)
              (untranslate-and (list 'not (untranslate1 x1 t untrans-tbl
                                                        preprocess-fn wrld))
                               (untranslate1 x2 iff-flg untrans-tbl preprocess-fn
                                             wrld)
                               iff-flg))
             (('if x1 x1 x2)
              (untranslate-or (untranslate1 x1 iff-flg untrans-tbl preprocess-fn
                                            wrld)
                              (untranslate1 x2 iff-flg untrans-tbl preprocess-fn
                                            wrld)))
             (('if x1 x2 *t*)

; Observe that (if x1 x2 t) = (if x1 x2 (not nil)) = (if x1 x2 (not x1)) =
; (if (not x1) (not x1) x2) = (or (not x1) x2).

              (untranslate-or (list 'not (untranslate1 x1 t untrans-tbl
                                                       preprocess-fn wrld))
                              (untranslate1 x2 iff-flg untrans-tbl preprocess-fn
                                            wrld)))
             (('if x1 *t* x2)
              (cond
               ((or iff-flg
                    (and (nvariablep x1)
                         (not (fquotep x1))
                         (member-eq (ffn-symb x1)
                                    *untranslate-boolean-primitives*)))
                (untranslate-or (untranslate1 x1 t untrans-tbl
                                              preprocess-fn wrld)
                                (untranslate1 x2 iff-flg untrans-tbl
                                              preprocess-fn wrld)))
               (t (untranslate-if term iff-flg untrans-tbl preprocess-fn wrld))))
             (& (untranslate-if term iff-flg untrans-tbl preprocess-fn wrld))))
          ((and (eq (ffn-symb term) 'not)
                (nvariablep (fargn term 1))
                (not (fquotep (fargn term 1)))
                (member-eq (ffn-symb (fargn term 1)) '(< o<)))
           (list (if (eq (ffn-symb (fargn term 1)) '<) '<= 'o<=)
                 (untranslate1 (fargn (fargn term 1) 2) nil untrans-tbl
                               preprocess-fn wrld)
                 (untranslate1 (fargn (fargn term 1) 1) nil untrans-tbl
                               preprocess-fn wrld)))
          ((member-eq (ffn-symb term) '(implies iff))
           (fcons-term* (ffn-symb term)
                        (untranslate1 (fargn term 1) t untrans-tbl preprocess-fn
                                      wrld)
                        (untranslate1 (fargn term 2) t untrans-tbl preprocess-fn
                                      wrld)))
          ((eq (ffn-symb term) 'cons) (untranslate-cons term untrans-tbl
                                                        preprocess-fn wrld))
          ((and (eq (ffn-symb term) 'synp)

; Even though translate insists that the second argument of synp is quoted, can
; we really guarantee that every termp given to untranslate came through
; translate?  Not necessarily; for example, maybe substitution was performed
; for some reason (say, in the proof-checker one replaces the quoted argument
; by a variable known to be equal to it).

                (quotep (fargn term 2)))

; We store the quotation of the original form of a syntaxp or bind-free
; hypothesis in the second arg of its expansion.  We do this so that we
; can use it here and output something that the user will recognise.

           (cadr (fargn term 2)))
          ((and (eq (ffn-symb term) 'return-last)
                (quotep (fargn term 1))
                (let* ((key (unquote (fargn term 1)))
                       (fn (and (symbolp key)
                                key
                                (let ((tmp (return-last-lookup key
                                                               wrld)))
                                  (if (consp tmp) (car tmp) tmp)))))
                  (and fn
                       (cons fn
                             (untranslate1-lst (cdr (fargs term)) nil
                                               untrans-tbl preprocess-fn
                                               wrld))))))
          (t (let* ((pair (cdr (assoc-eq (ffn-symb term)
                                         untrans-tbl)))
                    (op (car pair))
                    (flg (cdr pair))
                    (const
                     (and (member-eq (ffn-symb term)
                                     '(nth update-nth update-nth-array))
                          (quotep (fargn term 1))
                          (integerp (cadr (fargn term 1)))
                          (<= 0 (cadr (fargn term 1)))
                          (accessor-root (cadr (fargn term 1))
                                         (case (ffn-symb term)
                                           (nth (fargn term 2))
                                           (update-nth (fargn term 3))
                                           (t ; update-nth-array
                                            (fargn term 4)))
                                         wrld))))
               (cond
                (op (cons op
                          (cond
                           (const ; ignoring flg, which is presumably nil
                            (cons const
                                  (untranslate1-lst
                                   (cdr (fargs term))
                                   nil untrans-tbl preprocess-fn wrld)))
                           (t
                            (untranslate1-lst
                             (cond
                              ((and flg
                                    (cdr (fargs term))
                                    (null (cddr (fargs term))))
                               (right-associated-args (ffn-symb term)
                                                      term))
                              (t (fargs term)))
                             nil untrans-tbl preprocess-fn wrld)))))
                (const
                 (list* (ffn-symb term)
                        const
                        (untranslate1-lst (cdr (fargs term)) nil
                                          untrans-tbl
                                          preprocess-fn
                                          wrld)))
                (t
                 (mv-let
                  (ad-list base)
                  (make-reversed-ad-list term nil)
                  (cond (ad-list
                         (pretty-parse-ad-list
                          ad-list '(#\R) 1
                          (untranslate1 base nil untrans-tbl preprocess-fn
                                        wrld)))
                        (t (cons (ffn-symb term)
                                 (untranslate1-lst (fargs term) nil
                                                   untrans-tbl
                                                   preprocess-fn
                                                   wrld))))))))))))

(defun untranslate-cons1 (term untrans-tbl preprocess-fn wrld)

; This function digs through a 'cons nest, untranslating each of the
; elements and the final non-cons cdr.  It returns two results:  the
; list of untranslated elements and the untranslated final term.

  (cond ((variablep term) (mv nil (untranslate1 term nil untrans-tbl
                                                preprocess-fn wrld)))
        ((fquotep term) (mv nil (untranslate1 term nil untrans-tbl preprocess-fn
                                              wrld)))
        ((eq (ffn-symb term) 'cons)
         (mv-let (elements x)
                 (untranslate-cons1 (fargn term 2) untrans-tbl preprocess-fn
                                    wrld)
                 (mv (cons (untranslate1 (fargn term 1) nil untrans-tbl
                                         preprocess-fn wrld)
                           elements)
                     x)))
        (t (mv nil (untranslate1 term nil untrans-tbl preprocess-fn wrld)))))

(defun untranslate-cons (term untrans-tbl preprocess-fn wrld)

; Term is a non-quote term whose ffn-symb is 'cons.  We untranslate
; it into a CONS, a LIST, or a LIST*.

  (mv-let (elements x)
          (untranslate-cons1 term untrans-tbl preprocess-fn wrld)
          (cond ((eq x nil) (cons 'list elements))
                ((null (cdr elements)) (list 'cons (car elements) x))
                (t (cons 'list* (append elements (list x)))))))

(defun untranslate-if (term iff-flg untrans-tbl preprocess-fn wrld)
  (cond ((> (case-length nil term) 2)
         (case-match term
                     (('if (& key &) & &)
                      (list* 'case key
                             (untranslate-into-case-clauses
                              key term iff-flg untrans-tbl preprocess-fn
                              wrld)))))
        ((> (cond-length term) 2)
         (cons 'cond (untranslate-into-cond-clauses term iff-flg untrans-tbl
                                                    preprocess-fn
                                                    wrld)))
        (t (list 'if
                 (untranslate1 (fargn term 1) t untrans-tbl preprocess-fn wrld)
                 (untranslate1 (fargn term 2) iff-flg untrans-tbl preprocess-fn
                               wrld)
                 (untranslate1 (fargn term 3) iff-flg untrans-tbl preprocess-fn
                               wrld)))))

(defun untranslate-into-case-clauses (key term iff-flg untrans-tbl preprocess-fn
                                          wrld)

; We generate the clauses of a (case key ...) stmt equivalent to term.
; We only call this function when the case-length of term is greater
; than 1.  If we called it when case-length were 1, it would not
; terminate.

  (case-match term
              (('if (pred !key ('quote val)) x y)
               (cond ((and (or (eq pred 'equal)
                               (eq pred 'eql))
                           (eqlablep val))
                      (cond ((or (eq val t)
                                 (eq val nil)
                                 (eq val 'otherwise))
                             (cons (list (list val)
                                         (untranslate1 x iff-flg untrans-tbl
                                                       preprocess-fn wrld))
                                   (untranslate-into-case-clauses
                                    key y iff-flg untrans-tbl preprocess-fn wrld)
                                  ))
                            (t (cons (list val (untranslate1 x iff-flg
                                                             untrans-tbl
                                                             preprocess-fn
                                                             wrld))
                                     (untranslate-into-case-clauses
                                      key y iff-flg untrans-tbl preprocess-fn
                                      wrld)))))
                     ((and (eq pred 'member)
                           (eqlable-listp val))
                      (cons (list val (untranslate1 x iff-flg untrans-tbl
                                                    preprocess-fn wrld))
                            (untranslate-into-case-clauses
                             key y iff-flg untrans-tbl preprocess-fn wrld)))
                     (t (list (list 'otherwise
                                    (untranslate1 term iff-flg untrans-tbl
                                                  preprocess-fn wrld))))))
              (& (list (list 'otherwise
                             (untranslate1 term iff-flg untrans-tbl preprocess-fn
                                           wrld))))))

(defun untranslate-into-cond-clauses (term iff-flg untrans-tbl preprocess-fn
                                           wrld)

; We know cond-length is greater than 1; else this doesn't terminate.

  (case-match term
              (('if x1 x2 x3)
               (cons (list (untranslate1 x1 t untrans-tbl preprocess-fn wrld)
                           (untranslate1 x2 iff-flg untrans-tbl preprocess-fn
                                         wrld))
                     (untranslate-into-cond-clauses x3 iff-flg untrans-tbl
                                                    preprocess-fn wrld)))
              (& (list (list t (untranslate1 term iff-flg untrans-tbl
                                             preprocess-fn wrld))))))

(defun untranslate1-lst (lst iff-flg untrans-tbl preprocess-fn wrld)
  (cond ((null lst) nil)
        (t (cons (untranslate1 (car lst) iff-flg untrans-tbl preprocess-fn wrld)
                 (untranslate1-lst (cdr lst) iff-flg untrans-tbl preprocess-fn
                                   wrld)))))

;; RAG - I relaxed the guards for < and complex to use realp instead
;; of rationalp.  I also added complexp, realp, and floor1.

)

(defun ev-fncall (fn args state latches hard-error-returns-nilp aok)
  (declare (xargs :guard (state-p state)))
  (let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state))
                         (*raw-guard-warningp* (raw-guard-warningp-binding)))
       #+acl2-loop-only ()

; See the comment in ev for why we don't check the time limit here.

       (ev-fncall-rec fn args (w state) (user-stobj-alist state) (big-n)
                      (f-get-global 'safe-mode state)
                      (gc-off state)
                      latches hard-error-returns-nilp aok)))

(defun ev (form alist state latches hard-error-returns-nilp aok)
  (declare (xargs :guard (and (state-p state)
                              (termp form (w state))
                              (symbol-alistp alist))))
  (let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state))
                         (*raw-guard-warningp* (raw-guard-warningp-binding)))
       #+acl2-loop-only ()

; At one time we called time-limit5-reached-p here so that we can quit if we
; are out of time.  But we were then able to get into an infinite loop as
; follows:

; (defun foo (x) (cons x x))
; :brr t
; :monitor (:definition foo) t
; (ld '((thm (equal (foo x) (cons x x)))))
; [Hit control-c repeatedly.]

; We didn't analyze this issue completely (presumably has something to do with
; cleaning up), but a simple solution is to avoid this time-limit check.

;       (cond
;        ((time-limit5-reached-p
;          "Out of time in the evaluator (ev).") ; nil, or throws
;         (mv t ; value shouldn't matter
;             (cons "Implementation error" nil)
;             latches))
;        (t
       (ev-rec form alist
               (w state) (user-stobj-alist state) (big-n)
               (f-get-global 'safe-mode state)
               (gc-off state)
               latches hard-error-returns-nilp aok)))

(defun ev-lst (lst alist state latches hard-error-returns-nilp aok)
  (declare (xargs :guard (and (state-p state)
                              (term-listp lst (w state))
                              (symbol-alistp alist))))
  (let #-acl2-loop-only ((*ev-shortcut-okp* (live-state-p state))
                         (*raw-guard-warningp* (raw-guard-warningp-binding)))
       #+acl2-loop-only ()

; See the comment in ev for why we don't check the time limit here.

       (ev-rec-lst lst alist
                   (w state)
                   (user-stobj-alist state)
                   (big-n)
                   (f-get-global 'safe-mode state)
                   (gc-off state)
                   latches hard-error-returns-nilp aok)))

(defun untranslate (term iff-flg wrld)
  (let ((user-untranslate
         (cdr (assoc-eq 'untranslate (table-alist 'user-defined-functions-table
                                                  wrld)))))
    (if user-untranslate
        (mv-let
         (erp val)
         (ev-fncall-w user-untranslate
                      (list term iff-flg wrld)
                      wrld
                      nil ; user-stobj-alist
                      nil ; safe-mode
                      nil ; gc-off
                      nil ; hard-error-returns-nilp
                      t)
         (cond
          (erp #-acl2-loop-only
               (progn (error-fms t user-untranslate (car val) (cdr val)
                                 *the-live-state*)
                      (er hard 'untranslate
                          "Please fix ~x0 (see message above and see :doc ~
                           user-defined-functions-table)."
                          user-untranslate))
               (untranslate* term iff-flg wrld))
          (t val)))
      (untranslate* term iff-flg wrld))))

(defun untranslate-lst (lst iff-flg wrld)
  (let ((user-untranslate-lst
         (cdr (assoc-eq 'untranslate-lst (table-alist
                                          'user-defined-functions-table
                                          wrld)))))
    (if user-untranslate-lst
        (mv-let
         (erp val)
         (ev-fncall-w user-untranslate-lst
                      (list lst iff-flg wrld)
                      wrld
                      nil ; user-stobj-alist
                      nil ; safe-mode
                      nil ; gc-off
                      nil ; hard-error-returns-nilp
                      t)
         (cond
          (erp #-acl2-loop-only
               (progn (error-fms t user-untranslate-lst (car val) (cdr val)
                                 *the-live-state*)
                      (er hard 'untranslate-lst
                          "Please fix ~x0 (see message above and see :doc ~
                           user-defined-functions-table)."
                          user-untranslate-lst
                          #+acl2-loop-only
                          nil))
               (untranslate1-lst lst
                                 iff-flg
                                 (untrans-table wrld)
                                 (untranslate-preprocess-fn wrld)
                                 wrld))
          (t val)))
      (untranslate1-lst lst
                        iff-flg
                        (untrans-table wrld)
                        (untranslate-preprocess-fn wrld)
                        wrld))))

(defun ev-w-lst (lst alist w user-stobj-alist safe-mode gc-off
                     hard-error-returns-nilp aok)

; WARNING: See the warning in ev-w, which explains that live stobjs must not
; occur in alist.

; Note that user-stobj-alist is only used for error messages, so this function
; may be called in the presence of local stobjs.  Probably user-stobj-alist
; could be replaced as nil because of the stobj restriction on alist.

; See the comment in ev-w about untouchables.

  (declare (xargs :guard (and (plist-worldp w)
                              (term-listp lst w)
                              (symbol-alistp alist))))

; See the comment in ev for why we don't check the time limit here.

  #-acl2-loop-only
  (let ((*ev-shortcut-okp* t)
        (*raw-guard-warningp* (raw-guard-warningp-binding)))
    (state-free-global-let*
     ((safe-mode safe-mode)
      (guard-checking-on

; Guard-checking-on will be t or nil -- not :nowarn, :all, or :none -- but it
; doesn't seem that this would be a problem, provided the call is made with
; gc-off set to t if guard-checking-on is either nil or :none (don't forget
; :none!).

       (not gc-off)))
     (mv-let
      (erp val latches)
      (ev-rec-lst lst alist w user-stobj-alist (big-n) safe-mode gc-off
                  nil ; latches
                  hard-error-returns-nilp
                  aok)
      (progn (when latches
               (er hard 'ev-w-lst
                   "The call ~x0 returned non-nil latches."
                   (list 'ev-w-lst lst alist '<wrld>
                         (if user-stobj-alist '<user-stobj-alist> nil)
                         safe-mode gc-off
                         hard-error-returns-nilp aok)))
             (mv erp val)))))
  #+acl2-loop-only
  (mv-let (erp val latches)
          (ev-rec-lst lst alist w user-stobj-alist (big-n) safe-mode gc-off
                      nil ; latches
                      hard-error-returns-nilp
                      aok)
          (declare (ignore latches))
          (mv erp val)))

; Essay on Other Worlds

; In Version 1.7 and earlier, ev and its supporters were coded so that
; they took both a world and a state as input.  The world supplied the
; definitions of the functions.  The state was used for nothing but a
; termination argument -- but we did slip into raw Lisp when that was
; thought appropriate.  The code was was (supposed to be) sound when
; evaluated on states other than the live state.  This was imagined to
; be possible if ground calls of ev-fncall arose in terms being
; proved.  The raw lisp counterpart of ev verified that the world in
; the given state is properly related to the world in the live state.

; The following pre-Version 1.8 comment addresses concerns related to
; the evaluation of a fn in a world other than the one installed in
; state.  These comments are now outdated, but are left here because
; we gave the issue some careful thought at the time.

;   We wish to jump into Common Lisp to compute the value of fn on
;   args.  We know that fn is a function symbol in w because the guard
;   for ev requires that we only evaluate terms.  But the Common Lisp
;   state reflects the definitions of the currently installed world,
;   inst-w, while we have to compute fn by the definitions in world w.
;   In addition, we can use the Common Lisp code only if the guards
;   have been verified.  So we need to know two things: (a) that the
;   two worlds w and inst-w are in an appropriate relationship, and
;   (b) that the guards for fn are all satisfied.

;   We address (a) first.  It is clear that inst-w can be used to
;   compute fn in w if every function ancestral to fn in w is defined
;   exactly the same way in inst-w.  When this condition holds, we say
;   "inst-w is sufficient to compute fn in w."  This sufficiency
;   condition is too expensive to check explicitly.  Note, however,
;   that if inst-w is an extension of w, then inst-w is sufficient.
;   Note also that if w is an extension of inst-w and fn is defined in
;   inst-w, then inst-w is sufficient.  Now if w is an extension of
;   inst-w and fn is defined in w then it is defined in inst-w iff it
;   is fboundp.  Proof: Suppose fn is not defined in inst-w but is
;   fboundp.  Then fn is some function like RPLACA or LP.  But in that
;   case, fn couldn't be defined in w because to define it would
;   require that we smash its symbol-function.  Q.E.D.  So in fact, we
;   check that one of the two worlds is an extension of the other and
;   that fn is fboundp.

;   Now for (b).  We wish to check that the guards for fn are all
;   valid.  Of course, all we can do efficiently is see whether the
;   'guards-checked property has been set.  But it doesn't matter
;   which world we check that in because if the guards have been
;   checked in either then they are valid in both.  So we just see if
;   they have been checked in whichever of the two worlds is the
;   extension.

; Essay on Context-message Pairs

; Recall that translate returns state, which might be modified.  It can be
; useful to have a version of translate that does not return state, for example
; in development of a parallel version of the waterfall (Ph.D. research by
; David Rager ongoing in 2010).  Starting after Version_4.1, we provide a
; version of translate that does not return state.  More generally, we support
; an analogy of the "error triples" programming idiom: rather than passing
; around triples (mv erp val state), we pass around pairs (mv ctx msg), as
; described below.  If foo is a function that returns an error triple, we may
; introduce foo-cmp as the analogous function that returns a message pair.  We
; try to avoid code duplication, for example by using the wrapper
; cmp-to-error-triple.

; An error is indicated when the context (first) component of a context-message
; pair is non-nil.  There are two possibilities in this case.  The second
; component can be nil, indicating that the error does not cause a message to
; be printed.  Otherwise, the first component is a context suitable for er and
; such, while the second component is a message (fmt-string . fmt-args),
; suitable as a ~@ fmt argument.

(defun silent-error (state)
  (mv t nil state))

(defmacro cmp-to-error-triple (form)

; Here we convert a context-message pair (see the Essay on Context-message
; Pairs) to an error triple, printing an error message if one is called for.

; Keep in sync with cmp-to-error-triple@par.

  `(mv-let (ctx msg-or-val)
           ,form
           (cond (ctx (cond (msg-or-val
                             (assert$ (not (eq ctx t))
                                      (er soft ctx "~@0" msg-or-val)))
                            (t (silent-error state))))
                 (t (value msg-or-val)))))

#+acl2-par
(defmacro cmp-to-error-triple@par (form)

; Here we convert a context-message pair (see the Essay on Context-message
; Pairs) to the #+acl2-par version of an error triple, printing an error
; message if one is called for.

; Keep in sync with cmp-to-error-triple.

  `(mv-let (ctx msg-or-val)
           ,form
           (cond (ctx (cond (msg-or-val
                             (assert$ (not (eq ctx t))
                                      (er@par soft ctx "~@0" msg-or-val)))
                            (t (mv@par t nil state))))
                 (t (value@par msg-or-val)))))

(defmacro cmp-to-error-double (form)

; This is a variant of cmp-to-error-triple that returns (mv erp val) rather
; than (mv erp val state).

  `(mv-let (ctx msg-or-val)
           ,form
           (cond (ctx (prog2$ (cond (msg-or-val
                                     (assert$ (not (eq ctx t))
                                              (error-fms-cw
                                               nil ctx "~@0"
                                               (list (cons #\0 msg-or-val)))))
                                    (t nil))
                              (mv t nil)))
                 (t (mv nil msg-or-val)))))

(defmacro cmp-and-value-to-error-quadruple (form)

; We convert a context-message pair and an extra-value (see the Essay on
; Context-message Pairs) to an error quadruple (mv t value extra-value state),
; printing an error message if one is called for.

; Keep in sync with cmp-and-value-to-error-quadruple@par.

  `(mv-let (ctx msg-or-val extra-value)
           ,form
           (cond
            (ctx (cond (msg-or-val
                        (assert$ (not (eq ctx t))
                                 (mv-let (erp val state)
                                         (er soft ctx "~@0"
                                             msg-or-val)
                                         (declare (ignore erp val))
                                         (mv t nil extra-value state))))
                       (t (mv t nil extra-value state))))
            (t (mv nil msg-or-val extra-value state)))))

#+acl2-par
(defmacro cmp-and-value-to-error-quadruple@par (form)

; We convert a context-message pair and an extra value (see the Essay on
; Context-message Pairs) to the #+acl2-par version of an error quadruple,
; printing an error message if one is called for.

; Keep in sync with cmp-and-value-to-error-quadruple.

  `(mv-let (ctx msg-or-val extra-value)
           ,form
           (cond
            (ctx (cond (msg-or-val
                        (assert$ (not (eq ctx t))
                                 (mv-let (erp val)
                                         (er@par soft ctx "~@0" msg-or-val)
                                         (declare (ignore erp val))
                                         (mv t nil extra-value))))
                       (t (mv t nil extra-value))))
            (t (mv nil msg-or-val extra-value)))))

(defun er-cmp-fn (ctx msg)

; Warning: Keep in sync with trans-er.  For an explanation, see the
; corresponding warning in trans-er.

  (declare (xargs :guard t))
  (mv ctx msg))

(defmacro er-cmp (ctx str &rest args)

; Warning: Keep in sync with trans-er.  For an explanation, see the
; corresponding warning in trans-er.

  `(er-cmp-fn ,ctx (msg ,str ,@args)))

(defmacro value-cmp (x)
  `(mv nil ,x))

(defun er-progn-fn-cmp (lst)

; Warning: Keep this in sync with er-progn-fn.

  (declare (xargs :guard (true-listp lst)))
  (cond ((endp lst) nil)
        ((endp (cdr lst)) (car lst))
        (t (list 'mv-let
                 '(er-progn-not-to-be-used-elsewhere-ctx
                   er-progn-not-to-be-used-elsewhere-msg)
                 (car lst)
; Avoid possible warning after optimized compilation:
                 '(declare (ignorable er-progn-not-to-be-used-elsewhere-msg))
                 (list 'if
                       'er-progn-not-to-be-used-elsewhere-ctx
                       '(mv er-progn-not-to-be-used-elsewhere-ctx
                            er-progn-not-to-be-used-elsewhere-msg)
                       (list 'check-vars-not-free
                             '(er-progn-not-to-be-used-elsewhere-ctx
                               er-progn-not-to-be-used-elsewhere-msg)
                             (er-progn-fn-cmp (cdr lst))))))))

(defmacro er-progn-cmp (&rest lst)
  (declare (xargs :guard (and (true-listp lst)
                              lst)))
  (er-progn-fn-cmp lst))

(defmacro er-let*-cmp (alist body)

; Warning: Keep this in sync with er-let*.

; This macro introduces the variable er-let-star-use-nowhere-else.
; The user who uses that variable in his forms is likely to be
; disappointed by the fact that we rebind it.

  (declare (xargs :guard (and (doubleton-list-p alist)
                              (symbol-alistp alist))))
  (cond ((null alist)
         (list 'check-vars-not-free
               '(er-let-star-use-nowhere-else)
               body))
        (t (list 'mv-let
                 (list 'er-let-star-use-nowhere-else
                       (caar alist))
                 (cadar alist)
                 (list 'cond
                       (list 'er-let-star-use-nowhere-else
                             (list 'mv
                                   'er-let-star-use-nowhere-else
                                   (caar alist)))
                       (list t (list 'er-let*-cmp (cdr alist) body)))))))

(defun warning1-cw (ctx summary str alist wrld state-vars)

; This function has the same effect as warning1, except that printing is in a
; wormhole and hence doesn't modify state.

  (warning1-form t))

(defmacro warning$-cw1 (ctx summary str+ &rest fmt-args)

; Warning: Keep this in sync with warning$.

; This macro assumes that wrld and state-vars are bound to a world and
; state-vars record, respectively.

  (list 'warning1-cw
        ctx

; We seem to have seen a GCL 2.6.7 compiler bug, laying down bogus calls of
; load-time-value, when replacing (consp (cadr args)) with (and (consp (cadr
; args)) (stringp (car (cadr args)))).  But it seems fine to have the semantics
; of warning$ be that conses are quoted in the second argument position.

        (if (consp summary)
            (kwote summary)
          summary)
        str+
        (make-fmt-bindings '(#\0 #\1 #\2 #\3 #\4
                             #\5 #\6 #\7 #\8 #\9)
                           fmt-args)
        'wrld
        'state-vars))

(defmacro warning$-cw (ctx &rest args)

; This differs from warning$-cw1 only in that state-vars and wrld are bound
; here for the user, so that warnings are not suppressed merely by virtue of
; the value of state global 'ld-skip-proofsp.  Thus, unlike warning$ and
; warning$-cw, there is no warning string, and a typical use of this macro
; might be:
; (warning$-cw ctx "The :REWRITE rule ~x0 loops forever." name).

  `(let ((state-vars (default-state-vars nil))
         (wrld nil))
     (warning$-cw1 ,ctx nil ,@args)))

(defun chk-length-and-keys (actuals form wrld)
  (cond ((null actuals)
         (value-cmp nil))
        ((null (cdr actuals))
         (er-cmp *macro-expansion-ctx*
                 "A non-even key/value arglist was encountered while macro ~
                  expanding ~x0.  The argument list for ~x1 is ~%~F2."
                 form
                 (car form)
                 (macro-args (car form) wrld)))
        ((keywordp (car actuals))
         (chk-length-and-keys (cddr actuals) form wrld))
        (t (er-cmp *macro-expansion-ctx*
                   "A non-keyword was encountered while macro expanding ~x0 ~
                    where a keyword was expected.  The formal parameters list ~
                    for ~x1 is ~%~F2."
                   form
                   (car form)
                   (macro-args (car form) wrld)))))

(table duplicate-keys-action-table nil nil
       :guard
       (and (symbolp key)
            (member val '(:error :warning nil))))

(defmacro set-duplicate-keys-action! (key action)
  `(with-output
     :off (event summary)
     (progn (table duplicate-keys-action-table ',key ',action)
            (value-triple ',action))))

(defmacro set-duplicate-keys-action (key action)
  `(local (set-duplicate-keys-action! ,key ,action)))

(defun duplicate-keys-action (key wrld)
  (let ((pair (assoc-eq key (table-alist 'duplicate-keys-action-table wrld))))
    (cond (pair (cdr pair))
          (t ; default

; We make :error the default in order to help users to identify quickly
; potential dumb bugs involving a duplicated keyword in a macro call.

           :error))))

(defun bind-macro-args-keys1 (args actuals allow-flg alist form wrld
                                   state-vars)

; We need parameter state-vars because of the call of warning$-cw1 below.

  (cond ((null args)
         (cond ((or (null actuals) allow-flg)
                (value-cmp alist))
               (t (er-cmp *macro-expansion-ctx*
                          "Illegal key/value args ~x0 in macro expansion of ~
                           ~x1.  The argument list for ~x2 is ~%~F3."
                          actuals form
                          (car form)
                          (macro-args (car form) wrld)))))
        ((eq (car args) '&allow-other-keys)
         (value-cmp alist))
        (t (let* ((formal (cond ((atom (car args))
                                 (car args))
                                ((atom (caar args))
                                 (caar args))
                                (t (cadr (caar args)))))
                  (key (cond ((atom (car args))
                              (intern (symbol-name (car args))
                                      "KEYWORD"))
                             ((atom (car (car args)))
                              (intern (symbol-name (caar args))
                                      "KEYWORD"))
                             (t (caaar args))))
                  (tl (assoc-keyword key actuals))
                  (alist (cond ((and (consp (car args))
                                     (= 3 (length (car args))))
                                (cons (cons (caddr (car args))
                                            (not (null tl)))
                                      alist))
                               (t alist)))
                  (name (car form))
                  (duplicate-keys-action
                   (and (assoc-keyword key (cddr tl))
                        (duplicate-keys-action name wrld)))
                  (er-or-warn-string
                   "The keyword argument ~x0 occurs twice in ~x1.  This ~
                    situation is explicitly allowed in Common Lisp (see ~
                    CLTL2, page 80) but it often suggests a mistake was ~
                    made.~@2  See :DOC set-duplicate-keys-action."))
             (prog2$
              (and (eq duplicate-keys-action :warning)
                   (warning$-cw1 *macro-expansion-ctx* "Duplicate-Keys"
                                 er-or-warn-string
                                 key
                                 form
                                 "  The leftmost value for ~x0 is used."))
              (cond
               ((eq duplicate-keys-action :error)
                (er-cmp *macro-expansion-ctx*
                        er-or-warn-string
                        key form ""))
               (t
                (bind-macro-args-keys1
                 (cdr args)
                 (remove-keyword key actuals)
                 allow-flg
                 (cons (cons formal
                             (cond (tl (cadr tl))
                                   ((atom (car args))
                                    nil)
                                   ((> (length (car args)) 1)
                                    (cadr (cadr (car args))))
                                   (t nil)))
                       alist)
                 form wrld state-vars))))))))

(defun bind-macro-args-keys (args actuals alist form wrld state-vars)
  (er-progn-cmp
   (chk-length-and-keys actuals form wrld)
   (cond ((assoc-keyword :allow-other-keys
                         (cdr (assoc-keyword :allow-other-keys
                                             actuals)))
          (er-cmp *macro-expansion-ctx*
                  "ACL2 prohibits multiple :allow-other-keys because ~
                   implementations differ significantly concerning which ~
                   value to take."))
         (t (value-cmp nil)))
   (bind-macro-args-keys1
    args actuals
    (let ((tl
           (assoc-keyword :allow-other-keys actuals)))
      (and tl (cadr tl)))
    alist form wrld state-vars)))

(defun bind-macro-args-after-rest (args actuals alist form wrld state-vars)
  (cond
   ((null args) (value-cmp alist))
   ((eq (car args) '&key)
    (bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
   (t (er-cmp *macro-expansion-ctx*
              "Only keywords and values may follow &rest or &body; error in ~
               macro expansion of ~x0."
              form))))

(defun bind-macro-args-optional (args actuals alist form wrld state-vars)
  (cond ((null args)
         (cond ((null actuals)
                (value-cmp alist))
               (t (er-cmp *macro-expansion-ctx*
                          "Wrong number of args in macro expansion of ~x0."
                          form))))
        ((eq (car args) '&key)
         (bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
        ((member (car args) '(&rest &body))
         (bind-macro-args-after-rest
          (cddr args) actuals
          (cons (cons (cadr args) actuals) alist)
          form wrld state-vars))
        ((symbolp (car args))
         (bind-macro-args-optional
          (cdr args) (cdr actuals)
          (cons (cons (car args) (car actuals))
                alist)
          form wrld state-vars))
        (t (let ((alist (cond ((equal (length (car args)) 3)
                               (cons (cons (caddr (car args))
                                           (not (null actuals)))
                                     alist))
                              (t alist))))
             (bind-macro-args-optional
              (cdr args) (cdr actuals)
              (cons (cons (car (car args))
                          (cond (actuals (car actuals))
                                ((>= (length (car args)) 2)
                                 (cadr (cadr (car args))))
                                (t nil)))
                    alist)
              form wrld state-vars)))))

(defun bind-macro-args1 (args actuals alist form wrld state-vars)
  (cond ((null args)
         (cond ((null actuals)
                (value-cmp alist))
               (t (er-cmp *macro-expansion-ctx*
                      "Wrong number of args in macro expansion of ~x0."
                      form))))
        ((member-eq (car args) '(&rest &body))
         (bind-macro-args-after-rest
          (cddr args) actuals
          (cons (cons (cadr args) actuals) alist)
          form wrld state-vars))
        ((eq (car args) '&optional)
         (bind-macro-args-optional (cdr args) actuals alist form wrld
                                   state-vars))
        ((eq (car args) '&key)
         (bind-macro-args-keys (cdr args) actuals alist form wrld state-vars))
        ((null actuals)
         (er-cmp *macro-expansion-ctx*
             "Wrong number of args in macro expansion of ~x0."
             form))
        (t (bind-macro-args1 (cdr args) (cdr actuals)
                             (cons (cons (car args) (car actuals))
                                   alist)
                             form wrld state-vars))))

(defun bind-macro-args (args form wrld state-vars)
  (cond ((and (consp args)
              (eq (car args) '&whole))
         (bind-macro-args1 (cddr args) (cdr form)
                           (list (cons (cadr args) form))
                           form wrld state-vars))
        (t (bind-macro-args1 args (cdr form) nil form wrld state-vars))))

(defun macro-guard-er-msg (x ctx wrld)
  (let* ((name (car x))
         (args (cdr x))
         (form (cdr (assoc-eq name (table-alist 'guard-msg-table wrld)))))
    (mv-let
     (erp msg)
     (cond (form (ev-w form
                       (list (cons 'world wrld)
                             (cons 'args args)
                             (cons 'coda
                                   (msg "(Note: The custom guard message for ~
                                         ~x0 references the variable ~x1, ~
                                         which is essentially ignored for ~
                                         macros.  Consider modifying the ~
                                         entry for ~x0 in ~x2.)"
                                        name 'coda 'guard-msg-table)))
                       wrld
                       nil ; user-stobj-alist
                       nil ; safe-mode
                       t   ; gc-off
                       t   ; hard-error-returns-nilp
                       t   ; aok
                       ))
           (t (mv nil nil)))
     (cond
      (erp
       (er-cmp ctx
               "~|~%Note: Evaluation has resulted in an error for the form ~
                associated with ~x0 in the table, ~x1, to obtain a custom ~
                guard error message.  Consider modifying that table entry; ~
                see :doc set-guard-msg."
               name
               'guard-msg-table))
      (msg (er-cmp ctx "~@0" msg))
      (t (er-cmp ctx
                 "In the attempt to macroexpand the form ~x0 the guard, ~x1, ~
                  for ~x2 failed."
                 x
                 (guard name nil wrld)
                 name))))))

(defun macroexpand1-cmp (x ctx wrld state-vars)
  (let ((gc-off (gc-off1 (access state-vars state-vars :guard-checking-on))))
    (er-let*-cmp
     ((alist (bind-macro-args
              (macro-args (car x) wrld)
              x wrld state-vars)))
     (mv-let (erp guard-val)
             (ev-w (guard (car x) nil wrld) alist wrld
                   nil ; user-stobj-alist
                   t
                   gc-off
                   nil

; It is probably critical to use nil for the aok argument of this call.
; Otherwise, one can imagine a book with sequence of events
;   (local EVENT0)
;   (defattach ...)
;   EVENT0
; such that a change in macroexpansion, due to the defattach, causes a
; different event to be exported from the book, for EVENT0, than the local one
; originally admitted.

                   nil)
             (cond
              (erp (er-cmp ctx
                           "In the attempt to macroexpand the form ~x0 ~
                            evaluation of the guard for ~x2 caused the ~
                            following error:~|~%~@1"
                           x
                           guard-val
                           (car x)))
              ((null guard-val)
               (macro-guard-er-msg x ctx wrld))
              (t (mv-let (erp expansion)
                         (ev-w
                          (getpropc (car x) 'macro-body
                                    '(:error "Apparently macroexpand1 was ~
                                              called where there was no ~
                                              macro-body.")
                                    wrld)
                          alist wrld
                          nil ; user-stobj-alist
                          (not (access state-vars state-vars

; Note that if state-vars comes from (default-state-vars nil), then this flag
; is nil so safe-mode is t, which is acceptable, merely being needlessly
; conservative when the actual state global 'boot-strap-flg is t and hence
; safe-mode could have been nil here.

                                       :boot-strap-flg)) ; safe-mode
                          gc-off nil nil)
                         (cond (erp
                                (er-cmp ctx
                                        "In the attempt to macroexpand the ~
                                         form ~x0, evaluation of the macro ~
                                         body caused the following ~
                                         error:~|~%~@1"
                                        x
                                        expansion))
                               (t (value-cmp expansion))))))))))

(defun macroexpand1 (x ctx state)
  (cmp-to-error-triple (macroexpand1-cmp x ctx (w state)
                                         (default-state-vars t))))

(defun chk-declare (form ctx)
  (let ((msg
         "An expression has occurred where we expect a form whose car is ~
          DECLARE; yet, that expression is ~x0.  This problem generally is ~
          caused by (a) a parenthesis mistake, (b) the use of an ``implicit ~
          PROGN'' so that a term that you intended to be part of the body was ~
          taken as a declaration, or (c) the incorrect belief that ~
          macroexpansion is applied to declarations.  See :DOC declare."))
    (cond ((or (not (consp form))
               (not (symbolp (car form))))
           (er-cmp ctx msg form))
          ((eq (car form) 'declare)
           (cond ((not (true-listp form))
                  (er-cmp ctx
                          "A declaration must be a true-list but ~x0 is not.  ~
                           See :DOC declare."
                          form))
                 (t (value-cmp form))))
          (t (er-cmp ctx msg form)))))

(defun collect-dcls (l ctx)
  (cond ((null l) (value-cmp nil))
        (t (er-let*-cmp
            ((expansion
              (chk-declare (car l) ctx))
             (rst (collect-dcls (cdr l) ctx)))
            (value-cmp (append (cdr expansion) rst))))))

; The following alist maps "binders" to the permitted types of
; declarations at the top-level of the binding environment.

(defconst *acceptable-dcls-alist*

; Warning: Keep this in sync with :DOC declare.

; The declarations dynamic-extent, inline, and notinline were found useful by
; Bob Boyer in early development of hons-enabled ACL2, but we do not see a way
; to support such declarations soundly, so we do not support them.  Note that
; inline and notinline declarations are supported adequately (though
; indirectly) by defun-inline and defun-notinline.

  `((let ignore ignorable type)
    (mv-let ignore ignorable type)
    (flet ignore ignorable type) ; for each individual definition in the flet
    (defmacro ignore ignorable type xargs)
    (defuns ignore ignorable type optimize xargs)))

; The following list gives the names of binders that permit at most
; one documentation string among their declarations.  If this list is
; changed, visit all calls of collect-declarations because its answer
; is known NOT to have a doc string in it if the binder on which it
; was called is not in this list.

(defconst *documentation-strings-permitted*
  '(defmacro defuns))

; For each type of declaration the following alist offers an explanatory
; string.

(defconst *dcl-explanation-alist*
  '((ignore "(IGNORE v1 ... vn) and (IGNORABLE v1 ... vn), where the vi are ~
             introduced in the immediately superior lexical environment")
    (type "(TYPE type v1 ... vn), as described on pg 158 of CLTL")
    (xargs "(XARGS :key1 :val1 ... :keyn :valn), where each :keyi is a ~
            keyword (e.g., :GUARD or :HINTS)")))

; The following two functions are used to create an appropriate error
; message explaining what kinds of declarations are permitted by a binder.

(defun tilde-*-conjunction-phrase1 (syms alist)
  (cond ((null syms) nil)
        (t (let ((temp (assoc-eq (car syms) alist)))
             (cons
              (cond (temp (cdr temp))
                    (t (coerce (cons #\(
                                     (append (explode-atom (car syms) 10)
                                             (coerce " ...)" 'list)))
                               'string)))
              (tilde-*-conjunction-phrase1 (cdr syms) alist))))))

(defun tilde-*-conjunction-phrase (syms alist)

; Syms is a list of symbols.  Alist maps symbols to strings, called
; the "explanation" of each symbol.  We create an object that when
; given to the tilde-* fmt directive will print out the conjunction of
; the explanations for each of the symbols.

  (let ((syms
         (cond ((member-eq 'ignorable syms)
                (let ((syms (remove1-eq 'ignorable syms)))
                  (if (member-eq 'ignore syms)
                      syms
                    (cons 'ignore syms))))
               (t syms))))
    (list "" "~@*" "~@* and " "~@*, "
          (tilde-*-conjunction-phrase1 syms alist))))

(defun collect-non-legal-variableps (lst)
  (cond ((null lst) nil)
        ((legal-variablep (car lst))
         (collect-non-legal-variableps (cdr lst)))
        (t (cons (car lst) (collect-non-legal-variableps (cdr lst))))))

(defun optimize-alistp (lst)
  (cond ((atom lst) (null lst))
        ((consp (car lst))
         (and (consp (cdar lst))
              (null (cddar lst))
              (symbolp (caar lst))
              (integerp (cadar lst))
              (<= 0 (cadar lst))
              (<= (cadar lst) 3)
              (optimize-alistp (cdr lst))))
        (t (and (symbolp (car lst))
                (optimize-alistp (cdr lst))))))

(defun chk-dcl-lst (l vars binder ctx wrld)

; L is the list of expanded declares.  Vars is a list of variables
; bound in the immediately superior lexical environment.  Binder is
; a binder, as listed in *acceptable-dcls-alist*.

  (cond
   ((null l) (value-cmp nil))
   (t (er-progn-cmp
       (let ((entry (car l)))
         (cond
          ((not (consp entry))
           (er-cmp ctx
                   "Each element of a declaration must be a cons, but ~x0 is ~
                    not.  See :DOC declare."
                   entry))
          (t (let ((dcl (car entry))
                   (temp (cdr (assoc-eq binder *acceptable-dcls-alist*))))
               (cond
                ((not (member-eq dcl temp))
                 (er-cmp ctx
                         "The only acceptable declaration~#0~[~/s~] at the ~
                          top-level of ~#1~[an FLET binding~/a ~x2 form~] ~
                          ~#0~[is~/are~] ~*3.  The declaration ~x4 is thus ~
                          unacceptable here.  See :DOC declare."
                         temp
                         (if (eq binder 'flet) 0 1)
                         binder
                         (tilde-*-conjunction-phrase temp
                                                     *dcl-explanation-alist*)
                         entry))
                ((not (true-listp entry))
                 (er-cmp ctx
                         "Each element of a declaration must end in NIL but ~
                          ~x0 does not.  See :DOC declare." entry))
                (t
                 (case
                  dcl
                  (optimize
                   (cond ((optimize-alistp (cdr entry)) (value-cmp nil))
                         (t (er-cmp ctx
                                    "Each element in the list following an ~
                                     OPTIMIZE declaration must be either a ~
                                     symbol or a pair of the form (quality ~
                                     value), where quality is a symbol and ~
                                     value is an integer between 0 and 3.  ~
                                     Your OPTIMIZE declaration, ~x0, does not ~
                                     meet this requirement."
                                    entry))))
                  ((ignore ignorable)
                   (cond ((subsetp (cdr entry) vars)
                          (value-cmp nil))
                         (t (er-cmp ctx
                                    "The variables of an ~x0 declaration must ~
                                     be introduced in the immediately ~
                                     superior lexical environment, but ~&1, ~
                                     which ~#1~[is~/are~] said to be ~
                                     ~#2~[ignored~/ignorable~] in ~x3, ~
                                     ~#1~[is~/are~] not bound immediately ~
                                     above the declaration.  See :DOC declare."
                                    dcl
                                    (set-difference-equal (cdr entry) vars)
                                    (if (eq dcl 'ignore) 0 1)
                                    entry))))
                  (type
                   (cond
                    ((not (>= (length entry) 3))
                     (er-cmp ctx
                             "The length of a type declaration must be at ~
                              least 3, but ~x0 does not satisfy this ~
                              condition.  See :DOC declare."
                             entry))
                    ((collect-non-legal-variableps (cddr entry))
                     (er-cmp ctx
                             "Only the types of variables can be declared by ~
                              TYPE declarations such as ~x0.  But ~&1 ~#1~[is ~
                              not a legal ACL2 variable symbol~/are not legal ~
                              ACL2 variable symbols~].  See :DOC declare."
                             entry
                             (collect-non-legal-variableps (cddr entry))))
                    ((not (subsetp (cddr entry) vars))
                     (er-cmp ctx
                             "The variables declared in a type declaration, ~
                              such as ~x0, must be bound immediately above, ~
                              but ~&1 ~#1~[is~/are~] not bound.  See :DOC ~
                              declare."
                             entry
                             (set-difference-equal (cddr entry) vars)))
                    ((not (translate-declaration-to-guard (cadr entry)
                                                          'var
                                                          wrld))

; We use the variable var because we are not interested in the
; particular value returned, only whether (cadr entry) stands for some
; type.

                     (cond
                      ((and (true-listp (cadr entry))
                            (int= (length (cadr entry)) 3)
                            (eq (car (cadr entry)) 'or)
                            (eq (cadr (cadr entry)) t))

; The type-spec is (or t x).  There is an excellent chance that this comes from
; (the type-spec ...); see the-fn.  So we change the error message a bit for
; this case.  Note that the error message is accurate, since (or t x) is
; illegal as a type-spec iff x is illegal.  And the message is reasonable
; because it is not misleading and it is likely to be only for THE, where the
; user did not use an explicit declaration (which was generated by us).

                       (er-cmp ctx
                               "~x0 fails to be a legal type-spec.  See ~
                                :MORE-DOC type-spec."
                               (caddr (cadr entry))))
                      ((weak-satisfies-type-spec-p (cadr entry))
                       (er-cmp ctx
                               "In the declaration ~x0, ~x1 fails to be a ~
                                legal type-spec because the symbol ~x2 is not ~
                                a known function symbol~@3.  See :MORE-DOC ~
                                type-spec."
                               entry (cadr entry) (cadr (cadr entry))
                               (if (eq (getpropc (cadr (cadr entry))
                                                 'macro-args t wrld)
                                       t)
                                   ""
                                 "; rather, it is the name of a macro")))
                      (t
                       (er-cmp ctx
                               "In the declaration ~x0, ~x1 fails to be a ~
                                legal type-spec.  See :MORE-DOC type-spec."
                               entry (cadr entry)))))
                    (t (value-cmp nil))))
                  (xargs
                   (cond
                    ((not (keyword-value-listp (cdr entry)))
                     (er-cmp ctx
                             "The proper form of the ACL2 declaration is ~
                              (XARGS :key1 val1 ... :keyn valn), where each ~
                              :keyi is a keyword and no key occurs twice.  ~
                              Your ACL2 declaration, ~x0, is not of this ~
                              form.  See :DOC xargs."
                             entry))
                    ((not (no-duplicatesp-equal (evens (cdr entry))))
                     (er-cmp ctx
                             "Even though Common Lisp permits duplicate ~
                              occurrences of keywords in keyword/actual ~
                              lists, all but the left-most occurrence are ~
                              ignored.  You have duplicate occurrences of the ~
                              keyword~#0~[~/s~] ~&0 in your declaration ~x1.  ~
                              This suggests a mistake has been made."
                             (duplicates (evens (cdr entry)))
                             entry))
                    ((and (eq binder 'defmacro)
                          (assoc-keyword :stobjs (cdr entry)))
                     (er-cmp ctx
                             "The use of the :stobjs keyword is prohibited ~
                              for an xargs declaration in a call of defmacro."))
                    (t (value-cmp nil))))
                  (otherwise
                   (mv t
                       (er hard! 'chk-dcl-lst
                           "Implementation error: A declaration, ~x0, is ~
                            mentioned in *acceptable-dcls-alist* but not in ~
                            chk-dcl-lst."
                           dcl))))))))))
       (chk-dcl-lst (cdr l) vars binder ctx wrld)))))

(defun number-of-strings (l)
  (cond ((null l) 0)
        ((stringp (car l))
         (1+ (number-of-strings (cdr l))))
        (t (number-of-strings (cdr l)))))

(defun get-string (l)
  (cond ((null l) nil)
        ((stringp (car l)) (list (car l)))
        (t (get-string (cdr l)))))

(defun collect-declarations-cmp (lst vars binder ctx wrld)

; Lst is a list of (DECLARE ...) forms, and/or documentation strings.
; We check that the elements are declarations of the types appropriate
; for binder, which is one of the names bound in
; *acceptable-dcls-alist*.  For IGNORE and TYPE declarations, which
; are seen as part of term translation (e.g., in LETs), we check that
; the variables mentioned are bound in the immediately superior
; lexical scope (i.e., are among the vars (as supplied) bound by
; binder).  But for all other declarations, e.g., GUARD, we merely
; check the most routine syntactic conditions.  WE DO NOT TRANSLATE
; the XARGS.  We return a list of the checked declarations.  I.e., if
; given ((DECLARE a b)(DECLARE c d)) we return (a b c d), or else
; cause an error.  If given ((DECLARE a b) "Doc string" (DECLARE c d))
; (and binder is among those in *documentation-strings-permitted*),
; we return ("Doc string" a b c d).

; If binder is among those in *documentation-strings-permitted* we permit
; at most one documentation string in lst.  Otherwise, we cause an error.

  (cond ((> (number-of-strings lst)
            (if (member-eq binder *documentation-strings-permitted*)
                1
              0))
         (cond ((member-eq binder *documentation-strings-permitted*)
                (er-cmp ctx
                        "At most one documentation string is permitted at the ~
                         top-level of ~x0 but you have provided ~n1."
                        binder
                        (number-of-strings lst)))
               (t
                (er-cmp ctx
                        "Documentation strings are not permitted in ~x0 forms."
                        binder))))
        (t
         (er-let*-cmp
          ((dcls (collect-dcls (remove-strings lst) ctx)))
          (er-progn-cmp (chk-dcl-lst dcls vars binder ctx wrld)
                        (value-cmp (append (get-string lst) dcls)))))))

(defun collect-declarations (lst vars binder state ctx)
  (cmp-to-error-triple (collect-declarations-cmp lst vars binder ctx
                                                 (w state))))

(defun listify (l)
  (cond ((null l) *nil*)
        (t (list 'cons (car l) (listify (cdr l))))))

(defun translate-dcl-lst (edcls wrld)

; Given a bunch of expanded dcls we find all the (TYPE x v1 ... vn)
; dcls among them and make a list of untranslated terms expressing the
; type restriction x for each vi.

  (cond ((null edcls) nil)
        ((eq (caar edcls) 'type)
         (append (translate-declaration-to-guard-var-lst (cadr (car edcls))
                                                         (cddr (car edcls))
                                                         wrld)
                 (translate-dcl-lst (cdr edcls) wrld)))
        (t (translate-dcl-lst (cdr edcls) wrld))))

(defconst *oneify-primitives*

;;;; Some day we should perhaps remove consp and other such functions from this
;;;; list because of the "generalized Boolean" problem.

; Add to this list whenever we find a guardless function in #+acl2-loop-only.

  '(if equal cons not consp atom acl2-numberp characterp integerp rationalp
       stringp symbolp

; We want fmt-to-comment-window (which will arise upon macroexpanding calls of
; cw) to be executed always in raw Lisp, so we add it to this list in order to
; bypass its *1* function.

       fmt-to-comment-window

; When we oneify, we sometimes do so on code that was laid down for constrained
; functions.  Therefore, we put throw on the list.

       throw-raw-ev-fncall

; The next group may be important for the use of safe-mode.

       makunbound-global
       trans-eval ev ev-lst ev-fncall
;      fmt-to-comment-window ; already included above
       sys-call-status
;      pstack-fn
       untranslate
       untranslate-lst
       trace$-fn-general untrace$-fn-general untrace$-fn1 maybe-untrace$-fn
       set-w acl2-unwind-protect

; We know that calls of mv-list in function bodies are checked syntactically to
; satisfy arity and syntactic requirements, so it is safe to call it in raw
; Lisp rather than somehow considering its *1* function.  We considered adding
; return-last as well, but not only does return-last have a guard other than T,
; but indeed (return-last 'mbe1-raw exec logic) macroexpands in raw Lisp to
; exec, which isn't what we want in oneified code.  We considered adding
; functions in *defun-overrides*, but there is no need, since defun-overrides
; makes suitable definitions for *1* functions.

       mv-list
       ))

(defconst *ec-call-bad-ops*

; We are conservative here, avoiding (ec-call (fn ...)) when we are the least
; bit nervous about that.  Reasons to be nervous are special treatment of a
; function symbol by guard-clauses (if) or special treatment in oneify
; (return-last and anything in *oneify-primitives*).

  (union-equal '(if wormhole-eval return-last)
               *oneify-primitives*))

(defmacro return-last-call (fn &rest args)
  `(fcons-term* 'return-last ',fn ,@args))

(defmacro prog2$-call (x y)
  `(fcons-term* 'return-last ''progn ,x ,y))

(defun dcl-guardian (term-lst)

; Suppose term-lst is a list of terms, e.g., '((INTEGERP X) (SYMBOLP V)).
; We produce an expression that evaluates to t if the conjunction of the
; terms is true and returns a call of illegal otherwise.

  (cond ((or (null term-lst)

; A special case is when term-list comes from (the (type type-dcl) x).  The
; expansion of this call of THE results in a declaration of the form (declare
; (type (or t type-dcl) var)).  We have seen examples where generating the
; resulting if-term, to be used in a call of prog2$, throws off a proof that
; succeeded before the addition of this declaration (which was added in order
; to handle (the (satisfies pred) term)); specifically, len-pushus in
; symbolic/tiny-fib/tiny.lisp (and probably in every other tiny.lisp).  Here we
; simplify the resulting term (if t t (type-pred x)) to t.  And when we use
; dcl-guardian to create (prog2$ type-test u), we instead simply create u if
; type-test is t.

             (let ((term (car term-lst)))
               (and (ffn-symb-p term 'if)
                    (equal (fargn term 1) *t*)
                    (equal (fargn term 2) *t*))))
         *t*)
        ((null (cdr term-lst))
         (fcons-term* 'check-dcl-guardian
                      (car term-lst)
                      (kwote (car term-lst))))
        (t (prog2$-call (fcons-term* 'check-dcl-guardian
                                     (car term-lst)
                                     (kwote (car term-lst)))
                        (dcl-guardian (cdr term-lst))))))

(defun ignore-vars (dcls)
  (cond ((null dcls) nil)
        ((eq (caar dcls) 'ignore)
         (append (cdar dcls) (ignore-vars (cdr dcls))))
        (t  (ignore-vars (cdr dcls)))))

(defun ignorable-vars (dcls)
  (cond ((null dcls) nil)
        ((eq (caar dcls) 'ignorable)
         (append (cdar dcls) (ignorable-vars (cdr dcls))))
        (t  (ignorable-vars (cdr dcls)))))

(defun mv-nth-list (var i maximum)
  (cond ((= i maximum) nil)
        (t (cons (fcons-term* 'mv-nth (list 'quote i) var)
                 (mv-nth-list var (1+ i) maximum)))))

(defmacro translate-bind (x val bindings)

; Used only in translation.  Binds x to val on bindings.

  `(cons (cons ,x ,val) ,bindings))

(defun translate-deref (x bindings)

; X is t, a consp value or the name of some function.  If the last, we
; chase down its ``ultimate binding'' in bindings.  Bindings may
; contain many indirections, but may not be circular except when x is
; bound to x itself.  We return nil if x is not bound in bindings.

  (cond ((eq x t) t)
        ((consp x) x)
        (t
         (let ((p (assoc-eq x bindings)))
           (cond (p
                  (cond ((eq x (cdr p)) x)
                        (t (translate-deref (cdr p) bindings))))
                 (t nil))))))

(defun translate-unbound (x bindings)

; X is considered unbound if it is a function name whose ultimate
; binding is a function name.

  (and (not (eq x t))
       (atom (translate-deref x bindings))))

(defun listlis (l1 l2)

;  Like pairlis$, but LISTs instead of CONSes.

  (cond ((null l1) nil)
        (t (cons (list (car l1) (car l2))
                 (listlis (cdr l1) (cdr l2))))))

(mutual-recursion

(defun find-first-var (term)
  (cond ((variablep term) term)
        ((fquotep term) nil)
        ((find-first-var-lst (fargs term)))
        ((flambdap (ffn-symb term))
         (car (lambda-formals (ffn-symb term))))
        (t nil)))

(defun find-first-var-lst (lst)
  (cond ((null lst) nil)
        (t (or (find-first-var (car lst))
               (find-first-var-lst (cdr lst))))))
)

(mutual-recursion

(defun find-first-fnsymb (term)
  (cond ((variablep term) nil)
        ((fquotep term) nil)
        ((flambdap (ffn-symb term))
         (or (find-first-fnsymb-lst (fargs term))
             (find-first-fnsymb (lambda-body (ffn-symb term)))))
        (t (ffn-symb term))))

(defun find-first-fnsymb-lst (lst)
  (cond ((null lst) nil)
        (t (or (find-first-fnsymb (car lst))
               (find-first-fnsymb-lst (cdr lst))))))
)

(defun find-pkg-witness (term)

; This function must return a symbol.  Imagine that term is to be replaced by
; some variable symbol.  In which package do we intern that symbol?  This
; function finds a symbol which is used with intern-in-package-of-symbol.
; Thus, the package of the returned symbol is important to human readability.
; We return the first variable we see in term, if there is one.  Otherwise, we
; return the first function symbol we see, if there is one.  Otherwise, we
; return the symbol 'find-pkg-witness.

  (or (find-first-var term)
      (find-first-fnsymb term)
      'find-pkg-witness))


;                          TRANSLATE

; For comments on translate, look after the following nest.

(defmacro trans-er (&rest args)

; Warning: Keep in sync with er-cmp (see commented-out call below) and
; er-cmp-fn.  We avoid using er-cmp because we don't want break-on-error to
; break on translate errors, since we know that sometimes translate errors are
; benign -- for example, in translate11 we backtrack if there is an error in
; translating the term tbr in (IF tst tbr fbr), to translate fbr first.

; Like er-cmp but returns 3 values, the additional one being the current value
; of bindings.  See also trans-er+ and trans-er+?.

  `(mv-let (ctx msg-or-val)
;          (er-cmp ,@args) ; See "keep in sync" comment above.
           (mv ,(car args) (msg ,(cadr args) ,@(cddr args)))
           (mv ctx msg-or-val bindings)))

(defmacro trans-er+ (form ctx str &rest args)

; Warning: Keep in sync with er-cmp (see commented-out call below) and
; er-cmp-fn.  For an explanation, see the corresponding warning in trans-er.

; This macro is like trans-er, but it also prints the offending context, form,
; which could be the untranslated term or a surrounding term, etc.

  `(mv-let (ctx msg-or-val)
;          (er-cmp ,ctx ; See "keep in sync" comment above.
;                  "~@0  Note:  this error occurred in the context ~x1."
;                  (msg ,str ,@args)
;                  ,form)
           (mv ,ctx
               (msg "~@0  Note:  this error occurred in the context ~x1."
                    (msg ,str ,@args)
                    ,form))
           (mv ctx msg-or-val bindings)))

(defmacro trans-er+? (cform x ctx str &rest args)

; This macro behaves as trans-er+ using cform, if x and cform are distinct (in
; which case cform can provide context beyond x); else it behaves as trans-er.

; The guard is for efficiency, to guarantee that we don't evaluate x or cform
; twice.  (Actually x is only evaluated once by the expansion of this macro,
; but it is likely evaluated in another place by the calling code.)

  (declare (xargs :guard (and (symbolp cform)
                              (symbolp x))))
  `(cond ((equal ,x ,cform)
          (trans-er ,ctx ,str ,@args))
         (t
          (trans-er+ ,cform ,ctx ,str ,@args))))

(defmacro trans-value (x &optional (bindings 'bindings))

; Like value-cmp but returns 3 values, erp, x, and bindings.

  `(mv nil ,x ,bindings))

(defmacro trans-er-let* (alist body)

; Like er-let*-cmp but deals in trans-er's 3-tuples and binds and returns
; bindings.

  (declare (xargs :guard (alistp alist)))
  (cond ((null alist)
         (list 'check-vars-not-free
               '(er-let-star-use-nowhere-else)
               body))
        (t (list 'mv-let
                 (list 'er-let-star-use-nowhere-else
                       (caar alist)
                       'bindings)
                 (cadar alist)
                 (list 'cond
                       (list 'er-let-star-use-nowhere-else
                             (list 'mv
                                   'er-let-star-use-nowhere-else
                                   (caar alist)
                                   'bindings))
                       (list t (list 'trans-er-let* (cdr alist) body)))))))

(defun hide-ignored-actuals (ignore-vars bound-vars value-forms)
  (cond

; Most of the time there won't be any ignore-vars, so we don't mind
; paying the price of checking the following condition on each
; recursive call (even though the answer remains the same).

   ((null ignore-vars)
    value-forms)
   ((null bound-vars)
    nil)
   ((and (member-eq (car bound-vars) ignore-vars)
         (let ((form (car value-forms)))
           (and (or (variablep form)
                    (fquotep form)
                    (not (eq (ffn-symb form) 'hide)))
                (cons (fcons-term* 'hide form)
                      (hide-ignored-actuals ignore-vars
                                            (cdr bound-vars)
                                            (cdr value-forms)))))))
   (t
    (cons (car value-forms)
          (hide-ignored-actuals ignore-vars
                                (cdr bound-vars)
                                (cdr value-forms))))))

(defun augment-ignore-vars (bound-vars value-forms acc)

; Note added shortly before releasing ACL2 Version_6.1.  This function seems to
; have been added in Version_2.9.4.  It's not clear that we need this function,
; since it doesn't seem that translate11 is passed a form with HIDE calls
; already added in the manner described below.  For now we'll continue to calls
; this function, as it seems harmless enough.  We might want to try a
; regression sometime with it redefined simply to return acc, and if that
; succeeds, we could consider deleting it.  (But that seems dangerous to do
; just before a release!)

; Bound-vars and value-forms are lists of the same length.  Return the result
; of extending the list acc by each member of bound-vars for which the
; corresponding element of value-forms (i.e., in the same position) is a call
; of hide.  Since translate11 inserts a call of hide for each bound var, this
; function returns a list that contains every variable declared ignored in the
; original let form binding bound-vars to value-forms (or the corresponding
; untranslations of the terms in value-forms).

  (cond ((endp bound-vars)
         acc)
        ((let ((form (car value-forms)))
           (or (variablep form)
               (fquotep form)
               (not (eq (ffn-symb form) 'hide))))
         (augment-ignore-vars (cdr bound-vars) (cdr value-forms) acc))
        (t (augment-ignore-vars (cdr bound-vars)
                                (cdr value-forms)
                                (cons (car bound-vars) acc)))))

; Essay on STOBJS-IN and STOBJS-OUT

; Once upon a time, before user-defined single-threaded objects came along,
; every function symbol had four aspects to its syntactic character:
; * its arity
; * which of its inputs was STATE
; * its multiplicity (how many results it returns)
; * which of its outputs was STATE
; These were coded on the property list in a somewhat optimized way involving
; the four properties FORMALS, STATE-IN, MULTIPLICITY, and STATE-OUT.  If
; STATE-IN was absent or NIL, then STATE was not a formal.  Otherwise, STATE-IN
; indicated the position (1-based) of STATE in the FORMALS.  If MULTIPLICITY
; was absent, it was implicitly 1.  If STATE-OUT was T then multiplicity was 1
; and STATE was the single result.  We review these old characteristics because
; they were generalized when we introduced single-threaded objects, or
; ``stobjs''.

; Since the introduction of stobjs, every function has four aspects to its
; syntactic character:

; * its arity
; * which of its inputs are stobjs
; * its multiplicity
; * which of its outputs are stobjs

; This is coded on the property list as follows.  First, a ``STOBJ flag'' is
; either NIL or the name of a stobj (including STATE).  A list of n STOBJ flags
; can thus indicate which elements of another list of length n are stobjs and
; which stobjs they are.

; FORMALS gives the list of formals.

; STOBJS-IN is a list of STOBJ flags that is interpreted in 1:1 correspondence
; with the formals.  Every function symbol must have a STOBJS-IN property.  We
; do not support space-efficient coding of any special cases.  Each formal must
; be the corresponding stobj.

; STOBJS-OUT is a list of stobj flags indicating both the multiplicity and
; which outputs are stobjs, and the correspondence between output stobjs and
; input stobjs.  For example, if the STOBJS-IN property is (nil $s1 $s2 nil)
; and the STOBJS-OUT property is (nil $s2), then two values are returned, where
; the second value returned is the same stobj as the third input (labeled $s2
; above).  Every function must have a STOBJS-OUT property, with the effective
; exception of return-last: an error is caused if the function stobjs-out is
; applied to return-last, which always returns its last argument (possibly a
; multiple value) and should generally be considered as not having STOBJS-OUT.

; We now consider translation performed on behalf of evaluation (as opposed to
; translating only for the logic, as when translating proposed theorems).
; During translation of each argument of a function call, we generally have a
; stobj flag associated with the term we are translating, indicating the
; expected stobj, if any, produced by the term.  Consider a stobj flag, $s,
; that is non-nil, i.e., is a stobj name.  Then the term occupying the
; corresponding slot MUST be the stobj name $s, except in the case that
; congruent stobjs are involved (see below).  We think of the stobj flags as
; meaning that the indicated stobj name is the only term that can be passed
; into that slot.

; We mentioned a relaxation above for the case of congruent stobjs.  (See :DOC
; defstobj for an introduction to congruent stobjs.)  Consider again a function
; call.  Each argument corresponding to a non-nil stobj flag should be
; a stobj that is congruent to that flag (a stobj).  Moreoever, no two such
; arguments may be the same.

; We turn now from translation to evaluation in the logic (i.e., with *1*
; functions that might or might not pass control to raw Lisp functions).

; Our stobj primitives are all capable of computing on the logical objects that
; represent stobjs.  But they give special treatment to the live ones.  There
; are two issues.  First, we do not want a live one ever to get into a
; non-stobj slot because the rest of the functions do not know how to handle
; it.  So if the actual is a live stobj, the formal must be a stobj.  Second,
; if the ith element of STOBJS-IN is a stobj, $s, and the jth element of
; STOBJS-OUT is also $s, and the ith actual of a call is a live stobj, then the
; jth return value from that call is that same live stobj.  This is the only
; way that a live stobj can be found in the output (unless there is a call of a
; creator function, which is untouchable).

(defun compute-stobj-flags (lst known-stobjs w)

; Lst is a list of possibly UNTRANSLATED terms!  This function
; computes the stobj flags for the elements of the list, assigning nil
; unless the element is a symbol with a 'STOBJ property in w.

  (cond ((endp lst) nil)
        ((stobjp (car lst) known-stobjs w)
         (cons (car lst)
               (compute-stobj-flags (cdr lst) known-stobjs w)))
        (t (cons nil
                 (compute-stobj-flags (cdr lst) known-stobjs w)))))

(defun prettyify-stobj-flags (lst)

; Note: The use of * to denote NIL here is arbitrary.  But if another
; symbol is used, make sure it could never be defined as a stobj by
; the user!

  (cond ((endp lst) nil)
        (t (cons (or (car lst) '*) (prettyify-stobj-flags (cdr lst))))))

(defun unprettyify-stobj-flags (lst)
  (cond ((endp lst) nil)
        (t (cons (if (eq (car lst) '*) nil (car lst))
                 (unprettyify-stobj-flags (cdr lst))))))

(defun prettyify-stobjs-out (stobjs-out)

; This function uses prettyify-stobj-flags in the singleton case just
; to localize the choice of external form to that function.

  (if (cdr stobjs-out)
      (cons 'mv (prettyify-stobj-flags stobjs-out))
    (car (prettyify-stobj-flags stobjs-out))))

(defun defstobj-supporterp (name wrld)

; If name is supportive of a single-threaded object implementation, we return
; the name of the stobj.  Otherwise, we return nil.  By "supportive" we mean
; name is the object name, the live var, a recognizer, accessor, updater,
; helper, resizer, or length function, or a constant introduced by the
; defstobj, or in the case of defabsstobj, a recognizer, accessor, or (other)
; exported function.

  (cond
   ((getpropc name 'stobj nil wrld)
    name)
   ((getpropc name 'stobj-function nil wrld))
   ((getpropc name 'stobj-constant nil wrld))
   (t (getpropc name 'stobj-live-var nil wrld))))

(defun stobj-creatorp (name wrld)

; Returns the name of the stobj that name creates, if name is a stobj creator;
; else returns nil.

; Keep the null test below in sync with the null test (and stobj-flag (null
; (cadr def))) near the top of oneify-cltl-code.

  (and (symbolp name)
       (null (getpropc name 'formals t wrld))
       (getpropc name 'stobj-function nil wrld)))

(mutual-recursion

(defun ffnnamep (fn term)

; We determine whether the function fn (possibly a lambda-expression)
; is used as a function in term.

  (cond ((variablep term) nil)
        ((fquotep term) nil)
        ((flambda-applicationp term)
         (or (equal fn (ffn-symb term))
             (ffnnamep fn (lambda-body (ffn-symb term)))
             (ffnnamep-lst fn (fargs term))))
        ((eq (ffn-symb term) fn) t)
        (t (ffnnamep-lst fn (fargs term)))))

(defun ffnnamep-lst (fn l)
  (declare (xargs :guard (and (symbolp fn)
                              (pseudo-term-listp l))))
  (if (null l)
      nil
    (or (ffnnamep fn (car l))
        (ffnnamep-lst fn (cdr l)))))

)

(defconst *synp-trans-err-string*
  "A synp term must take three quoted arguments, unlike ~x0.  Normally, a call ~
   to synp is the result of the macroexpansion of a call to syntaxp or ~
   bind-free, but this does not seem to be the case here.  If you believe this ~
   error message is itself in error please contact the maintainers of ACL2.")

(defun unknown-binding-msg (stobjs-bound str1 str2 str3)
  (msg
   "The single-threaded object~#0~[ ~&0 has~/s ~&0 have~] been bound in ~@1.  ~
    It is a requirement that ~#0~[this object~/these objects~] be among the ~
    outputs of ~@2.  But, at the time at which we process ~@2, we are unable ~
    to determine what the outputs are and so cannot allow it.  This situation ~
    arises when the output of ~@2 is a recursive call of the function being ~
    admitted and the call is encountered before we have encountered the first ~
    base case of the function (which would tell us what single-threaded ~
    objects are being returned).  In the case of the admission of a clique of ~
    mutually-recursive functions, the situation can additionally arise when ~
    the output of ~@2 is a call of a function in the clique and that function ~
    appears in the clique after the definition in question.  This situation ~
    can be eliminated by rearranging the order of the branches of an IF ~
    and/or rearranging the order of the presentation of a clique of mutually ~
    recursive functions."
   stobjs-bound str1 str2 str3))

(defconst *macros-for-nonexpansion-in-raw-lisp*

; If a symbol, sym, is on this list then the form (sym a1 ... ak) is oneified
; to (sym a1' ... ak') where ai' is the oneification of ai.  Thus, conditions
; for sym being put on this list include that it is defined as a function or
; macro in raw lisp and that it is "applied" to a list of terms.  Another
; condition is that it not have a guard, because if a guard is present it is
; likely that Common Lisp will cause an error when we run the oneified version
; on inappropriate inputs.

; The value of this list should be a subset of
; (loop for x in (w state) when (eq (cadr x) 'macro-body) collect (car x))
; Below we exhibit the value of the sloop above and comment out the macros we
; do not want on it.  The macros commented out will be translated away in
; oneified code.

; When in doubt, comment it out!

  '(f-decrement-big-clock  ; we leave these two in oneified code because they
    f-big-clock-negative-p ; are handled by our raw lisp
;   make-list
;   ; Must omit f-put-global, f-get-global, and f-boundp-global, in order to
;   ; avoid calling global-table in raw Lisp.
;   mv-let                 ; not of the right shape so special-cased in oneify
    mv

; The following are not in primitive-event-macros (which is handled directly
; in oneify-cltl-code).

; Note that safe-mode for make-event will require addition of the following four:
;   certify-book make-event defpkg in-package

;   acl2-unwind-protect
;   pprogn
;   the
    list*

;   rest tenth ninth eighth seventh sixth fifth fourth third second first cddddr
;   cdddar cddadr cddaar cdaddr cdadar cdaadr cdaaar cadddr caddar cadadr cadaar
;   caaddr caadar caaadr caaaar cdddr cddar cdadr cdaar caddr cadar caadr caaar
;   cddr cdar cadr caar

;   case progn mutual-recursion

;   / * >= > <=   ; guarded
;   let* cond
;   + -           ; guarded
    or and list
;   local
    with-live-state
    ))

; Historical Note: The following material -- chk-no-duplicate-defuns,
; chk-state-ok, chk-arglist, and chk-defuns-tuples -- used to be in the file
; defuns.lisp.  It is mainly concerned with translating hints.  But we had to
; move it to before prove.lisp when we added hint functions, and then we had to
; move it before translate11 when we introduced flet.

(defun chk-no-duplicate-defuns-cmp (lst ctx)
  (declare (xargs :guard (true-listp lst)))
  (cond ((no-duplicatesp lst)
         (value-cmp nil))
        (t (er-cmp ctx
                   "We do not permit duplications among the list of symbols ~
                    being defined.  However, the symbol~#0~[ ~&0 is~/s ~&0 ~
                    are each~] defined more than once."
                   (duplicates lst)))))

(defun chk-no-duplicate-defuns (lst ctx state)
  (cmp-to-error-triple (chk-no-duplicate-defuns-cmp lst ctx)))

(defun chk-state-ok-msg (wrld)

; We are in a context where 'state is a member of a list of formals.  Is this
; OK?

  (cond ((not (cdr (assoc-eq :state-ok
                             (table-alist 'acl2-defaults-table
                                          wrld))))
         (msg "The variable symbol STATE should not be used as a formal ~
               parameter of a defined function unless you are aware of its ~
               unusual status and the restrictions enforced on its use.  See ~
               :DOC set-state-ok."))
        (t nil)))

(defun chk-state-ok (ctx wrld state)
  (let ((msg (chk-state-ok-msg wrld)))
    (cond (msg (er soft ctx "~@0" msg))
          (t (value nil)))))

(defun chk-arglist-msg (args chk-state wrld)
  (cond ((arglistp args)
         (if (and chk-state (member-eq 'state args))
             (chk-state-ok-msg wrld)
           nil))
        ((not (true-listp args))
         (msg "The argument list to a function must be a true list but ~x0 is ~
               not."
              args))
        (t (mv-let (culprit explan)
                   (find-first-bad-arg args)
                   (msg "The argument list to a function must be a true list ~
                         of distinct, legal variable names.  ~x0 is not such ~
                         a list.  The element ~x1 violates the rules because ~
                         it ~@2."
                        args culprit explan)))))

(defun msg-to-cmp (ctx msg)

; Convert a given context and message to a corresponding context-message pair
; (see the Essay on Context-message Pairs).

  (assert$ ctx
           (cond (msg (mv ctx msg))
                 (t (mv nil nil)))))

(defun chk-arglist-cmp (args chk-state ctx wrld)
  (msg-to-cmp ctx (chk-arglist-msg args chk-state wrld)))

(defun@par chk-arglist (args chk-state ctx wrld state)
  (let ((msg (chk-arglist-msg args chk-state wrld)))
    (cond (msg (er@par soft ctx "~@0" msg))
          (t (value@par nil)))))

(defun logical-name-type (name wrld quietp)

; Given a logical-namep we determine what sort of logical object it is.

  (cond ((stringp name) 'package)
        ((function-symbolp name wrld) 'function)
        ((getpropc name 'macro-body nil wrld) 'macro)
        ((getpropc name 'const nil wrld) 'const)
        ((getpropc name 'theorem nil wrld) 'theorem)
        ((not (eq (getpropc name 'theory t wrld) t))
         'theory)
        ((getpropc name 'label nil wrld) 'label)
        ((getpropc name 'stobj nil wrld)

; Warning: Non-stobjs can have the stobj property, so do not move this cond
; clause upward!

         'stobj)
        ((getpropc name 'stobj-live-var nil wrld)
         'stobj-live-var)
        (quietp nil)
        (t (er hard 'logical-name-type
               "~x0 is evidently a logical name but of undetermined type."
               name))))

(defun chk-all-but-new-name-cmp (name ctx new-type w)

; We allow new-type to be NIL.  Currently, its only uses are to allow
; redefinition of functions, macros, and consts residing in the main Lisp
; package, and to allow events to use the main Lisp package when they
; do not introduce functions, macros, or constants.

  (cond ((not (symbolp name))
         (er-cmp ctx
                 "Names must be symbols and ~x0 is not."
                 name))
        ((keywordp name)
         (er-cmp ctx
                 "Keywords, such as ~x0, may not be defined or constrained."
                 name))
        ((and (member-eq new-type '(function const stobj macro
                                             constrained-function))
              (equal *main-lisp-package-name* (symbol-package-name name))
              (or

; Only definitions can be redefined from :program mode to :logic mode.

               (not (eq new-type 'function))
               (not (eq (logical-name-type name w t) 'function)))
              (not (global-val 'boot-strap-flg w)))
         (er-cmp ctx
                 "Symbols in the main Lisp package, such as ~x0, may not be ~
                  defined or constrained."
                 name))
        (t (value-cmp nil))))

(defun chk-all-but-new-name (name ctx new-type w state)
  (cmp-to-error-triple (chk-all-but-new-name-cmp name ctx new-type w)))

(defun chk-defuns-tuples-cmp (lst local-p ctx wrld)
  (cond ((atom lst)

; This error message can never arise because we know terms are true
; lists.

         (cond ((eq lst nil) (value-cmp nil))
               (t (er-cmp ctx
                          "A list of definitions must be a true list."))))
        ((not (true-listp (car lst)))
         (er-cmp ctx
                 "Each~#0~[ local~/~] definition must be a true list and ~x1 ~
                  is not."
                 (if local-p 0 1)
                 (if local-p (car lst) (cons 'DEFUN (car lst)))))
        ((not (>= (length (car lst))
                  3))
         (er-cmp ctx
                 "A definition must be given three or more arguments, but ~x0 ~
                  has length only ~x1."
                 (car lst)
                 (length (car lst))))
        (t (er-progn-cmp
            (chk-all-but-new-name-cmp (caar lst) ctx 'function wrld)
            (chk-arglist-cmp (cadar lst) nil ctx wrld)
            (er-let*-cmp
             ((edcls (collect-declarations-cmp
                      (butlast (cddar lst) 1)
                      (cadar lst)
                      (if local-p 'flet 'defuns)
                      ctx wrld))
              (rst (chk-defuns-tuples-cmp (cdr lst) local-p ctx wrld)))
             (value-cmp (cons (list* (caar lst)
                                     (cadar lst)
                                     (if (stringp (car edcls))
                                         (car edcls)
                                       nil)
                                     (if (stringp (car edcls))
                                         (cdr edcls)
                                       edcls)
                                     (last (car lst)))
                              rst)))))))

(defun chk-defuns-tuples (lst local-p ctx wrld state)
  (cmp-to-error-triple (chk-defuns-tuples-cmp lst local-p ctx wrld)))

(defun non-trivial-encapsulate-ee-entries (embedded-event-lst)
  (cond ((endp embedded-event-lst)
         nil)
        ((and (eq (caar embedded-event-lst) 'encapsulate)
              (cadar embedded-event-lst))
         (cons (car embedded-event-lst)
               (non-trivial-encapsulate-ee-entries (cdr embedded-event-lst))))
        (t (non-trivial-encapsulate-ee-entries (cdr embedded-event-lst)))))

(defun name-dropper (lst)

; This function builds a term that mentions each element of lst.  Provided the
; elements of list are translated terms, the output is a translated term.
; Provided every element of lst has a guard of t, the output has a guard of t.
; The intention here is that lst is a list of distinct variable names and
; name-dropper builds a translated term whose free-vars are those variables;
; futhermore, it is cheap to evaluate and always has a guard of T.
; The general form is either 'NIL, a single var, or a PROG2$ nest around
; the vars.

  (cond ((endp lst) *nil*)
        ((endp (cdr lst)) (car lst))
        (t (prog2$-call (car lst)
                        (name-dropper (cdr lst))))))

(defun first-assoc-eq (keys alist)
  (declare (xargs :guard (and (alistp alist)
                              (symbol-listp keys))))
  (cond ((endp keys)
         nil)
        (t (or (assoc-eq (car keys) alist)
               (first-assoc-eq (cdr keys) alist)))))

(defun context-for-encapsulate-pass-2 (wrld in-local-flg)

; Return 'illegal if we are in pass 2 of a non-trivial encapsulate, or if known
; to be non-local (as per in-local-flg) in pass 1 of a non-trivial encapsulate.
; We include the latter because presumably it is courteous to the user to
; signal an issue during pass 1, rather than waiting till the inevitable
; problem in pass 2.

; If we are in pass 1 of a non-trivial encapsulate but in a local context, then
; we might or might not be in an illegal context for the corresponding pass 2,
; depending on whether the local wrapper is close enough to make the context
; disappear in pass 2.  So we return 'maybe in this case.  Otherwise, we return
; nil.

  (let ((ee-entries (non-trivial-encapsulate-ee-entries
                     (global-val 'embedded-event-lst wrld))))
    (and ee-entries ; we are in at least one non-trivial encapsulate
         (cond ((or

; The term (cddr (car ee-entries)) is true exactly when we are in pass 2 of the
; immediately superior non-trivial encapsulate, hence holds if we are in pass 2
; of some superior encapsulate (since then we would be skipping pass 1 of its
; inferior encapsulates).  So (cddr (car ee-entries)) is non-nil if and only if
; we are in pass 2 of some encapsulate.

                 (cddr (car ee-entries))
                 (null in-local-flg))
                'illegal)
               (t 'maybe)))))

(defconst *brr-globals*
  '(brr-monitored-runes
    brr-stack
    brr-gstack
    brr-alist))

(defun unknown-binding-msg-er (x ctx stobjs-bound str1 str2 str3)
  (mv-let
   (erp msg bindings)
   (let ((bindings nil)) ; don't-care
     (trans-er+
      x ctx
      "~@0"
      (msg "The single-threaded object~#0~[ ~&0 has~/s ~&0 have~] been bound ~
            in ~@1.  It is a requirement that ~#0~[this object~/these ~
            objects~] be among the outputs of ~@2.  But, at the time at which ~
            we process ~@2, we are unable to determine what the outputs are ~
            and so cannot allow it.  In the case of the admission of a clique ~
            of mutually-recursive functions, this situation can arise when ~
            the output of ~@2 is a call of a function defined in the clique ~
            after the definition containing ~@2, in which case the problem ~
            might be eliminated by rearranging the order of the definitions."
            stobjs-bound str1 str2 str3)))
   (declare (ignore bindings))
   (mv erp msg :UNKNOWN-BINDINGS)))

(defun congruent-stobjsp (st1 st2 wrld)
  (eq (congruent-stobj-rep st1 wrld)
      (congruent-stobj-rep st2 wrld)))

(defun stobjs-in-out1 (stobjs-in args known-stobjs wrld alist new-stobjs-in)

; We are translating an application of a function to args. where args satisfies
; the stobjs discipline of passing a stobj name to a stobjs-in position; see
; the comment about this in translate11-call.

  (cond ((endp stobjs-in)
         (if (null args)
             (mv alist (reverse new-stobjs-in))
           (mv :failed nil)))
        ((endp args) (mv :failed nil))
        ((null (car stobjs-in))
         (stobjs-in-out1 (cdr stobjs-in) (cdr args) known-stobjs wrld alist
                         (cons nil new-stobjs-in)))
        ((and (car stobjs-in)
              (stobjp (car args) known-stobjs wrld)
              (not (rassoc-eq (car args)
                              alist)) ; equiv. to not member of new-stobjs-in
              (or (eq (car stobjs-in) (car args))
                  (congruent-stobjsp (car stobjs-in) (car args) wrld)))
         (stobjs-in-out1 (cdr stobjs-in) (cdr args) known-stobjs wrld
                         (acons (car stobjs-in) (car args) alist)
                         (cons (car args) new-stobjs-in)))
        (t (mv :failed nil))))

(defun stobjs-in-matchp (stobjs-in args)
  (cond ((endp stobjs-in) (null args))
        ((endp args) nil)
        ((or (null (car stobjs-in))
             (eq (car stobjs-in) (car args)))
         (stobjs-in-matchp (cdr stobjs-in) (cdr args)))
        (t nil)))

(defun stobjs-in-out (fn args stobjs-out known-stobjs wrld)

; We are translating an application of fn to args, where fn has the indicated
; stobjs-out and args satisfies the stobjs discipline of passing a stobj name
; to a stobjs-in position.  See the comment about this discipline in
; translate11-call.

; In general we return (mv flg new-stobjs-in new-stobjs-out), according to one
; of the following cases.

; - If flg is :failed, then we return (mv :failed stobjs-in stobjs-out), where
;   stobjs-in is the stobjs-in of fn and stobjs-out is returned unchanged.

; - Otherwise flg is an alist, and either stobjs-out is a symbol (representing
;   a function symbol or :stobjs-out bound in an implicit bindings in
;   translate11), or else fn can be viewed as mapping new-stobjs-in to
;   new-stobjs-out.  Alist maps the original stobjs-in to new-stobjs-in; in
;   particular, if alist is nil then new-stobjs-in is equal to the original
;   stobjs-in.

  (let ((stobjs-in (cond ((consp fn)
                          (compute-stobj-flags (lambda-formals fn)
                                               known-stobjs
                                               wrld))
                         (t (stobjs-in fn wrld)))))
    (cond ((stobjs-in-matchp stobjs-in args)
           (mv nil stobjs-in stobjs-out))
          (t (mv-let
              (alist new-stobjs-in)
              (stobjs-in-out1 stobjs-in args known-stobjs wrld nil nil)
              (cond ((eq alist :failed)
                     (mv :failed stobjs-in stobjs-out))
                    ((symbolp stobjs-out)
                     (mv alist new-stobjs-in stobjs-out))
                    (t (mv alist
                           new-stobjs-in
                           (apply-symbol-alist alist stobjs-out nil)))))))))

(defun non-trivial-stobj-binding (stobj-flags bindings)
  (declare (xargs :guard (and (symbol-listp stobj-flags)
                              (symbol-doublet-listp bindings)
                              (eql (length stobj-flags)
                                   (length bindings)))))
  (cond ((endp stobj-flags) nil)
        ((or (null (car stobj-flags))
             (assert$ (eq (car stobj-flags) (caar bindings))
                      (eq (car stobj-flags) (cadar bindings))))
         (non-trivial-stobj-binding (cdr stobj-flags) (cdr bindings)))
        (t (car stobj-flags))))

(defun formalized-varlistp (varlist formal-lst)
  (declare (xargs :guard (and (symbol-listp varlist)
                              (pseudo-termp formal-lst))))
  (cond ((endp varlist)
         (equal formal-lst *nil*))
        ((variablep formal-lst)
         nil)
        (t (and ; (not (fquotep formal-lst))
            (eq (ffn-symb formal-lst) 'cons)
            (eq (car varlist) (fargn formal-lst 1))
            (formalized-varlistp (cdr varlist) (fargn formal-lst 2))))))

(defun throw-nonexec-error-p1 (targ1 targ2 name formals)

; Consider a term (return-last targ1 targ2 ...).  We recognize when this term
; is of the form (return-last 'progn (throw-non-exec-error x ...) ...), with
; some additional requirements as explained in a comment in
; throw-nonexec-error-p.

  (and (quotep targ1)
       (eq (unquote targ1) 'progn)
       (ffn-symb-p targ2 'throw-nonexec-error)
       (or (null name)
           (let ((qname (fargn targ2 1)))
             (and (quotep qname)
                  (if (eq name :non-exec)
                      (eq (unquote qname) :non-exec)
                    (and (eq (unquote qname) name)
                         (formalized-varlistp formals (fargn targ2 2)))))))))

(defun throw-nonexec-error-p (body name formals)

; We recognize terms that could result from translating (prog2$
; (throw-nonexec-error x ...) ...), i.e., terms of the form (return-last 'progn
; (throw-non-exec-error x ...) ...).  If name is nil, then there are no further
; requirements.  If name is :non-exec, then we require that x be (quote
; :non-exec).  Otherwise, we require that x be (quote name) and that the second
; argument of throw-non-exec-error be (cons v1 (cons v2 ... (cons vk nil)
; ...)), where formals is (v1 v2 ... vk).

  (and (ffn-symb-p body 'return-last)
       (throw-nonexec-error-p1 (fargn body 1) (fargn body 2) name formals)))

(defun chk-flet-declarations (names decls declare-form ctx)
  (cond ((null decls)
         (value-cmp nil))
        ((atom decls)
         (er-cmp ctx
                 "The DECLARE form for an FLET expression must be a ~
                  true-list.  The form ~x0 is thus illegal.  See :DOC flet."
                 declare-form))
        (t (let ((decl (car decls)))
             (cond ((and (consp decl)
                         (member-eq (car decl)
                                    '(inline notinline))
                         (true-listp (cdr decl))
                         (subsetp-eq (cdr decl) names))
                    (chk-flet-declarations names (cdr decls) declare-form ctx))
                   (t (er-cmp ctx
                              "Each declaration in a DECLARE form of an flet ~
                               expression must be of the form (INLINE . fns) ~
                               or (NOTINLINE . fns), where fns is a true-list ~
                               of names that are all defined by the FLET ~
                               expression.  The declare form ~x0 is thus ~
                               illegal because of its declaration, ~x1.  See ~
                               :DOC flet."
                              declare-form
                              decl)))))))

(defun chk-flet-declare-form (names declare-form ctx)
  (cond
   ((null declare-form)
    (value-cmp nil))
   (t (case-match declare-form
        (('declare . decls)
         (chk-flet-declarations names decls declare-form ctx))
        (&
         (er-cmp ctx
                 "The optional DECLARE forms for an flet expression must each ~
                  be of the form (DECLARE DCL1 DCL2 ... DCLk), where each ~
                  DCLi is an INLINE or NOTINLINE declaration.  The form ~x0 ~
                  is thus not a legal DECLARE form.  See :DOC flet."
                 declare-form))))))

(defun chk-flet-declare-form-list (names declare-form-list ctx)
  (cond ((endp declare-form-list)
         (value-cmp nil))
        (t (er-progn-cmp
            (chk-flet-declare-form names (car declare-form-list) ctx)
            (chk-flet-declare-form-list names (cdr declare-form-list) ctx)))))

(defun stobj-updater-guess-from-accessor (accessor)

; Warning: Keep the following in sync with defstobj-fnname.

; This function guesses a stobj updater name for a field from the accessor name
; for that field.  We use it to supply a reasonable default when a stobj-let
; binding does not specify an updater, but ultimately we check it just as we
; would check a supplied updater name.

; The following example shows why this is only a guess.

; (defpkg "MY-PKG" '(fldi))
; (defstobj st (my-pkg::fld :type (array t (8))))

; Then the accessor is ACL2::FLDI and the updater is MY-PKG::UPDATE-FLDI.  But
; the call of pack-pos below, with acc bound to ACL2::FLDI, yields
; ACL2::UPDATE-FLDI.

  (packn-pos (list "UPDATE-" accessor)
             accessor))

(defun parse-stobj-let1 (bindings producer-vars bound-vars actuals stobj
                                  updaters corresp-accessor-fns)

; Either return (mv binding nil nil ... nil) for some unsuitable binding in
; bindings, or else return the result of accumulating from bindings into the
; other argments.  See parse-stobj-let.  Note that stobj is initially nil, but
; is bound by the first recursive call and must be the same at every ensuing
; recursive call.

  (declare (xargs :guard (and (true-listp bindings)
                              (true-listp producer-vars)
                              (true-listp bound-vars)
                              (true-listp actuals)
                              (true-listp updaters))))
  (cond
   ((endp bindings)
    (mv nil
        (reverse bound-vars)
        (reverse actuals)
        stobj
        (reverse updaters)
        (reverse corresp-accessor-fns)))
   (t (let ((binding (car bindings)))
        (case-match binding
          ((s act . rest) ; e.g. (st1 (fld1 st+) update-fld1)
           (cond
            ((not (or (null rest)
                      (and (consp rest)
                           (null (cdr rest))
                           (symbolp (car rest)))))
             (mv binding nil nil nil nil nil))
            ((not (and (true-listp act)
                       (member (length act) '(2 3))
                       (symbolp (car act))
                       (symbolp (car (last act)))))
             (mv binding nil nil nil nil nil))
            (t (let ((arrayp (eql (length act) 3))) ; e.g. (fld3i 4 st+)
                 (cond
                  ((and arrayp
                        (let ((index (cadr act)))

; As discussed in the Essay on Nested Stobjs, the index must be a natural
; number or else a symbol that is not among the producer variables.  We relax
; the former condition to allow a quoted natural.

                          (not (or (and (symbolp index)
                                        (not (member-eq index
                                                        producer-vars)))
                                   (natp index)
                                   (and (consp index)
                                        (consp (cdr index))
                                        (null (cddr index))
                                        (eq (car index) 'quote)
                                        (natp (cadr index)))))))
                   (mv binding nil nil nil nil nil))
                  (t
                   (let ((accessor (car act))
                         (stobj0 (car (last act)))
                         (update-fn (car rest)))
                     (cond
                      ((or (null stobj0)
                           (and stobj
                                (not (eq stobj0 stobj))))
                       (mv binding nil nil nil nil nil))
                      ((member-eq s producer-vars)
                       (parse-stobj-let1
                        (cdr bindings)
                        producer-vars
                        (cons s bound-vars)
                        (cons act actuals)
                        stobj0
                        (cons (cons (or update-fn
                                        (stobj-updater-guess-from-accessor
                                         accessor))
                                    (if arrayp
                                        (list* (cadr act) ; index
                                               s
                                               (cddr act))
                                      (cons s (cdr act))))
                              updaters)
                        (cons accessor corresp-accessor-fns)))
                      (t
                       (parse-stobj-let1
                        (cdr bindings)
                        producer-vars
                        (cons s bound-vars)
                        (cons act actuals)
                        stobj0
                        updaters
                        corresp-accessor-fns))))))))))
          (& (mv binding nil nil nil nil nil)))))))

(defun illegal-stobj-let-msg (msg form)
  (msg "~@0  The form ~x1 is thus illegal.  See :DOC stobj-let."
       msg form))

(defun parse-stobj-let (x)

; This function is used both in the definition of the stobj-let macro and, in
; translate11, to translate stobj-let forms.  This function is not responsible
; for all error checking, as some checks take place in translate11, which must
; ensure that x and its oneification will execute correctly.  Nevertheless, the
; error checking done in this function is useful for giving feedback on misuses
; of stobj-let in contexts such as theorems in which translate11 will not
; insist on correctness for execution, such as single-threadedness.  Of course,
; users who have a specific reason for "misusing" stobj-let in such contexts
; are welcome to avoid stobj-let and write let-expressions instead.

; X is a stobj-let form.  We return (mv erp bound-vars actuals stobj
; producer-vars producer updaters corresponding-accessor-fns consumer), where
; erp is either a msg or nil, and when erp is nil:
; - bound-vars is a list of symbols, without duplicates;
; - actuals is a corresponding list of untranslated field accessors;
; - stobj is the stobj accessed by those field accessors;
; - producer-vars is the true-list of producer variables
; - producer is an untranslated expression that returns values corresponding to
;   producer-vars;
; - updaters is a list of stobj updaters, obtained from producer-vars, actuals,
;   and any updaters specified explicitly in the first argument of the
;   stobj-let;
; - corresponding-accessor-fns is a list of accessor functions that corresponds
;   positionally to updaters; and
; - consumer is an expression that provides the return value(s).

; For example, if x is

;   (stobj-let
;    ((st1 (fld1 st+))
;     (st2 (fld2 st+) update-fld2)
;     (st3 (fld3i 4 st+)))
;    (x st1 y st3)
;    (producer st1 u st2 v st3)
;    (consumer st+ u x y v w))

; then we return:

;   (mv nil                                    ; erp
;       (st1 st2 st3)                          ; bound-vars
;       ((fld1 st+) (fld2 st+) (fld3i 4 st+))  ; untranslated actuals
;       st+                                    ; stobj accessed above
;       (x st1 y st3)                          ; producer-vars
;       (producer st1 u st2 v st3)             ; producer (untranslated)
;       ((update-fld1 st+)                     ; stobj updaters
;        (update-fld3i 4 st3 st+))
;       (fld1 fld3)                            ; accessors for the updaters
;       (consumer st+ u x y v w)               ; consumer (untranslated)
;       )

  (declare (xargs :guard t))
  (case-match x
    (('stobj-let bindings
                 producer-vars
                 producer
                 consumer)
     (cond
      ((not (and bindings

; We could check true-list-listp here, but we prefer to leave such a check to
; parse-stobj-let1 so that the error message can refer to the particular
; ill-formed binding.

                 (true-listp bindings)))
       (mv (illegal-stobj-let-msg
            "The bindings of a STOBJ-LET form must be a non-empty true-list."
            x)
           nil nil nil nil nil nil nil nil))
      ((not (and producer-vars
                 (arglistp producer-vars)))
       (mv (illegal-stobj-let-msg
            "The producer-variables of a STOBJ-LET form must be a non-empty ~
             list of legal variable names."
            x)
           nil nil nil nil nil nil nil nil))
      (t (mv-let
          (bad bound-vars actuals stobj updaters corresp-accessor-fns)
          (parse-stobj-let1 bindings producer-vars nil nil nil nil nil)
          (cond
           (bad (mv (illegal-stobj-let-msg
                     (msg "Illegal binding for stobj-let, ~x0."
                          bad)
                     x)
                    nil nil nil nil nil nil nil nil))
           (t (mv nil bound-vars actuals stobj producer-vars producer
                  updaters corresp-accessor-fns consumer)))))))
    (& (mv (illegal-stobj-let-msg
            "The proper form of a stobj-let is (STOBJ-LET <bindings> ~
             <producer-variables> <producer> <consumer>)."
            x)
           nil nil nil nil nil nil nil nil))))

(defun pairlis-x1 (x1 lst)

; Cons x1 onto the front of each element of lst.

  (cond ((null lst) nil)
        (t (cons (cons x1 (car lst))
                 (pairlis-x1 x1 (cdr lst))))))

(defun pairlis-x2 (lst x2)

; Make an alist pairing each element of lst with x2.

  (cond ((null lst) nil)
        (t (cons (cons (car lst) x2)
                 (pairlis-x2 (cdr lst) x2)))))

(defun no-duplicatesp-checks-for-stobj-let-actuals/alist (alist)
  (cond ((endp alist) nil)
        (t (let ((indices (cdar alist)))
             (cond ((or (null (cdr indices))
                        (and (nat-listp indices)
                             (no-duplicatesp indices)))
                    (no-duplicatesp-checks-for-stobj-let-actuals/alist
                     (cdr alist)))
                   (t (cons `(chk-no-duplicatesp
; The use of reverse is just aesthetic, to preserve the original order.
                              (list ,@(reverse indices)))
                            (no-duplicatesp-checks-for-stobj-let-actuals/alist
                             (cdr alist)))))))))

(defun no-duplicatesp-checks-for-stobj-let-actuals (exprs alist)

; Alist associates array field accessor names with lists of index terms.

  (cond ((endp exprs)
         (no-duplicatesp-checks-for-stobj-let-actuals/alist alist))
        (t (let ((expr (car exprs)))
             (no-duplicatesp-checks-for-stobj-let-actuals
              (cdr exprs)
              (cond
               ((eql (length expr) 3) ; array case, (fldi index st)
                (let* ((key (car expr))
                       (index (cadr expr))
                       (index (if (consp index)
                                  (assert$ (and (eq (car index) 'quote)
                                                (natp (cadr index)))
                                           (cadr index))
                                index))
                       (entry (assoc-eq key alist)))
                  (put-assoc-eq key
                                (cons index (cdr entry))
                                alist)))
               (t alist)))))))

(defun stobj-let-fn (x)

; Warning: Keep this in sync with stobj-let-fn-raw, with the handling of
; stobj-let in translate11, and with the handling of stobj-let in oneify.

; See the Essay on Nested Stobjs.

  (mv-let
   (msg bound-vars actuals stobj producer-vars producer updaters
        corresp-accessor-fns consumer)
   (parse-stobj-let x)
   (declare (ignore corresp-accessor-fns))
   (cond (msg (er hard 'stobj-let "~@0" msg))
         (t (let* ((guarded-producer
                    `(check-vars-not-free (,stobj) ,producer))
                   (guarded-consumer
                    `(check-vars-not-free ,bound-vars ,consumer))
                   (updated-guarded-consumer
                    `(let* ,(pairlis-x1 stobj (pairlis$ updaters nil))
                       ,guarded-consumer))
                   (form
                    `(let ,(pairlis$ bound-vars (pairlis$ actuals nil))
                       (declare (ignorable ,@bound-vars))
                       ,(cond
                         ((cdr producer-vars)
                          `(mv-let ,producer-vars
                                   ,guarded-producer
                                   ,updated-guarded-consumer))
                         (t `(let ((,(car producer-vars) ,guarded-producer))
                               ,updated-guarded-consumer)))))
                   (no-dups-exprs
                    (no-duplicatesp-checks-for-stobj-let-actuals actuals nil)))
              `(progn$ ,@no-dups-exprs ,form))))))

(defun the-live-var-bindings (stobj-names)
  (cond ((endp stobj-names) nil)
        (t (cons (let ((stobj (car stobj-names)))
                   `(,(the-live-var stobj) ,stobj))
                 (the-live-var-bindings (cdr stobj-names))))))

(defun the-maybe-live-var-bindings (stobj-names)
  (cond ((endp stobj-names) nil)
        (t (cons (let* ((stobj (car stobj-names))
                        (live-var (the-live-var stobj)))
                   `(,live-var
                     (if (live-stobjp ,stobj)
                         ,stobj
                       ,live-var)))
                 (the-maybe-live-var-bindings (cdr stobj-names))))))

#-acl2-loop-only
(defun non-memoizable-stobj-raw (name)
  (assert name)
  (let* ((d (get (the-live-var name)
                 'redundant-raw-lisp-discriminator))
         (ans (cdr (cddddr d))))
    ans))

#-acl2-loop-only
(defun stobj-let-fn-raw (x)

; Warning: Keep this in sync with stobj-let-fn and with the
; handling of stobj-let in translate11.

; This function could be admitted into the logic were it not for the calls of
; congruent-stobj-rep-raw and non-memoizable-stobj-raw below.

; See the Essay on Nested Stobjs.

  (mv-let
   (msg bound-vars actuals stobj producer-vars producer updaters
        corresp-accessor-fns consumer)
   (parse-stobj-let x)
   (declare (ignore updaters corresp-accessor-fns
                    #-hons stobj))
   (cond (msg (er hard 'stobj-let "~@0" msg))
         (t

; Should we allow trans-eval under a stobj-let?  We decided not to, for two
; reasons: first, potential user confusion over the meaning of a stobj
; reference (which in the trans-eval case is to the value in the
; *user-stobj-alist*, not to the value bound by a superior stobj-let); and
; second, difficulty in getting the implementation right!  The following
; example illustrates how trans-eval would operate, were we to allow it in such
; a circumstance.  Note that the trans-eval call below updates the global
; stobj, sub1, not the locally bound sub1 that is a field of top1.

;   (defstobj sub1 sub1-fld1)
;   (defstobj top1 (top1-fld :type sub1))
;
;   (defun f (x top1 state)
;     (declare (xargs :stobjs (top1 state) :mode :program))
;     (stobj-let
;      ((sub1 (top1-fld top1)))
;      (sub1 state)
;      (mv-let (erp val state)
;
;   ; NOTE: The reference to sub1 inside the following trans-eval call is
;   ; actually a reference to the global sub1 from the *user-stobj-alist*, not
;   ; to the sub1 bound by stobj-let above.
;
;              (trans-eval `(update-sub1-fld1 ',x sub1) 'my-top state t)
;              (declare (ignore erp val))
;              (mv sub1 state))
;      top1))
;
;   (f 7 top1 state)
;   (assert-event (equal (sub1-fld1 sub1) 7))
;   (f 8 top1 state)
;   (assert-event (equal (sub1-fld1 sub1) 8))
;
;   (defun f2 (top1)
;     (declare (xargs :stobjs top1 :mode :program))
;     (stobj-let
;      ((sub1 (top1-fld top1)))
;      (val)
;      (sub1-fld1 sub1)
;      val))
;
;   (assert-event (equal (f2 top1) nil))

; Thus, in the code below, we bind the live var for each bound stobj so that we
; will get the error "It is illegal to run ACL2 evaluators...." when attempting
; to call trans-eval (as trans-eval calls ev-for-trans-eval, which calls
; user-stobj-alist-safe, which calls chk-user-stobj-alist, which checks the
; global *user-stobj-alist* against the live stobj values).

; Another reason to bind the-live-stobj is in case we need to print the stobj
; during guard violations or tracing, in which case we can distinguish it from
; the global stobj with the same name.  See for example stobj-print-symbol,
; which is used during tracing.

          `(let* (,@(pairlis$ bound-vars (pairlis$ actuals nil))
                  ,@(the-live-var-bindings bound-vars))
             (declare (ignorable ,@bound-vars))
             ,(let* ((modified-bound-vars (intersection-eq producer-vars
                                                           bound-vars))
                     (flush-form
                      #-hons nil
                      #+hons
                      (and modified-bound-vars
                           (not (non-memoizable-stobj-raw stobj))
                           `(memoize-flush ,(congruent-stobj-rep-raw stobj)))))
                (cond
                 ((cdr producer-vars)
                  `(mv-let ,producer-vars
                           ,producer
                           ,@(and modified-bound-vars
                                  `((declare (ignore ,@modified-bound-vars))))
                           ,(if flush-form
                                `(progn ,flush-form ,consumer)
                              consumer)))
                 (t `(let ((,(car producer-vars) ,producer))
                       ,@(and modified-bound-vars
                              `((declare (ignore ,@modified-bound-vars))))

; Here is a proof of nil in ACL2(h)  6.4 that exploits an unfortunate
; "interaction of stobj-let and memoize", discussed in :doc note-6-5.  This
; example let us to add the call of memoize-flush in flush-form, below.  A
; comment in chk-stobj-field-descriptor explains how this flushing is important
; for allowing memoization of functions that take a stobj argument even when
; that stobj has a child stobj that is :non-memoizable.

;   (in-package "ACL2")
;   
;   (defstobj kid1 fld1)
;   
;   (defstobj kid2 fld2)
;   
;   (defstobj mom
;     (kid1-field :type kid1)
;     (kid2-field :type kid2))
;   
;   (defun mom.update-fld1 (val mom)
;     (declare (xargs :stobjs mom))
;     (stobj-let
;      ((kid1 (kid1-field mom)))
;      (kid1)
;      (update-fld1 val kid1)
;      mom))
;   
;   (defun mom.fld1 (mom)
;     (declare (xargs :stobjs mom))
;     (stobj-let
;      ((kid1 (kid1-field mom)))
;      (val)
;      (fld1 kid1)
;      val))
;   
;   (defun test ()
;     (with-local-stobj
;      mom
;      (mv-let (val mom)
;              (let* ((mom (mom.update-fld1 3 mom))
;                     (val1 (mom.fld1 mom))
;                     (mom (mom.update-fld1 4 mom))
;                     (val2 (mom.fld1 mom)))
;                (mv (equal val1 val2) mom))
;              val)))
;   
;   (defthm true-prop
;     (not (test))
;     :rule-classes nil)
;   
;   (memoize 'mom.fld1)
;   
;   (defthm false-prop
;     (test)
;     :rule-classes nil)
;   
;   (defthm contradiction
;     nil
;     :hints (("Goal" :in-theory nil
;              :use (true-prop false-prop)))
;     :rule-classes nil)

                       ,@(and flush-form (list flush-form))
                       ,consumer)))))))))

(defun stobj-field-accessor-p (fn stobj wrld)
  (and

; We believe that the first check is subsumed by the others, but we leave it
; here for the sake of robustness.

   (eq (getpropc fn 'stobj-function nil wrld)
       stobj)

; The 'stobj property of stobj is (*the-live-var* recognizer creator ...).

   (member-eq fn (cdddr (getpropc stobj 'stobj nil wrld)))

; At this point, fn could still be a constant.

   (function-symbolp fn wrld)

; Now distinguish accessors from updaters.

   (not (eq (car (stobjs-out fn wrld))
            stobj))))

(defun chk-stobj-let/bindings (stobj bound-vars actuals wrld)

; The bound-vars and actuals have been returned by parse-stobj-let, so we know
; that some basic syntactic requirements have been met and that the two lists
; have the same length.  See also chk-stobj-let.

  (cond ((endp bound-vars) nil)
        (t (let* ((var (car bound-vars))
                  (actual (car actuals))
                  (accessor (car actual))
                  (st (car (last actual))))
             (assert$
              (eq st stobj) ; guaranteed by parse-stobj-let
              (cond ((not (stobj-field-accessor-p accessor stobj wrld))
                     (msg "The name ~x0 is not the name of a field accessor ~
                           for the stobj ~x1."
                          accessor stobj))
                    ((not (stobjp var t wrld))
                     (msg "The stobj-let bound variable ~x0 is not the name ~
                           of a known single-threaded object in the current ~
                           ACL2 world."
                          var))
                    ((not (eq (congruent-stobj-rep var wrld)
                              (congruent-stobj-rep
                               (car (stobjs-out accessor wrld))
                               wrld)))
                     (msg "The stobj-let bound variable ~x0 is not the same ~
                           as, or even congruent to, the output ~x1 of accessor ~
                           ~x2 (of stobj ~x3)."
                          var
                          (car (stobjs-out (caar actuals) wrld))
                          (caar actuals)
                          stobj))
                    (t (chk-stobj-let/bindings stobj
                                               (cdr bound-vars)
                                               (cdr actuals)
                                               wrld))))))))

(defun chk-stobj-let/updaters1 (updaters accessors lst)

; Lst is the cdddr of the 'stobj property of a stobj in an implicit world,
; accessors is a list of field accessors for that stobj, and updaters is a list
; of the same length as accessors.  We check for each i < (length accessors),
; the ith updater is indeed the stobj field updater corresponding to the ith
; accessor.  Recall that the 'stobj property is a list of the form
; (*the-live-var* recognizer creator ...), and that each field updater
; immediately follows the corresponding field accessor in that list.

  (cond ((endp updaters) nil)
        (t (let* ((updater-expr (car updaters))
                  (updater (car updater-expr))
                  (accessor (car accessors))
                  (accessor-tail (member-eq (car accessors) lst))
                  (actual-updater (cadr accessor-tail)))
             (assert$

; This assertion should be true because of the check done by a call of
; stobj-field-accessor-p in chk-stobj-let/bindings.

              accessor-tail
              (cond
               ((eq updater actual-updater)
                (chk-stobj-let/updaters1 (cdr updaters) (cdr accessors) lst))
               (t (msg "The stobj-let bindings have specified that the stobj ~
                        field updater corresponding to accessor ~x0 is ~x1, ~
                        but the actual corresponding updater is ~x2."
                       accessor updater actual-updater))))))))

(defun chk-stobj-let/updaters (updaters corresp-accessor-fns stobj wrld)
  (chk-stobj-let/updaters1
   updaters
   corresp-accessor-fns
   (cdddr ; optimization: pop live-var, recognizer, and creator
    (getpropc stobj 'stobj nil wrld))))

(defun chk-stobj-let (bound-vars actuals stobj updaters corresp-accessor-fns
                                 known-stobjs wrld)

; The inputs (other than wrld) have been returned by parse-stobj-let, so we
; know that some basic syntactic requirements have been met.  Others are to be
; checked directly by translate11 after the present check passes.  Here, we
; do the checks necessary after parse-stobj-let but before translate11.

  (cond
   ((not (stobjp stobj known-stobjs wrld))
    (msg
     "The name ~x0 is not the name of a known single-threaded object in the ~
      current context."
     stobj))
   ((getpropc stobj 'absstobj-info nil wrld)
    (msg
     "The name ~x0 is the name of an abstract stobj."
     stobj))
   ((chk-stobj-let/bindings stobj bound-vars actuals wrld))
   ((chk-stobj-let/updaters updaters corresp-accessor-fns stobj wrld))
   (t nil)))

(defun all-nils-or-x (x lst)
  (declare (xargs :guard (and (symbolp x)
                              (true-listp lst))))
  (cond ((endp lst) t)
        ((or (eq (car lst) x)
             (null (car lst)))
         (all-nils-or-x x (cdr lst)))
        (t nil)))

(defun stobj-field-fn-of-stobj-type-p (fn wrld)

; Return true if for some concrete stobj st, fn is the accessor or updater for
; a field fld of st of stobj type.  For fn the accessor or updater for fld,
; this is equivalent to taking or returning that stobj type, respectively,
; which is equivalent to taking or returning some stobj other than st.
; Abstract stobjs are not a concern here; they don't have "fields".

  (let ((st (getpropc fn 'stobj-function nil wrld)))
    (and st
         (not (getpropc st 'absstobj-info nil wrld))
         (or (not (all-nils-or-x st (stobjs-in fn wrld)))
             (not (all-nils-or-x st (stobjs-out fn wrld)))))))

(defun stobj-recognizer-p (fn wrld)

; Fn is a function symbol of wrld.  We return true when fn is a stobj
; recognizer in wrld.

  (let ((stobj (getpropc fn 'stobj-function nil wrld)))
    (and stobj
         (eq fn (get-stobj-recognizer stobj wrld)))))

(defmacro trans-or (form1 condition form2 extra-msg)

; Like trans-er-let*, this function deals in trans-er's 3-tuples (mv erp val
; bindings).  The 3-tuple produced by form1 is returned except in one case:
; that 3-tuple has non-nil first value (erp), condition is true, and form2
; produces a 3-tuple of the form (mv nil val bindings), in which case that
; 3-tuple is returned.

  `(let ((trans-or-extra-msg ,extra-msg))
     (mv-let (trans-or-erp trans-or-val trans-or-bindings)
             ,form1
             (cond
              ((and trans-or-erp
                    (check-vars-not-free
                     (trans-or-er trans-or-val trans-or-bindings
                                  trans-or-extra-msg)
                     ,condition))
               (mv-let (erp val bindings)
                       (check-vars-not-free
                        (trans-or-er trans-or-val trans-or-bindings
                                     trans-or-extra-msg)
                        ,form2)
                       (cond
                        (erp (mv trans-or-erp
                                 (msg "~@0~@1" trans-or-val trans-or-extra-msg)
                                 trans-or-bindings))
                        (t (mv nil val bindings)))))
              (t (mv trans-or-erp trans-or-val trans-or-bindings))))))

(defun inside-defabsstobj (wrld)

; We use this function to allow certain violations of normal checks in
; translate11 while executing events on behalf of defabsstobj.  In particular,
; we avoid the normal translation checks in the :exec components of mbe calls
; that are laid down for defabsstobj; see defabsstobj-axiomatic-defs.

  (eq (caar (global-val 'embedded-event-lst wrld))

; It seems reasonable to expect 'defabsstobj below instead of 'defstobj, but
; 'defstobj is what we actually get.

      'defstobj))

(defun missing-known-stobjs (stobjs-out stobjs-out2 known-stobjs acc)

; See translate11-call for a discussion of the arguments of this function,
; which is intended to return a list of stobj names that are unexpectedly
; returned because they are not known to be stobjs in the current context.

; It is always legal to return nil.  But if the result is non-nil, then the
; members of stobjs-out and stobjs-out2 are positionally equal (where the
; shorter one is extended by nils if necessary) except that in some positions,
; stobjs-out may contain nil while stobjs-out2 contains a value missing from
; known-stobjs.  In that case the value returned can be the result of pushing
; all such values onto acc.

  (cond ((and (endp stobjs-out) (endp stobjs-out2))
         (reverse acc))
        ((eq (car stobjs-out) (car stobjs-out2))
         (missing-known-stobjs (cdr stobjs-out) (cdr stobjs-out2) known-stobjs
                               acc))
        ((and (null (car stobjs-out))
              (not (or (eq known-stobjs t)
                       (member-eq (car stobjs-out2) known-stobjs))))
         (missing-known-stobjs (cdr stobjs-out) (cdr stobjs-out2) known-stobjs
                               (cons (car stobjs-out2) acc)))
        (t nil)))

(defun deref-macro-name (macro-name macro-aliases)
  (let ((entry (assoc-eq macro-name macro-aliases)))
    (if entry
        (cdr entry)
      macro-name)))

(defun corresponding-inline-fn (fn wrld)
  (let ((macro-body (getpropc fn 'macro-body t wrld)))
    (and (not (eq macro-body t))
         (let* ((fn$inline (add-suffix fn *inline-suffix*))
                (formals (getpropc fn$inline 'formals t wrld)))
           (and (not (eq formals t))
                (equal (macro-args fn wrld) formals)
                (equal macro-body
                       (fcons-term*
                        'cons
                        (kwote fn$inline)
                        (if formals
                            (xxxjoin 'cons
                                     (append formals
                                             (list
                                              *nil*)))
                          (list *nil*))))
                fn$inline)))))

(defun macroexpand1*-cmp (x ctx wrld state-vars)

; We expand x repeatedly as long as it is a macro call, though we may stop
; whenever we like.  We rely on a version of translate with to finish the job;
; indeed, it should be the case that when translate11 is called on x with the
; following arguments, it returns the same result regardless of whether
; macroexpand1*-cmp is first called to do some expansion.

; stobjs-out   - :stobjs-out
; bindings     - ((:stobjs-out . :stobjs-out))
; known-stobjs - t
; flet-alist   - nil

; Warning: Keep this in sync with translate11 -- especially the first cond
; branch's test below.

  (cond ((or (or (atom x) (eq (car x) 'quote))
             (not (true-listp (cdr x)))
             (not (symbolp (car x)))
             (member-eq (car x) '(mv
                                  mv-let
                                  pargs
                                  translate-and-test
                                  with-local-stobj
                                  stobj-let))
             (assoc-eq (car x) *ttag-fns-and-macros*))
         (value-cmp x))
        ((and (getpropc (car x) 'macro-body nil wrld)
              (not (and (member-eq (car x) '(pand por pargs plet))
                        (eq (access state-vars state-vars :parallel-execution-enabled)
                            t)))
              (not (and (member-eq (car x) (global-val 'untouchable-fns wrld))
                        (not (eq (access state-vars state-vars :temp-touchable-fns)
                                 t))
                        (not (member-eq (car x) (access state-vars state-vars
                                                        :temp-touchable-fns))))))
         (mv-let
          (erp expansion)
          (macroexpand1-cmp x ctx wrld state-vars)
          (cond
           (erp (mv erp expansion))
           (t (macroexpand1*-cmp expansion ctx wrld state-vars)))))
        (t (value-cmp x))))

(defun find-stobj-out-and-call (lst known-stobjs ctx wrld state-vars)

; Lst is a list of possibly UNTRANSLATED terms!

  (cond
   ((endp lst) nil)
   (t
    (or (mv-let (erp val)
          (macroexpand1*-cmp (car lst) ctx wrld state-vars)
          (and (not erp)
               (consp val)
               (symbolp (car val))
               (not (member-eq (car val) *stobjs-out-invalid*))
               (let ((stobjs-out (stobjs-out (car val) wrld)))
                 (and (consp stobjs-out)
                      (null (cdr stobjs-out))
                      (stobjp (car stobjs-out) known-stobjs wrld)
                      (cons (car stobjs-out) (car lst))))))
        (find-stobj-out-and-call (cdr lst) known-stobjs ctx wrld
                                 state-vars)))))

(mutual-recursion

(defun translate11-flet-alist (form fives stobjs-out bindings known-stobjs
                                    flet-alist ctx wrld state-vars)
  (cond ((endp fives)
         (trans-value flet-alist))
        (t
         (trans-er-let*
          ((flet-entry
            (translate11-flet-alist1 form (car fives) stobjs-out bindings
                                     known-stobjs flet-alist ctx wrld state-vars))
           (flet-entries
            (translate11-flet-alist  form (cdr fives) stobjs-out bindings
                                     known-stobjs flet-alist ctx wrld state-vars)))
          (trans-value (cons flet-entry flet-entries))))))

(defun translate11-flet-alist1 (form five stobjs-out bindings known-stobjs
                                     flet-alist ctx wrld state-vars)
  (let* ((name (car five))
         (bound-vars (cadr five))
         (edcls (fourth five))
         (body (fifth five))
         (new-stobjs-out
          (if (eq stobjs-out t)
              t
            (genvar name (symbol-name name) nil (strip-cars bindings)))))
    (cond
     ((member-eq name '(flet with-local-stobj throw-raw-ev-fncall
                         untrace$-fn-general))

; This check may not be necessary, because of our other checks.  But the
; symbols above are not covered by our check for the 'predefined property.

      (trans-er+ form ctx
                 "An FLET form has attempted to bind ~x0.  However, this ~
                  symbol must not be FLET-bound."
                 name))
     ((getpropc name 'predefined nil wrld)
      (trans-er+ form ctx
                 "An FLET form has attempted to bind ~x0, which is predefined ~
                  in ACL2 hence may not be FLET-bound."
                 name))
     #-acl2-loop-only
     ((or (special-form-or-op-p name)
          (and (or (macro-function name)
                   (fboundp name))
               (not (getpropc name 'macro-body nil wrld))
               (eq (getpropc name 'formals t wrld) t)))
      (prog2$ (er hard ctx
                  "It is illegal to FLET-bind ~x0, because it is defined as a ~
                   ~s1 in raw Lisp~#2~[~/ but not in the ACL2 loop~]."
                  name
                  (cond ((special-form-or-op-p name) "special operator")
                        ((macro-function name) "macro")
                        (t "function"))
                  (if (special-form-or-op-p name) 0 1))
              (mv t
                  nil ; empty "message": see the Essay on Context-message Pairs
                  nil)))
     (t
      (trans-er-let*
       ((tdcls (translate11-lst (translate-dcl-lst edcls wrld)
                                nil           ;;; '(nil ... nil)
                                bindings
                                known-stobjs
                                "in a DECLARE form in an FLET binding"
                                flet-alist form ctx wrld state-vars))
        (tbody (translate11 body new-stobjs-out
                            (if (eq stobjs-out t)
                                bindings
                              (translate-bind new-stobjs-out new-stobjs-out
                                              bindings))
                            known-stobjs
                            flet-alist form ctx wrld state-vars)))
       (let ((used-vars (union-eq (all-vars tbody)
                                  (all-vars1-lst tdcls nil)))
             (ignore-vars (ignore-vars edcls))
             (ignorable-vars (ignorable-vars edcls))
             (stobjs-out (translate-deref new-stobjs-out bindings)))
         (cond

; We skip the following case, where stobjs-out is not yet bound to a consp and
; some formal is a stobj, in favor of the next, which removes the stobjs-bound
; criterion.  But we leave this case here as a comment in case we ultimately
; find a way to eliminate the more sweeping case after it.  Note:
; unknown-binding-msg has been replaced by unknown-binding-msg-er, so a bit of
; rework will be needed if this case is to be reinstalled.  Also note that we
; will need to bind stobjs-bound to

;         ((and (not (eq stobjs-out t))
;               (collect-non-x ; stobjs-bound
;                nil
;                (compute-stobj-flags bound-vars
;                                     known-stobjs
;                                     wrld))
;               (not (consp stobjs-out)))
;          (trans-er ctx
;                    "~@0"
;                    (unknown-binding-msg
;                     (collect-non-x ; stobjs-bound
;                      nil
;                      (compute-stobj-flags bound-vars
;                                           known-stobjs
;                                           wrld))
;                     (msg "the formals of an FLET binding for function ~x0"
;                          name)
;                     "the body of this FLET binding"
;                     "that body")))

          ((and (not (eq stobjs-out t))
                (not (consp stobjs-out)))

; Warning: Before changing this case, see the comment above about the
; commented-out preceding case.

; We might be able to fix this case by using the :UNKNOWN-BINDINGS trick
; employed by unknown-binding-msg-er; see that function and search for
; :UNKNOWN-BINDINGS, to see how that works.

           (trans-er+ form ctx
                      "We are unable to determine the output signature for an ~
                       FLET-binding of ~x0.  You may be able to remedy the ~
                       situation by rearranging the order of the branches of ~
                       an IF and/or rearranging the order of the presentation ~
                       of a clique of mutually recursive functions.  If you ~
                       believe you have found an example on which you believe ~
                       ACL2 should be able to complete this translation, ~
                       please send such an example to the ACL2 implementors."
                     name))
          ((intersectp-eq used-vars ignore-vars)
           (trans-er+ form ctx
                      "Contrary to the declaration that ~#0~[it is~/they ~
                       are~] IGNOREd, the variable~#0~[ ~&0 is~/s ~&0 are~] ~
                       used in the body of an FLET-binding of ~x1, whose ~
                       formal parameter list includes ~&2."
                     (intersection-eq used-vars ignore-vars)
                     name
                     bound-vars))
          (t
           (let* ((diff (set-difference-eq
                         bound-vars
                         (union-eq used-vars
                                   (union-eq ignorable-vars
                                             ignore-vars))))
                  (ignore-ok
                   (if (null diff)
                       t
                     (cdr (assoc-eq
                           :ignore-ok
                           (table-alist 'acl2-defaults-table wrld))))))
             (cond
              ((null ignore-ok)
               (trans-er+ form ctx
                          "The variable~#0~[ ~&0 is~/s ~&0 are~] not used in ~
                           the body of the LET expression that binds ~&1.  ~
                           But ~&0 ~#0~[is~/are~] not declared IGNOREd or ~
                           IGNORABLE.  See :DOC set-ignore-ok."
                         diff
                         bound-vars))
              (t
               (prog2$
                (cond
                 ((eq ignore-ok :warn)
                  (warning$-cw1 ctx "Ignored-variables"
                                "The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
                                 used in the body of an FLET-binding of ~x1 ~
                                 that binds ~&2.  But ~&0 ~#0~[is~/are~] not ~
                                 declared IGNOREd or IGNORABLE.  See :DOC ~
                                 set-ignore-ok."
                                diff
                                name
                                bound-vars))
                 (t nil))
                (let* ((tbody
                        (cond
                         (tdcls
                          (let ((guardian (dcl-guardian tdcls)))
                            (cond ((equal guardian *t*)

; See the comment about THE in dcl-guardian.

                                   tbody)
                                  (t
                                   (prog2$-call guardian tbody)))))
                         (t tbody)))
                       (body-vars (all-vars tbody))
                       (extra-body-vars (set-difference-eq
                                         body-vars
                                         bound-vars)))
                  (cond
                   (extra-body-vars

; Warning: Do not eliminate this error without thinking about the possible role
; of variables that are declared special in Common Lisp.  There might not be
; such an issue, but we haven't thought about it.

                    (trans-er+ form ctx
                               "The variable~#0~[ ~&0 is~/s ~&0 are~] used in ~
                                the body of an FLET-binding of ~x1 that only ~
                                binds ~&2.  In ACL2, every variable occurring ~
                                in the body of an FLET-binding, (fn vars ~
                                body), must be in vars, i.e., a formal ~
                                parameter of that binding.  The ACL2 ~
                                implementors may be able to remove this ~
                                restriction, with some effort, if you ask."
                              extra-body-vars
                              name
                              bound-vars))
                   (t
                    (trans-value
                     (list* name
                            (make-lambda bound-vars tbody)
                            stobjs-out)
                     (if (eq new-stobjs-out t)
                         bindings
                       (delete-assoc-eq new-stobjs-out
                                        bindings))))))))))))))))))

(defun translate11-flet (x stobjs-out bindings known-stobjs flet-alist
                           ctx wrld state-vars)
  (cond
   ((< (length x) 3)
    (trans-er ctx
              "An FLET form must have the form (flet bindings body) or (flet ~
               bindings declare-form1 ... declare-formk body), but ~x0 does ~
               not have this form.  See :DOC flet."
              x))
   (t
    (let ((defs (cadr x))
          (declare-form-list (butlast (cddr x) 1))
          (body (car (last x))))
      (mv-let
       (erp fives)
       (chk-defuns-tuples-cmp defs t ctx wrld)
       (let ((names (and (not erp)
                         (strip-cars fives))))
         (mv-let
          (erp msg)
          (if erp ; erp is a ctx and fives is a msg
              (mv erp fives)

; Note that we do not need to call chk-xargs-keywords, since
; *acceptable-dcls-alist* guarantees that xargs is illegal.

            (er-progn-cmp
             (chk-no-duplicate-defuns-cmp names ctx)
             (chk-flet-declare-form-list names declare-form-list ctx)))
          (cond
           (erp

; Erp is a context that we are ignoring in the message below.  Probably it is
; ctx anyhow, but if not, there isn't an obvious problem with ignoring it.

            (trans-er ctx
                      "~@0~|~%The above error indicates a problem with the ~
                       form ~p1."
                      msg x))
           ((first-assoc-eq names (table-alist 'return-last-table wrld))

; What horrors may lie ahead, for example, with
; (flet ((ec-call1-raw ....)) (ec-call ...))?  The problem is that ec-call
; expands to a call of ec-call1-raw, but only through several steps that the
; user might not notice, and only in raw Lisp.  Of course it's doubtful that
; someone would flet-bound ec-call1-raw; but it isn't hard to imagine a binding
; whose error isn't so obvious.  Of course, someday a serious system hacker
; might want to flet ec-call1-raw; in that case, with a trust tag that person
; can also edit the code here!

            (trans-er ctx
                      "It is illegal for FLET to bind a symbol that is given ~
                       special handling by ~x0.  The FLET-binding~#1~[ is~/s ~
                       are~] thus illegal for ~&1.  See :DOC ~
                       return-last-table."
                      'return-last
                      (intersection-eq
                       names
                       (strip-cars (table-alist 'return-last-table wrld)))))
           (t
            (trans-er-let*
             ((flet-alist (translate11-flet-alist x fives stobjs-out bindings
                                                  known-stobjs flet-alist ctx wrld
                                                  state-vars)))
             (translate11 body
                          stobjs-out bindings known-stobjs flet-alist x
                          ctx wrld state-vars)))))))))))

(defun translate-stobj-calls (calls len bindings known-stobjs flet-alist
                                    cform ctx wrld state-vars)

; Calls is a list of applications of stobj accessor or updater calls, as
; returned by parse-stobj-let1 and vetted by chk-stobj-let.  We translate those
; applications without going through translate11, because in the case of
; updater calls, the calls update stobj fields, which is illegal except in
; proper support of a stobj-let form.

; We return a usual context-message triple: either (mv ctx erp bindings) or (mv
; nil translated-calls bindings).  The only syntax changed by translation is
; in the case of an index for an array update, where len is the length of a
; call for such a case (3 for accessor calls, 4 for updater calls).

  (cond ((endp calls) (trans-value nil))
        (t (trans-er-let*
            ((rest (translate-stobj-calls (cdr calls) len bindings
                                          known-stobjs flet-alist
                                          cform ctx wrld state-vars)))
            (let ((call (car calls)))
              (cond
               ((eql (length call) len) ; e.g. (fldi index parent-st)
                (trans-er-let*
                 ((index

; We know from parse-stobj-let1 that the index is either a symbol, a natural
; number, or the quotation of a natural number.  But in case we relax that
; restriction someday, and because a symbol can be a variable or a constant, we
; do not rely on that fact here.

                   (translate11 (cadr call) '(nil) bindings known-stobjs
                                flet-alist cform ctx wrld state-vars)))
                 (trans-value (cons (list* (car call) index (cddr call))
                                    rest))))
               (t (trans-value (cons call rest)))))))))

(defun translate11-let (x tbody0 targs stobjs-out bindings known-stobjs
                          flet-alist ctx wrld state-vars)

; Warning:  If the final form of a translated let is changed,
; be sure to reconsider translated-acl2-unwind-protectp.

; X is a cons whose car is 'LET.  If tbody0 is nil, as is the case for a
; user-supplied LET expression, then this function is nothing more than the
; restriction of function translate11 to that case.  Otherwise, the LET
; expression arises from a STOBJ-LET expression, and we make the following
; exceptions: the bindings are allowed to bind more than one stobj; we suppress
; the check that a stobj bound in the LET bindings must be returned by the LET;
; tbody0 is used as the translation of the body of the LET; and targs, if
; non-nil, is used as the translation of the strip-cadrs of the bindings of the
; let, as these are assumed already to be translated.

; In translating LET and MV-LET we generate "open lambdas" as function
; symbols.  The main reason we did this was to prevent translate from
; exploding in our faces when presented with typical DEFUNs (e.g., our
; own code).  Note that such LAMBDAs can be expanded away.  However,
; expansion affects the guards.  Consider (let ((x (car 3))) t), which
; expands to ((lambda (x) t) (car 3)).

  (cond
   ((not (and (>= (length x) 3)
              (doubleton-list-p (cadr x))))
    (trans-er ctx
              "The proper form of a let is (let bindings dcl ... dcl body), ~
               where bindings has the form ((v1 term) ... (vn term)) and the ~
               vi are distinct variables, not constants, and do not begin ~
               with an asterisk, but ~x0 does not have this form."
              x))
   ((not (arglistp (strip-cars (cadr x))))
    (mv-let (culprit explan)
            (find-first-bad-arg (strip-cars (cadr x)))
            (trans-er ctx
                      "The form ~x0 is an improper let expression because it ~
                       attempts to bind ~x1, which ~@2."
                      x culprit explan)))
   (t
    (let* ((bound-vars (strip-cars (cadr x)))
           (multiple-bindings-p (consp (cdr bound-vars)))
           (stobj-flags
            (and (not (eq stobjs-out t))
                 (compute-stobj-flags bound-vars known-stobjs wrld)))
           (stobjs-bound (and stobj-flags ; optimization
                              (collect-non-x nil stobj-flags))))
      (cond
       ((and stobj-flags ; optimization (often false)
             multiple-bindings-p
             (null tbody0)
             (non-trivial-stobj-binding stobj-flags (cadr x)))
        (trans-er ctx
                  "A single-threaded object name, such as ~x0, may be ~
                   LET-bound to other than itself only when it is the only ~
                   binding in the LET, but ~x1 binds more than one variable."
                  (non-trivial-stobj-binding stobj-flags (cadr x))
                  x))
       (t (mv-let
           (erp edcls)
           (collect-declarations-cmp (butlast (cddr x) 1)
                                     bound-vars 'let ctx wrld)
           (cond
            (erp (mv erp edcls bindings))
            (t
             (trans-er-let*
              ((value-forms
                (cond (targs (trans-value targs))
                      ((and stobjs-bound ; hence (not (eq stobjs-out t))
                            (not multiple-bindings-p))

; In this case, we know that the only variable of the LET is a stobj name.
; Note that (list (car bound-vars)) is thus a stobjs-out specifying
; a single result consisting of that stobj.

                       (trans-er-let*
                        ((val (translate11 (cadr (car (cadr x)))
                                           (list (car bound-vars))
                                           bindings known-stobjs flet-alist
                                           x ctx wrld state-vars)))
                        (trans-value (list val))))
                      (t (translate11-lst (strip-cadrs (cadr x))
                                          (if (eq stobjs-out t)
                                              t
                                            stobj-flags)
                                          bindings known-stobjs
                                          "in a LET binding (or LAMBDA ~
                                           application)"
                                          flet-alist x ctx wrld
                                          state-vars))))
               (tbody
                (if tbody0
                    (trans-value tbody0)
                  (translate11 (car (last x)) stobjs-out bindings known-stobjs
                               flet-alist x ctx wrld state-vars)))
               (tdcls (translate11-lst
                       (translate-dcl-lst edcls wrld)
                       (if (eq stobjs-out t)
                           t
                         nil) ;;; '(nil ... nil)
                       bindings known-stobjs
                       "in a DECLARE form in a LET (or LAMBDA)"
                       flet-alist x ctx wrld state-vars)))
              (let ((used-vars (union-eq (all-vars tbody)
                                         (all-vars1-lst tdcls nil)))
                    (ignore-vars (ignore-vars edcls))
                    (ignorable-vars (ignorable-vars edcls))
                    (stobjs-out (translate-deref stobjs-out bindings)))
                (cond
                 ((and stobjs-bound ; hence (not (eq stobjs-out t))
                       (not (consp stobjs-out)))
                  (unknown-binding-msg-er x ctx stobjs-bound
                                          "a LET" "the LET" "the LET"))
                 ((and
                   (null tbody0)             ; else skip this check
                   stobjs-bound              ; hence (not (eq stobjs-out t))
                   (not multiple-bindings-p) ; possible stobj mod in bindings
                   (not (eq (caar (cadr x))
                            (cadar (cadr x)))) ; stobj mod in bindings
                   (assert$ (null (cdr stobjs-bound))
                            (not (member-eq (car stobjs-bound) stobjs-out))))
                  (let ((stobjs-returned (collect-non-x nil stobjs-out)))
                    (trans-er+ x ctx
                               "The single-threaded object ~x0 has been bound ~
                                in a LET.  It is a requirement that this ~
                                object be among the outputs of the LET, but ~
                                it is not.  The LET returns ~#1~[no ~
                                single-threaded objects~/the single-threaded ~
                                object ~&2~/the single-threaded objects ~&2~]."
                               (car stobjs-bound)
                               (zero-one-or-more stobjs-returned)
                               stobjs-returned)))
                 ((intersectp-eq used-vars ignore-vars)
                  (trans-er+ x ctx
                             "Contrary to the declaration that ~#0~[it ~
                              is~/they are~] IGNOREd, the variable~#0~[ ~&0 ~
                              is~/s ~&0 are~] used in the body of the LET ~
                              expression that binds ~&1."
                             (intersection-eq used-vars ignore-vars)
                             bound-vars))
                 (t
                  (let* ((ignore-vars (augment-ignore-vars bound-vars
                                                           value-forms
                                                           ignore-vars))
                         (diff (set-difference-eq
                                bound-vars
                                (union-eq used-vars
                                          (union-eq ignorable-vars
                                                    ignore-vars))))
                         (ignore-ok
                          (if (null diff)
                              t
                            (cdr (assoc-eq
                                  :ignore-ok
                                  (table-alist 'acl2-defaults-table wrld))))))
                    (cond
                     ((null ignore-ok)
                      (trans-er+ x ctx
                                 "The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
                                  used in the body of the LET expression that ~
                                  binds ~&1.  But ~&0 ~#0~[is~/are~] not ~
                                  declared IGNOREd or IGNORABLE.  See :DOC ~
                                  set-ignore-ok."
                                 diff
                                 bound-vars))
                     (t
                      (prog2$
                       (cond
                        ((eq ignore-ok :warn)
                         (warning$-cw1 ctx "Ignored-variables"
                                       "The variable~#0~[ ~&0 is~/s ~&0 are~] ~
                                        not used in the body of the LET ~
                                        expression that binds ~&1.  But ~&0 ~
                                        ~#0~[is~/are~] not declared IGNOREd ~
                                        or IGNORABLE.  See :DOC set-ignore-ok."
                                       diff
                                       bound-vars))
                        (t nil))
                       (let* ((tbody
                               (cond
                                (tdcls
                                 (let ((guardian (dcl-guardian tdcls)))
                                   (cond ((equal guardian *t*)

; See the comment about THE in dcl-guardian.

                                          tbody)
                                         (t (prog2$-call guardian tbody)))))
                                (t tbody)))
                              (body-vars (all-vars tbody))
                              (extra-body-vars (set-difference-eq
                                                body-vars
                                                bound-vars)))
                         (trans-value
                          (cons (make-lambda
                                 (append bound-vars extra-body-vars)
                                 tbody)

; See the analogous line in the handling of MV-LET for an explanation
; of hide-ignored-actuals.

                                (append
                                 (hide-ignored-actuals
                                  ignore-vars bound-vars value-forms)
                                 extra-body-vars)))))))))))))))))))))

(defun translate11-let* (x tbody targs stobjs-out bindings known-stobjs
                           flet-alist ctx wrld state-vars)

; This function is analogous to translate11-let, but it is for let* instead of
; let and here we assume no declarations.  Thus, x is (let* ((var1 arg1) (vark
; ... argk)) body), where targs is the list of translations of arg1, ..., argk
; and tbody is the translation of body.  Note that unlike translate11-let, here
; tbody and targs are not optional.

  (cond ((endp targs) (trans-value tbody))
        (t (case-match x
             (('let* (pair . pairs) y)
              (let ((body0 `(let* ,pairs ,y)))
                (trans-er-let*
                 ((tbody0 (translate11-let*
                           body0 tbody (cdr targs) stobjs-out bindings
                           known-stobjs flet-alist ctx wrld state-vars)))
                 (translate11-let
                  `(let (,pair) ,body0)
                  tbody0 (list (car targs)) stobjs-out bindings known-stobjs
                  flet-alist ctx wrld state-vars))))
             (& (trans-er+ x ctx
                           "Implementation error: Unexpected form for ~x0."
                           'translate11-let*))))))

(defun translate11-mv-let (x tbody0 stobjs-out bindings known-stobjs
                             local-stobj local-stobj-creator flet-alist
                             ctx wrld state-vars)

; X is a cons whose car is 'MV-LET.  This function is nothing more than the
; restriction of function translate11 to that case, with two exceptional cases:
; if tbody0 is not nil, then it is to be used as the translation of the body of
; the MV-LET, and we suppress the check that a stobj bound by MV-LET must be
; returned by the MV-LET; and if local-stobj is not nil, then we are in the
; process of translating (with-local-stobj local-stobj x local-stobj-creator),
; where we know that local-stobj-creator is the creator function for the stobj
; local-stobj.

; Warning: If the final form of a translated mv-let is changed, be sure to
; reconsider translated-acl2-unwind-protectp.

  (cond
   ((not (and (true-listp (cadr x))
              (> (length (cadr x)) 1)))
    (trans-er ctx
              "The first form in an MV-LET expression must be a true list of ~
               length 2 or more.  ~x0 does not meet these conditions."
              (cadr x)))
   ((not (arglistp (cadr x)))
    (mv-let (culprit explan)
            (find-first-bad-arg (cadr x))
            (trans-er ctx
                      "The first form in an MV-LET expression must be a list ~
                       of distinct variables of length 2 or more, but ~x0 ~
                       does not meet these conditions.  The element ~x1 ~@2."
                      x culprit explan)))
   ((not (>= (length x) 4))
    (trans-er ctx
              "An MV-LET expression has the form (mv-let (var var var*) form ~
               dcl* form) but ~x0 does not have sufficient length to meet ~
               this condition."
              x))
   (t
    (let* ((bound-vars (cadr x))
           (producer-known-stobjs (if (and local-stobj
                                           (not (eq known-stobjs t)))
                                      (add-to-set-eq local-stobj known-stobjs)
                                    known-stobjs))
           (bound-stobjs-out (if (and (eq stobjs-out t)

; If local-stobj is true (hence we are being called by translate in the case of
; a with-local-stobj term), then we want to do syntax-checking that we wouldn't
; normally do with stobjs-out = t, because we don't have a spec for
; with-local-stobj in the case that this syntax-checking is turned off.

                                      (not local-stobj))
                                 t
                               (compute-stobj-flags bound-vars
                                                    producer-known-stobjs
                                                    wrld)))
           (stobjs-bound0 (if (eq bound-stobjs-out t)
                              nil
                            (collect-non-x nil bound-stobjs-out)))
           (stobjs-bound

; Stobjs-bound is perhaps an odd name for this variable, since if there is a
; local stobj, then literally speaking it is bound -- though we do not consider
; it so here.  Really, stobjs-bound is the list of stobj names that we require
; to come out of the mv-let.

            (if local-stobj
                (remove1-eq local-stobj stobjs-bound0)
              stobjs-bound0)))
      (mv-let
       (erp edcls)
       (collect-declarations-cmp (butlast (cdddr x) 1)
                                 (cadr x) 'mv-let ctx wrld)
       (cond
        (erp ; erp is a ctx and edcls is a msg
         (trans-er erp "~@0" edcls))
        (t
         (trans-er-let*
          ((tcall (translate11 (caddr x)
                               bound-stobjs-out
                               bindings
                               producer-known-stobjs
                               flet-alist x ctx wrld state-vars))
           (tdcls (translate11-lst (translate-dcl-lst edcls wrld)
                                   (if (eq stobjs-out t)
                                       t
                                     nil) ;;; '(nil ... nil)
                                   bindings known-stobjs
                                   "in a DECLARE form in an MV-LET"
                                   flet-alist x ctx wrld state-vars))
           (tbody (if tbody0
                      (trans-value tbody0)
                    (translate11 (car (last x))
                                 stobjs-out bindings known-stobjs flet-alist x
                                 ctx wrld state-vars))))
          (let ((used-vars (union-eq (all-vars tbody)
                                     (all-vars1-lst tdcls nil)))
                (ignore-vars (if local-stobj
                                 (cons local-stobj (ignore-vars edcls))
                               (ignore-vars edcls)))
                (ignorable-vars (ignorable-vars edcls))
                (stobjs-out (translate-deref stobjs-out bindings)))
            (cond
             ((and local-stobj
                   (not (member-eq local-stobj ignore-vars)))
              (trans-er+ x ctx
                         "A local-stobj must be declared ignored, but ~x0 is ~
                          not.  See :DOC with-local-stobj."
                         local-stobj))
             ((and stobjs-bound
                   (not (consp stobjs-out)))
              (unknown-binding-msg-er x ctx stobjs-bound
                                      "an MV-LET" "the MV-LET" "the MV-LET"))
             ((and stobjs-bound
                   (null tbody0) ; else skip this check
                   (not (subsetp stobjs-bound
                                 (collect-non-x nil stobjs-out))))
              (let ((stobjs-returned (collect-non-x nil stobjs-out)))
                (trans-er+ x ctx
                           "The single-threaded object~#0~[ ~&0 has~/s ~&0 ~
                            have~] been bound in an MV-LET.  It is a ~
                            requirement that ~#0~[this object~/these ~
                            objects~] be among the outputs of the MV-LET, but ~
                            ~#0~[it is~/they are~] not.  The MV-LET returns ~
                            ~#1~[no single-threaded objects~/the ~
                            single-threaded object ~&2~/the single-threaded ~
                            objects ~&2~]."
                           (set-difference-eq stobjs-bound stobjs-returned)
                           (zero-one-or-more stobjs-returned)
                           stobjs-returned)))
             ((intersectp-eq used-vars ignore-vars)
              (trans-er+ x ctx
                         "Contrary to the declaration that ~#0~[it is~/they ~
                          are~] IGNOREd, the variable~#0~[ ~&0 is~/s ~&0 ~
                          are~] used in the MV-LET expression that binds ~&1."
                         (intersection-eq used-vars ignore-vars)
                         bound-vars))
             (t
              (let* ((diff (set-difference-eq
                            bound-vars
                            (union-eq used-vars
                                      (union-eq ignorable-vars
                                                ignore-vars))))
                     (ignore-ok
                      (if (null diff)
                          t
                        (cdr (assoc-eq
                              :ignore-ok
                              (table-alist 'acl2-defaults-table wrld))))))
                (cond
                 ((null ignore-ok)
                  (trans-er+ x ctx
                             "The variable~#0~[ ~&0 is~/s ~&0 are~] not used ~
                              in the body of the MV-LET expression that binds ~
                              ~&1.  But ~&0 ~#0~[is~/are~] not declared ~
                              IGNOREd or IGNORABLE.  See :DOC set-ignore-ok."
                             diff
                             bound-vars))
                 (t
                  (prog2$
                   (cond
                    ((eq ignore-ok :warn)
                     (warning$-cw1 ctx "Ignored-variables"
                                   "The variable~#0~[ ~&0 is~/s ~&0 are~] not ~
                                    used in the body of the MV-LET expression ~
                                    that binds ~&1. But ~&0 ~#0~[is~/are~] ~
                                    not declared IGNOREd or IGNORABLE.  See ~
                                    :DOC set-ignore-ok."
                                   diff
                                   bound-vars))
                    (t nil))
                   (let* ((tbody
                           (cond
                            (tdcls
                             (let ((guardian (dcl-guardian tdcls)))
                               (cond ((equal guardian *t*)

; See the comment about THE in dcl-guardian.

                                      tbody)
                                     (t (prog2$-call guardian tbody)))))
                            (t tbody)))
                          (body-vars (all-vars tbody))
                          (extra-body-vars
                           (set-difference-eq body-vars (cadr x)))
                          (vars (all-vars1 tcall extra-body-vars))
                          (mv-var (genvar 'genvar "MV" nil vars)))
                     (trans-value
                      (list* (make-lambda
                              (cons mv-var extra-body-vars)
                              (cons (make-lambda
                                     (append (cadr x)
                                             extra-body-vars)
                                     tbody)

; When the rewriter encounters ((lambda (... xi ...) body) ... actuali
; ...), where xi is ignored and actuali is in the corresponding
; position, we'd like to tell the rewriter not to bother rewriting
; actuali.  We do this by wrapping a hide around it.  This typically
; only happens with MV-LET expressions, though we do it for LET
; expressions as well.

                                    (append (hide-ignored-actuals
                                             ignore-vars
                                             (cadr x)
                                             (mv-nth-list
                                              mv-var 0
                                              (length (cadr x))))
                                            extra-body-vars)))
                             (if local-stobj
                                 (let ((tcall-vars
                                        (remove1-eq local-stobj
                                                    (all-vars tcall))))
                                   (cons (make-lambda
                                          (cons local-stobj tcall-vars)
                                          tcall)
                                         (cons (list local-stobj-creator)
                                               tcall-vars)))
                               tcall)
                             extra-body-vars))))))))))))))))))

(defun translate11-wormhole-eval (x y z bindings flet-alist ctx wrld
                                    state-vars)

; The three arguments of wormhole-eval are x y and z.  Here, z has been
; translated but x and y have not been.  We want to insure that x and y are
; well-formed quoted forms of a certain shape.  We don't actually care about z
; and ignore it!  We translated it just for sanity's sake: no point in allowing
; the user ever to write an ill-formed term in a well-formed term.

  (declare (ignore z))
  (cond
   ((not (and (true-listp x)
              (equal (length x) 2)
              (equal (car x) 'quote)))
    (trans-er ctx
              "The first argument to wormhole-eval must be a QUOTE expression ~
               containing the name of the wormhole in question and ~x0 is not ~
               quoted."
              x))
   ((not (and (true-listp y)
              (equal (length y) 2)
              (equal (car y) 'quote)))
    (trans-er ctx
              "The second argument to wormhole-eval must be a QUOTE ~
               expression containing a LAMBDA expression and ~x0 is not ~
               quoted."
              y))
   ((not (and (true-listp (cadr y))
              (equal (length (cadr y)) 3)
              (equal (car (cadr y)) 'lambda)
              (true-listp (cadr (cadr y)))
              (<= (length (cadr (cadr y))) 1)))
    (trans-er ctx
              "The second argument to wormhole-eval must be a QUOTE ~
               expression containing a LAMBDA expression with at most one ~
               formal, e.g., the second argument must be either of the form ~
               '(LAMBDA () body) or of the form (LAMBDA (v) body).  But ~x0 ~
               is of neither form."
              y))
   (t (let ((lambda-formals (cadr (cadr y)))
            (lambda-body (caddr (cadr y))))
        (cond
         ((not (arglistp lambda-formals))
          (mv-let (culprit explan)
                  (find-first-bad-arg lambda-formals)
                  (trans-er ctx
                            "The quoted lambda expression, ~x0, supplied to ~
                             wormhole-eval is improper because it binds ~x1, ~
                             which ~@2."
                            y culprit explan)))
         (t
          (let ((whs (car lambda-formals)))

; Whs is either nil or the legal variable name bound by the lambda.

            (mv-let
               (body-erp tlambda-body body-bindings)
               (translate11 lambda-body
                            '(nil)           ; stobjs-out
                            nil
                            '(state) ; known-stobjs
                            flet-alist
                            x ctx wrld state-vars)
               (declare (ignore body-bindings))
               (cond
                (body-erp (mv body-erp tlambda-body bindings))
                ((and whs
                      (not (member-eq whs (all-vars tlambda-body))))
                 (trans-er ctx
                           "The form ~x0 is an improper quoted lambda ~
                            expression for wormhole-eval because it binds but ~
                            does not use ~x1, which is understood to be the ~
                            name you're giving to the current value of the ~
                            wormhole status for the wormhole in question."
                           y whs))
                (t

; We replace the second argument of wormhole-eval by a possibly different
; quoted object.  But that is ok because wormhole-eval returns nil no matter
; what objects we pass it.  We also compute a form with the same free vars as
; the lambda expression and stuff it in as the third argument, throwing away
; whatever the user supplied.

                 (trans-value
                  (fcons-term* 'wormhole-eval
                               x
                               (list 'quote
                                     (if whs
                                         `(lambda (,whs) ,tlambda-body)
                                         `(lambda () ,tlambda-body)))
                               (name-dropper
                                (if whs
                                    (remove1-eq whs (all-vars tlambda-body))
                                    (all-vars tlambda-body)))))))))))))))

(defun translate11-call (form fn args stobjs-out stobjs-out2 bindings
                              known-stobjs msg flet-alist ctx wrld state-vars)

; We are translating (for execution, not merely theorems) a call of fn on args.
; Stobjs-out and stobjs-out2 are respectively the expected stobjs-out from the
; present context and the stobjs-out from fn, already dereferenced.  Note that
; each of these is either a legitimate (true-list) stobjs-out or else a symbol
; representing an unknown stobjs-out.

; Note that for this call to be suitable, args has to satisfy the stobjs
; discipline of passing a stobj name to a stobjs-in position.  We take
; advantage of this point in the call of stobjs-in-out below, where we
; ultimately work our way down to checking stobjp of each arg in
; stobjs-in-out1.  For that reason, it is good that we do not call
; translate11-call on arbitrary let expressions, viewed as lambdas, where the
; args would be arbitrary expressions (from the cadrs of the doublets in the
; let-bindings).

  (mv-let
   (flg stobjs-in-call stobjs-out-call)
   (stobjs-in-out fn args stobjs-out2 known-stobjs wrld)

; If flg is :failed, then stobjs-in-call and stobjs-out-call are just the
; stobjs-in and (dereferenced) stobjs-out of fn.  In that case we proceed
; happily without any mapping of input stobjs, expecting the usual
; input-mismatch error from a failed call of translate11-lst.

   (cond
    ((consp stobjs-out)
     (cond
      ((consp stobjs-out-call) ; equivalently: (consp stobjs-out2)
       (cond
        ((not (equal stobjs-out stobjs-out-call))
         (trans-er+ form ctx
                    "It is illegal to invoke ~@0 here because of a signature ~
                     mismatch.  This function call returns a result of shape ~
                     ~x1~@2 where a result of shape ~x3 is required.~@4"
                    (if (consp fn) msg (msg "~x0" fn))
                    (prettyify-stobjs-out stobjs-out-call)
                    (if (and flg (not (eq flg :failed)))
                        " (after accounting for the replacement of some input ~
                         stobjs by congruent stobjs)"
                      "")
                    (prettyify-stobjs-out stobjs-out)
                    (let* ((missing (missing-known-stobjs stobjs-out
                                                          stobjs-out2
                                                          known-stobjs
                                                          nil))
                           (missing-user-stobjs (set-difference-eq missing
                                                                   '(nil state)))
                           (state-string
                            "  This error may occur when the ACL2 state is ~
                             not available in the current context, for ~
                             example as a formal parameter of a defun.")
                           (user-stobj-string
                            "  This error may~@0 occur when ~&1 ~
                             ~#1~[is~/are~] not declared to be ~#1~[a ~
                             stobj~/stobjs~] in the current context."))
                      (cond
                       ((and missing-user-stobjs
                             (member-eq 'state missing))
                        (msg "~@0~@1"
                             state-string
                             (msg user-stobj-string
                                  " also"
                                  missing-user-stobjs)))
                       (missing-user-stobjs
                        (msg user-stobj-string
                             ""
                             missing-user-stobjs))
                       (missing state-string)
                       (t "")))))
        (t (trans-er-let*

; We handle the special translation of wormhole-eval both here, when stobjs-out
; is known, and below, where it is not.  Of course, stobjs-out2 (for
; wormhole-eval) is fixed: (nil).  Keep this code in sync with that below.

; The odd treatment of wormhole-eval's first two arguments below is due to the
; fact that we actually don't want to translate them.  We will insist that they
; actually be quoted forms, not macro calls that expand to quoted forms.  So we
; put bogus nils in here and then swap back the untranslated args below.

            ((targs (trans-or
                     (translate11-lst (if (eq fn 'wormhole-eval)
                                          (list *nil* *nil* (nth 2 args))
                                        args)
                                      stobjs-in-call
                                      bindings
                                      known-stobjs
                                      msg flet-alist form ctx wrld
                                      state-vars)

; Just below, we allow a stobj recognizer to be applied to an ordinary object,
; even when translating for execution (function bodies or top-level loop).
; This is an exception to the the usual rule, which requires stobj functions to
; respect their stobjs-in arguments when translating for execution.  We take
; advantage of this exception in our support for stobj fields of stobjs.  For
; example, consider the following two events.

;   (defstobj sub1 sub1-fld1)
;   (defstobj top1 (top1-fld :type sub1))

; The axiomatic definition generated in the second defstobj for function
; top1-fldp is as follows.

;   (defun top1-fldp (x)
;     (declare (xargs :guard t :verify-guards t)
;              (ignorable x))
;     (sub1p x))

; At this point, x is an ordinary object; only at the conclusion of a defstobj
; event do we put stobjs-in and stobjs-out properties for the new functions.
; By allowing sub1p to be applied to an ordinary object, we allow the
; definition to be accepted without any (other) special treatment.

                     (and (eq flg :failed)
                          (stobj-recognizer-p fn wrld))
                     (translate11-lst args
                                      '(nil)
                                      bindings
                                      known-stobjs
                                      msg flet-alist form ctx wrld
                                      state-vars)
                     (msg "  Observe that while it is permitted to apply ~x0 ~
                           to an ordinary object, this stobj recognizer must ~
                           not be applied to the wrong stobj."
                          fn))))
            (cond ((eq fn 'wormhole-eval)
                   (translate11-wormhole-eval (car args)
                                              (cadr args)
                                              (caddr targs)
                                              bindings flet-alist ctx wrld
                                              state-vars))
                  (t (trans-value (fcons-term fn targs))))))))
      (t ; (symbolp stobjs-out2); equivalently, (symbolp stobjs-out-call)

; If flg is a non-empty alist, then the expected stobjs-out is not the
; stobjs-out to be returned by fn on arguments satisfying its declared
; signature.  For example, suppose that st1 and st2 are congruent stobjs;
; stobjs-out is (st2); fn is f; f has input signature (st1); and args is (st2),
; i.e., we are considering the call (f st2).  Then flg is ((st1 . st2)).  We
; apply the mapping, flg, in reverse to stobjs-out = (st2), to deduce that the
; stobjs-out of fn is (st1) -- the point is that if we apply flg to (st1), then
; we get the expected stobjs-out of (st2).

       (let ((bindings
              (translate-bind stobjs-out2
                              (if (consp flg)
                                  (apply-inverse-symbol-alist flg stobjs-out
                                                              nil)
                                stobjs-out)
                              bindings)))
         (trans-er-let*
          ((args (translate11-lst args
                                  stobjs-in-call
                                  bindings known-stobjs
                                  msg flet-alist form ctx wrld state-vars)))
          (trans-value (fcons-term fn args)))))))
    ((consp stobjs-out-call) ; equivalently: (consp stobjs-out2)
     (let ((bindings
            (translate-bind stobjs-out stobjs-out-call bindings)))
       (trans-er-let*
        ((targs (trans-or
                 (translate11-lst (if (eq fn 'wormhole-eval)
                                      (list *nil* *nil* (nth 2 args))
                                    args)
                                  stobjs-in-call
                                  bindings known-stobjs
                                  msg flet-alist form ctx wrld state-vars)

; See the comment above about applying a stobj recognizer to be applied to an
; ordinary object.

                 (and (eq flg :failed)
                      (stobj-recognizer-p fn wrld))
                 (translate11-lst args
                                  '(nil)
                                  bindings known-stobjs
                                  msg flet-alist form ctx wrld state-vars)
                 (msg "  Observe that while it is permitted to apply ~x0 to ~
                       an ordinary object, this stobj recognizer must not be ~
                       applied to the wrong stobj."
                      fn))))
        (cond ((eq fn 'wormhole-eval)
               (translate11-wormhole-eval (car args)
                                          (cadr args)
                                          (caddr targs)
                                          bindings flet-alist ctx wrld
                                          state-vars))
              (t (trans-value (fcons-term fn targs)))))))
    (t (let ((bindings

; If the stobjs-in of fn are compatible with args, but only when mapping at
; least one input stobj to a congruent stobj (i.e., flg is a non-empty alist),
; then we cannot simply bind stobjs-out2 to stobjs-out.  For example, suppose
; st1 and st2 are congruent stobjs and we are defining a function (f st1 st2)
; in a context where we do not know the expected result signature, i.e.,
; stobjs-out is a symbol, nor do we know the stobjs-out of f, which could for
; example be (st1 st2) or (st2 st1).  (Is this example even possible?  Not
; sure, so let's continue....)  If we are looking at a call (f st2 st1), then
; we can actually be certain that the call does _not_ return the output
; signature of f!

              (if (consp flg)
                  bindings
                (translate-bind stobjs-out2 stobjs-out bindings))))
         (trans-er-let*
          ((args (translate11-lst args
                                  stobjs-in-call
                                  bindings known-stobjs
                                  msg flet-alist form ctx wrld state-vars)))
          (trans-value (fcons-term fn args))))))))

(defun translate11 (x stobjs-out bindings known-stobjs flet-alist
                      cform ctx wrld state-vars)

; Warning: Keep this in sync with macroexpand1*-cmp.

; Bindings is an alist binding symbols either to their corresponding
; STOBJS-OUT or to symbols.  The only symbols used are (about-to-be
; introduced) function symbols or the keyword :STOBJS-OUT.  When fn is
; bound to gn it means we have determined that the STOBJS-OUT of fn is
; that of gn.  We allow fn to be bound to itself -- indeed, it is
; required initially!  (This allows bindings to double as a recording
; of all the names currently being introduced.)

; Stobjs-out is one of:

; t              - meaning we do not care about multiple-value or stobj
;                  restrictions (as when translating proposed theorems).
; (s1 s2 ... sk) - a list of 1 or more stobj flags indicating where stobjs
;                  are returned in the translation of x
; fn             - a function name, indicating that we are trying to deduce
;                  the stobjs-out setting for fn from some output branch, x,
;                  of its body, as we translate.  We also enforce prohibitions
;                  against the use of DEFUN, IN-PACKAGE, etc inside bodies.
; :stobjs-out    - like a function name, except we know we are NOT in a defun
;                  body and allow DEFUN, IN-PACKAGE, etc., but restrict certain
;                  calls of return-last.

; See the essay on STOBJS-IN and STOBJS-OUT, above.

; When stobjs-out is a symbol, it must be dereferenced through bindings
; before using it.  [One might think that we follow the convention of keeping
; it dereferenced, e.g., by using the new value whenever we bind it.
; But that is hard since the binding may come deep in some recursive
; call of translate.]

; T always deferences to t and nothing else dereferences to t.  So you
; can check (eq stobjs-out t) without dereferencing to know whether we
; care about the stobjs-out conditions.

; Known-stobjs is a subset of the list of all stobjs known in world wrld (but
; may contain some NIL elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or else known-stobjs is T and denotes all the stobjs
; in wrld.  A name is considered a stobj iff it is in known-stobjs.  This
; allows us to implement the :STOBJS declaration in defuns, by which the user
; can declare the stobjs in a function.

; The cform argument is a form that provides context -- it is the one to be
; printed by trans-er+ when there isn't another obvious contextual form to
; print.  (Often x carries enough context.)

; Keep this in sync with oneify.

  (cond
   ((or (atom x) (eq (car x) 'quote))

; We handle both the (quote x) and atom case together because both
; have the same effects on calculating the stobjs-out.

    (let* ((stobjs-out (translate-deref stobjs-out bindings))
           (vc (legal-variable-or-constant-namep x))
           (const (and (eq vc 'constant)
                       (defined-constant x wrld))))
      (cond
       ((and (symbolp x)
             (not (keywordp x))
             (not vc))
        (trans-er+? cform x
                    ctx
                    "The symbol ~x0 is being used as a variable or constant ~
                     symbol but does not have the proper syntax.  Such names ~
                     must ~@1.  See :DOC name."
                    x
                    (tilde-@-illegal-variable-or-constant-name-phrase x)))
       ((and (eq vc 'constant)
             (not const))
        (trans-er+? cform x
                    ctx
                    "The symbol ~x0 (in package ~x1) has the syntax of a ~
                     constant, but has not been defined."
                    x
                    (symbol-package-name x)))

       ((and (not (atom x)) (not (termp x wrld)))
        (trans-er+? cform x
                    ctx
                    "The proper form of a quoted constant is (quote x), but ~
                     ~x0 is not of this form."
                    x))

; We now know that x denotes a term.  Let transx be that term.

       (t (let ((transx (cond ((keywordp x) (kwote x))
                              ((symbolp x)
                               (cond ((eq vc 'constant) const)
                                     (t x)))
                              ((atom x) (kwote x))
                              (t x))))

; Now consider the specified stobjs-out.  It is fully dereferenced.
; So there are three cases: (1) we don't care about stobjs-out, (2)
; stobjs-out tells us exactly what kind of output is legal here and we
; must check, or (3) stobjs-out is an unknown but we now know its
; value and can bind it.

            (cond
             ((eq stobjs-out t) ;;; (1)
              (trans-value transx))
             ((consp stobjs-out) ;;; (2)
              (cond
               ((cdr stobjs-out)
                (trans-er+? cform x
                            ctx
                            "One value, ~x0, is being returned where ~x1 ~
                             values were expected."
                            x (length stobjs-out)))
               ((and (null (car stobjs-out))
                     (stobjp transx known-stobjs wrld))
                (trans-er+? cform x
                            ctx
                            "A single-threaded object, namely ~x0, is being ~
                             used where an ordinary object is expected."
                            transx))
               ((and (car stobjs-out)
                     (not (eq (car stobjs-out) transx)))
                (cond
                 ((stobjp transx known-stobjs wrld)
                  (trans-er+? cform x
                              ctx
                              "The single-threaded object ~x0 is being used ~
                               where the single-threaded object ~x1 was ~
                               expected."
                              transx (car stobjs-out)))
                 (t
                  (trans-er+? cform x
                              ctx
                              "The ordinary object ~x0 is being used where ~
                               the single-threaded object ~x1 was expected."
                              transx (car stobjs-out)))))
               (t (trans-value transx))))
             (t ;;; (3)
              (trans-value transx
                           (translate-bind
                            stobjs-out
                            (list (if (stobjp transx known-stobjs wrld)
                                      transx
                                    nil))
                            bindings)))))))))
   ((not (true-listp (cdr x)))
    (trans-er ctx
              "Function applications in ACL2 must end in NIL.  ~x0 is ~
               not of this form."
              x))
   ((not (symbolp (car x)))
    (cond ((or (not (consp (car x)))
               (not (eq (caar x) 'lambda)))
           (trans-er ctx
                     "Function applications in ACL2 must begin with a ~
                      symbol or LAMBDA expression.  ~x0 is not of ~
                      this form."
                     x))
          ((or (not (true-listp (car x)))
               (not (>= (length (car x)) 3))
               (not (true-listp (cadr (car x)))))
           (trans-er ctx
                     "Illegal LAMBDA expression: ~x0."
                     x))
          ((not (= (length (cadr (car x))) (length (cdr x))))
           (trans-er+ x ctx
                      "The LAMBDA expression ~x0 takes ~#1~[no arguments~/1 ~
                       argument~/~x2 arguments~] and is being passed ~#3~[no ~
                       arguments~/1 argument~/~x4 arguments~]."
                      (car x)
                      (zero-one-or-more (length (cadr (car x))))
                      (length (cadr (car x)))
                      (zero-one-or-more (length (cdr x)))
                      (length (cdr x))))
          (t (translate11
              (list* 'let
                     (listlis (cadr (car x)) (cdr x))
                     (cddr (car x)))
              stobjs-out bindings known-stobjs flet-alist x ctx wrld
              state-vars))))
   ((and (not (eq stobjs-out t)) (eq (car x) 'mv))

; If stobjs-out is t we let normal macroexpansion handle mv.

    (let ((stobjs-out (translate-deref stobjs-out bindings)))
      (cond
       ((let ((len (length (cdr x))))
          (or (< len 2)
              (> len

; Keep the number below (which also occurs in the string) equal to the value of
; raw Lisp constant *number-of-return-values*.

                 32)))
        (cond ((< (length (cdr x)) 2)
               (trans-er ctx
                         "MV must be given at least two arguments, but ~x0 has ~
                          fewer than two arguments."
                         x))
              (t
               (trans-er ctx
                         "MV must be given no more than 32 arguments; thus ~x0 ~
                          has too many arguments."
                         x))))
       ((consp stobjs-out)
        (cond
         ((not (int= (length stobjs-out) (length (cdr x))))
          (trans-er+? cform x
                      ctx
                      "The expected number of return values for ~x0 is ~x1 ~
                       but the actual number of return values is ~x2."
                      x
                      (length stobjs-out)
                      (length (cdr x))))
         (t
          (trans-er-let*
           ((args (translate11-lst (cdr x) stobjs-out bindings known-stobjs 'mv
                                   flet-alist x ctx wrld state-vars)))
           (trans-value (listify args))))))
       (t (let* ((new-stobjs-out (compute-stobj-flags (cdr x)
                                                      known-stobjs
                                                      wrld))
                 (bindings
                  (translate-bind stobjs-out new-stobjs-out bindings)))

; When we compute new-stobjs-out, above, we do with untranslated
; terms.  The stobj slots of an mv must be occupied by stobj variable
; names!  If a slot is occupied by anything else, the occupant must be
; a single non-stobj.

            (cond
             ((not (no-duplicatesp (collect-non-x nil new-stobjs-out)))
              (trans-er ctx
                        "It is illegal to return more than one ~
                         reference to a given single-threaded object ~
                         in an MV form.  The form ~x0 is thus illegal."
                        x))
             (t
              (mv-let
                (erp args bindings)
                (translate11-lst (cdr x) new-stobjs-out
                                 bindings known-stobjs
                                 'mv flet-alist x ctx wrld state-vars)
                (cond
                 (erp
                  (let ((st/call (find-stobj-out-and-call (cdr x) known-stobjs
                                                          ctx wrld state-vars)))
                    (cond
                     (st/call
                      (trans-er+ cform ctx
                                 "The form ~x0 is being used as an argument ~
                                  to a call of ~x1.  This form evaluates to a ~
                                  single-threaded object, ~x2; but for an ~
                                  argument of ~x1, the stobj variable itself ~
                                  (here, ~x2) is required, not merely a term ~
                                  that returns such a single-threaded object. ~
                                  ~ So you may need to bind ~x2 with LET; see ~
                                  :DOC stobj."
                                 (cdr st/call)
                                 'mv
                                 (car st/call)))
                     (t (mv erp args bindings)))))
                 (t (trans-value (listify args))))))))))))
   ((eq (car x) 'mv-let)
    (translate11-mv-let x nil stobjs-out bindings known-stobjs
                        nil nil ; stobj info
                        flet-alist ctx wrld state-vars))
   ((assoc-eq (car x) flet-alist)

; The lambda-bodies in flet-alist are already translated.  Our approach is to
; consider a call of an flet-bound function symbol to be a call of the lambda
; to which it is bound in flet-alist.

    (let* ((entry (assoc-eq (car x) flet-alist))
           (lambda-fn (cadr entry))
           (formals (lambda-formals lambda-fn))
           (stobjs-out (translate-deref stobjs-out bindings))
           (stobjs-out2 (translate-deref (cddr entry) bindings)))
      (cond ((not (eql (length formals) (length (cdr x))))
             (trans-er ctx
                       "FLET-bound local function ~x0 takes ~#1~[no ~
                        arguments~/1 argument~/~x2 arguments~] but in the ~
                        call ~x3 it is given ~#4~[no arguments~/1 ~
                        argument~/~x5 arguments~].   The formal parameters ~
                        list for the applicable FLET-binding of ~x0 is ~X67."
                       (car x)
                       (zero-one-or-more (length formals))
                       (length formals)
                       x
                       (zero-one-or-more (length (cdr x)))
                       (length (cdr x))
                       formals
                       nil))
            (t
             (translate11-call x lambda-fn (cdr x) stobjs-out stobjs-out2
                               bindings known-stobjs
                               (msg "a call of FLET-bound function ~x0"
                                    (car x))
                               flet-alist ctx wrld state-vars)))))
   ((and bindings
         (not (eq (caar bindings) :stobjs-out))
         (member-eq (car x) '(defun defmacro in-package progn defpkg)))
    (trans-er+ x ctx
               "We do not permit the use of ~x0 inside of code to be executed ~
                by Common Lisp because its Common Lisp meaning differs from ~
                its ACL2 meaning."
               (car x)))
   ((and bindings
         (not (eq (caar bindings) :stobjs-out))
         (member-eq (car x)

; The following list should contain every symbol listed in
; primitive-event-macros for which the error message below applies.  We keep
; both lists alphabetical to make it convenient to compare them.  For
; efficiency, we may omit those that will ultimately expand to calls of table
; (or any other symbol in the list below).  We also omit those handled in the
; previous case, above, such as defun.

                    '(
                      #+:non-standard-analysis defthm-std
                      #+:non-standard-analysis defun-std
                      add-custom-keyword-hint
                      add-include-book-dir ; definition explains inclusion
                      add-include-book-dir! ; definition explains inclusion
                      add-match-free-override
                      certify-book
                      comp
                      defattach
                      defaxiom
                      defchoose
                      defconst
                      deflabel
                      defstobj defabsstobj
                      deftheory
                      defthm
                      defuns
                      delete-include-book-dir ; definition explains inclusion
                      delete-include-book-dir! ; definition explains inclusion
                      encapsulate
                      in-arithmetic-theory
                      in-theory
                      include-book
                      local ; note: not in (primitive-event-macros)
                      make-event ; note: not in (primitive-event-macros)
                      mutual-recursion
                      progn!
                      push-untouchable
                      regenerate-tau-database
                      remove-untouchable
                      reset-prehistory
                      set-body
                      set-override-hints-macro
                      table
                      theory-invariant
                      value-triple
                      verify-guards
                      with-output ; note: not in (primitive-event-macros)
                      with-prover-step-limit ; not in (primitive-event-macros)
                      verify-termination-boot-strap
                      )))
    (trans-er+ x ctx
               "We do not permit the use of ~x0 inside of code to be executed ~
                by Common Lisp because its Common Lisp runtime value and ~
                effect differs from its ACL2 meaning."
               (car x)))
   ((and (eq (car x) 'pargs)
         (true-listp x)
         (member (length x) '(2 3))

; Notice that we are restricting this error case to a pargs that is
; syntactically well-formed, in the sense that if this pargs has one or two
; arguments, then the form argument is a function call.  The rest of the
; well-formedness checking will be done during macro expansion of pargs; by
; making the above restriction, we avoid the possibility that the error message
; below is confusing.

         (let ((form (car (last x)))) ; should be a function call
           (or flet-alist
               (not (and (consp form)
                         (symbolp (car form))
                         (function-symbolp (car form) wrld))))))
    (cond
     (flet-alist

; It may be fine to have flet-bound functions as in:

; (defun g ()
;   (flet ((foo (x) (+ x x)))
;     (pargs (h (foo 3)))))

; But we haven't thought through whether closures really respect superior FLET
; bindings, so for now we simply punt.

      (trans-er+ x ctx
                 "~x0 may not be called in the scope of ~x1.  If you want ~
                  support for that capability, please contact the ACL2 ~
                  implementors."
                 'pargs
                 'flet))
     (t
      (let ((form (car (last x))))
        (trans-er+ x ctx
                   "~x0 may only be used when its form argument is a function ~
                    call, unlike the argument ~x1.~@2  See :DOC pargs."
                   'pargs
                   form
                   (if (and (consp form)
                            (symbolp (car form))
                            (getpropc (car form) 'macro-body nil wrld))
                       (list "  Note that ~x0 is a macro, not a function symbol."
                             (cons #\0 (car form)))
                     ""))))))
   ((eq (car x) 'check-vars-not-free) ; optimization; see check-vars-not-free

; Warning: Keep this in sync with the code for check-vars-not-free.

    (cond ((not (equal (length x) 3))
           (trans-er+ x ctx
                      "CHECK-VARS-NOT-FREE requires exactly two arguments."))
          ((null (cadr x)) ; optimization for perhaps a common case
           (translate11 (caddr x) stobjs-out bindings
                        known-stobjs flet-alist x ctx wrld
                        state-vars))
          ((not (symbol-listp (cadr x)))
           (trans-er+ x ctx
                      "CHECK-VARS-NOT-FREE requires its first argument to be ~
                       a true-list of symbols."))
          (t
           (trans-er-let*
            ((ans (translate11 (caddr x) stobjs-out bindings
                               known-stobjs flet-alist x ctx wrld
                               state-vars)))
            (let ((msg (check-vars-not-free-test (cadr x) ans)))
              (cond
               ((not (eq msg t))
                (trans-er+ x ctx
                           "CHECK-VARS-NOT-FREE failed:~|~@0"
                           msg))
               (t (trans-value ans))))))))
   ((eq (car x) 'translate-and-test)
    (cond ((not (equal (length x) 3))
           (trans-er+ x ctx
                      "TRANSLATE-AND-TEST requires exactly two arguments."))
          (t (trans-er-let*
              ((ans (translate11 (caddr x) stobjs-out bindings
                                 known-stobjs flet-alist x ctx wrld
                                 state-vars)))

; The next mv-let is spiritually just a continuation of the trans-er-let*
; above, as though to say "and let test-term be (translate11 (list ...)...)"
; except that we do not want to touch the current setting of bindings nor
; do we wish to permit the current bindings to play a role in the translation
; of the test.

              (mv-let
               (test-erp test-term test-bindings)
               (translate11 (list (cadr x) 'form)
                            '(nil) nil known-stobjs flet-alist x ctx wrld
                            state-vars)
               (declare (ignore test-bindings))
               (cond
                (test-erp (mv test-erp test-term bindings))
                (t
                 (mv-let (erp msg)
                         (ev-w test-term
                               (list (cons 'form ans)
                                     (cons 'world wrld))
                               wrld
                               nil ; user-stobj-alist
                               (access state-vars state-vars :safe-mode)
                               (gc-off1 (access state-vars state-vars
                                                :guard-checking-on))
                               nil

; We are conservative here, using nil for the following AOK argument in case
; the intended test-term is to be considered in the current theory, without
; attachments.

                               nil)
                         (cond
                          (erp
                           (trans-er+ x ctx
                                      "The attempt to evaluate the ~
                                       TRANSLATE-AND-TEST test, ~x0, when ~
                                       FORM is ~x1, failed with the ~
                                       evaluation error:~%~%``~@2''"
                                      (cadr x) ans msg))
                          ((or (consp msg)
                               (stringp msg))
                           (trans-er ctx "~@0" msg))
                          (t (trans-value ans)))))))))))
   ((eq (car x) 'with-local-stobj)

; Even if stobjs-out is t, we do not let normal macroexpansion handle
; with-local-stobj, because we want to make sure that we are dealing with a
; stobj.  Otherwise, the raw lisp code will bind a bogus live stobj variable;
; although not particularly harmful, that will give rise to an inappropriate
; compiler warning about not declaring the variable unused.

    (mv-let (erp st mv-let-form creator)
            (parse-with-local-stobj (cdr x))
            (cond
             (erp
              (trans-er ctx
                        "Ill-formed with-local-stobj form, ~x0.  ~
                         See :DOC with-local-stobj."
                        x))
             ((assoc-eq :stobjs-out bindings)

; We need to disallow the use of ev etc. for with-local-stobj, because the
; latching mechanism assumes that all stobjs are global, i.e., in the
; user-stobj-alist.

              (trans-er ctx
                        "Calls of with-local-stobj, such as ~x0, cannot be ~
                         evaluated directly, as in the top-level loop.  ~
                         See :DOC with-local-stobj and see :DOC top-level."
                        x))
             ((and (member-eq creator
                              (global-val 'untouchable-fns wrld))
                   (not (eq (access state-vars state-vars :temp-touchable-fns)
                            t))
                   (not (member-eq creator
                                   (access state-vars state-vars
                                           :temp-touchable-fns))))
              (trans-er ctx
                        "Illegal with-local-stobj form~@0~|~%  ~y1:~%the stobj ~
                         creator function ~x2 is untouchable.  See :DOC ~
                         remove-untouchable.~@3"
                        (if (eq creator 'create-state)
                            " (perhaps expanded from a corresponding ~
                             with-local-state form),"
                          ",")
                        x
                        creator
                        (if (eq creator 'create-state)
                            "  Also see :DOC with-local-state, which ~
                             describes how to get around this restriction and ~
                             when it may be appropriate to do so."
                          "")))
             ((and st
                   (if (eq st 'state)
                       (eq creator 'create-state)
                     (eq st (stobj-creatorp creator wrld))))
              (translate11-mv-let mv-let-form nil stobjs-out bindings
                                  known-stobjs st creator flet-alist ctx wrld
                                  state-vars))
             (t
              (let ((actual-creator (get-stobj-creator st wrld)))
                (cond
                 (actual-creator ; then st is a stobj
                  (trans-er ctx
                            "Illegal with-local-stobj form, ~x0.  The creator ~
                             function for stobj ~x1 is ~x2, but ~@3.  See ~
                             :DOC with-local-stobj."
                            x st actual-creator
                            (cond ((cdddr x) ; wrong creator was supplied
                                   (msg "the function ~x0 was supplied instead"
                                        creator))
                                  (t
                                   (msg "the creator was computed to be ~x0, ~
                                         so you will need to supply the ~
                                         creator explicitly for your call of ~
                                         ~x1"
                                        creator
                                        'with-local-stobj)))))
                 (t ; st is not a stobj
                  (trans-er ctx
                            "Illegal with-local-stobj form, ~x0.  The first ~
                             argument must be the name of a stobj, but ~x1 is ~
                             not.  See :DOC with-local-stobj."
                            x st))))))))
   ((and (assoc-eq (car x) *ttag-fns-and-macros*)
         (not (ttag wrld))
         (not (global-val 'boot-strap-flg wrld)))
    (trans-er+ x ctx
               "The ~x0 ~s1 cannot be called unless a trust tag is in effect. ~
                ~ See :DOC defttag.~@2"
               (car x)
               (if (getpropc (car x) 'macro-body nil wrld)
                   "macro"
                 "function")
               (or (cdr (assoc-eq (car x) *ttag-fns-and-macros*))
                   "")))
   ((and (eq (car x) 'stobj-let)
         (not (eq stobjs-out t))) ; else let stobj-let simply macroexpand

; Keep this in sync with the definition of the stobj-let macro.  We use the
; following running example:

; (stobj-let
;  ((st1 (fld1 st+))
;   (st2 (fld2 st+) update-fld2)
;   (st3 (fld3i 4 st+)))
;  (st1)                      ; PRODUCER-VARS, below
;  (producer st1 u st2 v st3) ; PRODUCER, below
;  (consumer st+ u x y v w)   ; CONSUMER, below
;  )
; ==>
; (let ((st1 (fld1 st+))                     ; sti are BOUND-VARS, below
;       (st2 (fld2 st+) update-fld2)         ; cadrs are ACTUALS, below
;       (st3 (fld3i 4 st+)))                 ; st+ is STOBJ, below
;   (let ((st1 (producer st1 u st2 v st3)))  ; BODY2
;     (declare (ignorable st1))
;     (let ((st+ (update-fld1 st1 st+)))     ; BODY1
;       (consumer st+ u x y v w))))

    (mv-let
     (msg bound-vars actuals stobj producer-vars producer updaters
          corresp-accessor-fns consumer)
     (parse-stobj-let x)
     (cond
      (msg (trans-er ctx "~@0" msg))
      ((assoc-eq :stobjs-out bindings)

; We need to disallow the use of ev etc. for stobj-let, because the latching
; mechanism assumes that all stobjs are global, i.e., in the user-stobj-alist.

       (trans-er ctx
                 "Calls of stobj-let, such as ~x0, cannot be evaluated ~
                  directly, as in the top-level loop."
                 x))
      (t
       (let ((msg (chk-stobj-let bound-vars actuals stobj updaters
                                 corresp-accessor-fns known-stobjs wrld)))
         (cond
          (msg (trans-er ctx
                         "~@0"
                         (illegal-stobj-let-msg msg x)))
          (t
           (let* ((new-known-stobjs (if (eq known-stobjs t)
                                        t
                                      (union-eq bound-vars known-stobjs)))
                  (guarded-producer
                   `(check-vars-not-free (,stobj) ,producer))
                  (guarded-consumer
                   `(check-vars-not-free ,bound-vars ,consumer))
                  (letp (null (cdr producer-vars)))
                  (updater-bindings (pairlis-x1 stobj
                                                (pairlis-x2 updaters nil)))
                  (body1 `(let* ,updater-bindings
                            ,guarded-consumer))
                  (body2 (cond (letp `(let ((,(car producer-vars)
                                             ,guarded-producer))
                                        (declare (ignorable ,@producer-vars))
                                        ,body1))
                               (t `(mv-let ,producer-vars
                                           ,guarded-producer
                                           (declare (ignorable ,@producer-vars))
                                           ,body1)))))
             (trans-er-let*
              ((tactuals
                (translate-stobj-calls actuals 3 bindings new-known-stobjs
                                       flet-alist x ctx wrld state-vars))
               (tupdaters
                (translate-stobj-calls updaters 4 bindings new-known-stobjs
                                       flet-alist x ctx wrld state-vars))
               (tconsumer
                (translate11 guarded-consumer stobjs-out bindings known-stobjs
                             flet-alist x ctx wrld state-vars))
               (tbody1 (translate11-let* body1 tconsumer tupdaters stobjs-out
                                         bindings known-stobjs flet-alist ctx
                                         wrld state-vars))
               (tbody2 (cond (letp (translate11-let body2 tbody1 nil
                                                    stobjs-out
                                                    bindings new-known-stobjs
                                                    flet-alist ctx wrld
                                                    state-vars))
                             (t (translate11-mv-let body2 tbody1 stobjs-out
                                                    bindings new-known-stobjs
                                                    nil nil ; local-stobj args
                                                    flet-alist ctx wrld
                                                    state-vars)))))
              (let ((actual-stobjs-out
                     (translate-deref stobjs-out bindings))
                    (no-dups-exprs
                     (no-duplicatesp-checks-for-stobj-let-actuals actuals
                                                                  nil))
                    (producer-stobjs
                     (collect-non-x
                      nil
                      (compute-stobj-flags producer-vars known-stobjs wrld))))
                (cond
                 ((and updaters

; It may be impossible for actual-stobjs-out to be an atom here (presumably
; :stobjs-out or a function symbol).  But we cover that case, albeit with a
; potentially mysterious error message.

                       (or (not (consp actual-stobjs-out))
                           (not (member-eq stobj actual-stobjs-out))))
                  (let ((stobjs-returned
                         (and (consp actual-stobjs-out)
                              (collect-non-x nil actual-stobjs-out))))
                    (trans-er+ x ctx
                               "A STOBJ-LET form has been encountered that ~
                                specifies (with its list of producer ~
                                variables) ~#1~[a call~/calls~] of stobj ~
                                updater~#2~[~/s~] ~&2 of ~x0.  It is ~
                                therefore a requirement that ~x0 be among the ~
                                outputs of the STOBJ-LET, but it is not.  The ~
                                STOBJ-LET returns ~#3~[no single-threaded ~
                                objects~/the single-threaded object ~&4~/the ~
                                single-threaded objects ~&4~/an undetermined ~
                                output signature in this context~].  See :DOC ~
                                stobj-let."
                               stobj
                               updaters
                               (remove-duplicates-eq (strip-cars updaters))
                               (if (consp actual-stobjs-out)
                                   (zero-one-or-more stobjs-returned)
                                 3)
                               stobjs-returned)))
                 ((and (atom actual-stobjs-out) ; impossible?
                       (set-difference-eq producer-stobjs bound-vars))
                  (trans-er+ x ctx
                             "A STOBJ-LET form has been encountered that ~
                              specifies stobj producer variable~#0~[~/s~] ~&0 ~
                              that cannot be determined to be returned by ~
                              that STOBJ-LET form, that is, by its consumer ~
                              form.  See :DOC stobj-let."
                             (set-difference-eq producer-stobjs bound-vars)))
                 ((set-difference-eq
                   (set-difference-eq producer-stobjs bound-vars)
                   actual-stobjs-out)
                  (trans-er+ x ctx
                             "A STOBJ-LET form has been encountered that ~
                              specifies stobj producer variable~#0~[ ~&0 that ~
                              is~/s ~&0~ that are~] not returned by that ~
                              STOBJ-LET form, that is, not returned by its ~
                              consumer form.  See :DOC stobj-let."
                             (set-difference-eq
                              (set-difference-eq producer-stobjs bound-vars)
                              actual-stobjs-out)))
                 (t
                  (trans-er-let*
                   ((val
                     (translate11-let `(let ,(pairlis$ bound-vars
                                                       (pairlis$ actuals nil))
                                         (declare (ignorable ,@bound-vars))
                                         ,body2)
                                      tbody2 tactuals stobjs-out bindings
                                      known-stobjs flet-alist ctx wrld
                                      state-vars)))
                   (cond (no-dups-exprs
                          (trans-er-let*
                           ((chk (translate11 (cons 'and no-dups-exprs)
                                              '(nil) bindings known-stobjs
                                              flet-alist cform ctx wrld
                                              state-vars)))
                           (trans-value (prog2$-call chk val))))
                         (t (trans-value val))))))))))))))))
   ((getpropc (car x) 'macro-body nil wrld)
    (cond
     ((and (eq stobjs-out :stobjs-out)
           (member-eq (car x) '(pand por pargs plet))
           (eq (access state-vars state-vars :parallel-execution-enabled)
               t))
      (trans-er ctx
                "Parallel evaluation is enabled, but is not implemented for ~
                 calls of parallelism primitives (~&0) made directly in the ~
                 ACL2 top-level loop, as opposed to being made inside a ~
                 function definition.  The call ~x1 is thus illegal.  To ~
                 allow such calls to be evaluated (but without parallelism), ~
                 either evaluate ~x2 or use the macro top-level.  See :DOC ~
                 parallelism-at-the-top-level and :DOC ~
                 set-parallel-execution."
                '(pand por pargs plet)
                x
                '(set-parallel-execution :bogus-parallelism-ok)))
     ((and (member-eq (car x) (global-val 'untouchable-fns wrld))
           (not (eq (access state-vars state-vars :temp-touchable-fns)
                    t))
           (not (member-eq (car x) (access state-vars state-vars
                                           :temp-touchable-fns))))

; If this error burns you during system maintenance, you can subvert our
; security by setting untouchables to nil in raw Lisp:

; (setf (cadr (assoc 'global-value
;                    (get 'untouchable-fns *current-acl2-world-key*)))
;       nil)

      (trans-er+ x ctx
                 "It is illegal to call ~x0 because it has been placed on ~
                  untouchable-fns."
                 (car x)))
     (t
      (mv-let
       (erp expansion)
       (macroexpand1-cmp x ctx wrld state-vars)
       (cond
        (erp (mv erp expansion bindings))
        (t (translate11 expansion stobjs-out bindings known-stobjs flet-alist x
                        ctx wrld state-vars)))))))
   ((eq (car x) 'let)
    (translate11-let x nil nil stobjs-out bindings known-stobjs
                     flet-alist ctx wrld state-vars))
   ((eq (car x) 'flet) ; (flet bindings form)
    (translate11-flet x stobjs-out bindings known-stobjs flet-alist ctx
                      wrld state-vars))
   ((and (not (eq stobjs-out t))
         (null (cdr x)) ; optimization
         (stobj-creatorp (car x) wrld))
    (trans-er+ x ctx
               "It is illegal to call ~x0 in this context because it is a ~
                stobj creator.  Stobj creators cannot be called directly ~
                except in theorems.  If you did not explicitly call a stobj ~
                creator, then this error is probably due to an attempt to ~
                evaluate a with-local-stobj form directly in the top-level ~
                loop.  Such forms are only allowed in the bodies of functions ~
                and in theorems.  Also see :DOC with-local-stobj."
               (car x)))
   ((equal (arity (car x) wrld) (length (cdr x)))
    (cond ((and (member-eq (car x) (global-val 'untouchable-fns wrld))
                (not (eq (access state-vars state-vars :temp-touchable-fns)
                         t))
                (not (member-eq (car x) (access state-vars state-vars
                                                :temp-touchable-fns))))
           (trans-er+ x ctx
                      "It is illegal to call ~x0 because it has been placed ~
                       on untouchable-fns."
                      (car x)))
          ((eq (car x) 'if)
           (cond
            ((stobjp (cadr x) known-stobjs wrld)
             (trans-er+ x ctx
                        "It is illegal to test on a single-threaded object ~
                         such as ~x0."
                        (cadr x)))

; Because (cadr x) has not yet been translated, we do not really know it is not
; a stobj!  It could be a macro call that expands to a stobj.'  The error
; message above is just to be helpful.  An accurate check is made below.

            (t
             (trans-er-let*
              ((arg1 (translate11 (cadr x)
                                  (if (eq stobjs-out t)
                                      t
                                    '(nil))
                                  bindings known-stobjs
                                  flet-alist x ctx wrld state-vars)))
              (mv-let
               (erp2 arg2 bindings2)
               (trans-er-let*
                ((arg2 (translate11 (caddr x)
                                    stobjs-out bindings known-stobjs
                                    flet-alist x ctx wrld state-vars)))
                (trans-value arg2))
               (cond
                (erp2
                 (cond
                  ((eq bindings2 :UNKNOWN-BINDINGS)
                   (mv-let
                    (erp3 arg3 bindings)
                    (translate11 (cadddr x)
                                 stobjs-out bindings known-stobjs
                                 flet-alist x ctx wrld state-vars)
                    (cond
                     (erp3 (mv erp2 arg2 bindings2))
                     (t (trans-er-let*
                         ((arg2 (translate11 (caddr x)
                                             stobjs-out bindings known-stobjs
                                             flet-alist x ctx wrld state-vars)))
                         (trans-value (fcons-term* 'if arg1 arg2 arg3)))))))
                  (t (mv erp2 arg2 bindings2))))
                (t
                 (let ((bindings bindings2))
                   (trans-er-let*
                    ((arg3 (translate11 (cadddr x)
                                        stobjs-out bindings known-stobjs
                                        flet-alist x ctx wrld state-vars)))
                    (trans-value (fcons-term* 'if arg1 arg2 arg3)))))))))))
          ((eq (car x) 'synp)

; Synp is a bit odd.  We store the quotation of the term to be evaluated in the
; third arg of the synp form.  We store the quotation so that ACL2 will not see
; the term as a potential induction candidate.  (Eric Smith first pointed out
; this issue.)  This, however forces us to treat synp specially here in order
; to translate the term to be evaluated and thereby get a proper ACL2 term.
; Without this special treatment (cadr x), for instance, would be left alone
; whereas it needs to be translated into (car (cdr x)).

; This mangling of the third arg of synp is sound because synp always returns
; t.

; Robert Krug has mentioned the possibility that the known-stobjs below could
; perhaps be t.  This would allow a function called by synp to use, although
; not change, stobjs.  If this is changed, change the referances to stobjs in
; the documentation for syntaxp and bind-free as appropriate.  But before
; making such a change, consider this: no live user-defined stobj will ever
; appear in the unifying substitution that binds variables in the evg of
; (cadddr x).  So it seems that such a relaxation would not be of much value.

           (cond ((not (eq stobjs-out t))
                  (trans-er ctx
                            "A call to synp is not allowed here.  This ~
                             call may have come from the use of syntaxp ~
                             or bind-free within a function definition ~
                             since these two macros expand into calls to ~
                             synp.  The form we were translating when we ~
                             encountered this problem is ~x0.  If you ~
                             believe this error message is itself in error ~
                             or that we have been too restrictive, please ~
                             contact the maintainers of ACL2."
                            x))
                 ((eql (length x) 4)
                  (mv-let
                   (erp val bindings)
                   (trans-er-let*
                    ((quoted-vars (translate11 (cadr x)
                                               '(nil) ; stobjs-out
                                               bindings
                                               '(state) ; known-stobjs
                                               flet-alist x ctx wrld state-vars))
                     (quoted-user-form (translate11 (caddr x)
                                                    '(nil) ; stobjs-out
                                                    bindings
                                                    '(state) ; known-stobjs
                                                    flet-alist x ctx wrld
                                                    state-vars))
                     (quoted-term (translate11 (cadddr x)
                                               '(nil) ; stobjs-out
                                               bindings
                                               '(state) ; known-stobjs
                                               flet-alist x ctx wrld state-vars)))
                    (let ((quoted-term (if (quotep quoted-term)
                                           quoted-term
                                         (sublis-var nil quoted-term))))
                      (cond ((quotep quoted-term)
                             (trans-er-let*
                              ((term-to-be-evaluated
                                (translate11 (cadr quoted-term)
                                             '(nil) ; stobjs-out
                                             bindings
                                             '(state) ; known-stobjs
                                             flet-alist x ctx wrld state-vars)))
                              (let ((quoted-vars (if (quotep quoted-vars)
                                                     quoted-vars
                                                   (sublis-var nil quoted-vars)))
                                    (quoted-user-form (if (quotep quoted-user-form)
                                                          quoted-user-form
                                                        (sublis-var nil
                                                                    quoted-user-form))))
                                (cond ((and (quotep quoted-vars)
                                            (quotep quoted-user-form))
                                       (trans-value
                                        (fcons-term* 'synp quoted-vars
                                                     quoted-user-form
                                                     (kwote
                                                      term-to-be-evaluated))))
                                      (t (trans-er ctx
                                                   *synp-trans-err-string*
                                                   x))))))
                            (t
                             (trans-er ctx
                                       *synp-trans-err-string*
                                       x)))))
                   (cond (erp
                          (let ((quoted-user-form (caddr x)))
                            (case-match quoted-user-form
                              (('QUOTE ('SYNTAXP form))
                               (mv erp
                                   (msg "The form ~x0, from a ~x1 hypothesis, ~
                                         is not suitable for evaluation in an ~
                                         environment where its variables are ~
                                         bound to terms.  See :DOC ~x1.  Here ~
                                         is further explanation:~|~t2~@3"
                                        form 'syntaxp 5 val)
                                   bindings))
                              (& (mv erp val bindings)))))
                         (t (mv erp val bindings)))))
                 (t
                  (trans-er ctx
                            *synp-trans-err-string*
                            x))))
          ((eq stobjs-out t)
           (trans-er-let*
            ((args (translate11-lst (cdr x) t bindings known-stobjs
                                    nil flet-alist x ctx wrld state-vars)))
            (trans-value (fcons-term (car x) args))))
          ((eq (car x) 'mv-list) ; and stobjs-out is not t
           (trans-er-let*
            ((arg1 (translate11 (cadr x)
                                stobjs-out bindings known-stobjs
                                flet-alist x ctx wrld state-vars)))
            (cond ((not (and (quotep arg1)
                             (integerp (unquote arg1))
                             (<= 2 (unquote arg1))))
                   (trans-er ctx
                             "A call of ~x0 can only be made when the first ~
                              argument is explicitly an integer that is at ~
                              least 2.  The call ~x1 is thus illegal."
                             'mv-list x))
                  (t
                   (trans-er-let*
                    ((arg2 (translate11 (caddr x)
                                        (make-list (unquote arg1)
                                                   :initial-element nil)
                                        bindings known-stobjs
                                        flet-alist x ctx wrld state-vars)))
                    (trans-value (fcons-term* 'mv-list arg1 arg2)))))))
          ((stobj-field-fn-of-stobj-type-p
            (car x) wrld) ; and stobjs-out is not t
           (trans-er+ x ctx
                      "It is illegal to call ~x0 because it is a stobj ~
                       updater or accessor for a field of stobj type.  For a ~
                       way to generate such a call, see :DOC stobj-let."
                      (car x)))
          ((eq (car x) 'return-last) ; and stobjs-out is not t
           (let* ((arg1 (nth 1 x))
                  (arg2 (nth 2 x))
                  (arg3 (nth 3 x))
                  (key (and (consp arg1)
                            (eq (car arg1) 'quote)
                            (consp (cdr arg1))
                            (cadr arg1)))
                  (keyp (and (symbolp key) key)))
             (trans-er-let*
              ((targ1 (translate11 arg1
                                   '(nil) bindings known-stobjs
                                   flet-alist x ctx wrld state-vars)))
              (cond
               ((and keyp (not (equal targ1 arg1))) ; an optional extra check
                (trans-er ctx
                          "Implementation error: We have thought that a ~
                           quotep must translate to itself, but ~x0 did not!"
                          arg1))
               ((eq key 'mbe1-raw)

; We need to know that the two arguments of mbe1 have the same signature.  If
; for example we have (mv-let (x y) (mbe1 <exec-form> <logic-form>)), but
; <exec-form> has signature *, then Common Lisp will get confused during
; evaluation.  This signature requirement is enforced by the trans-er-let*
; bindings below.

; At one time we disallowed the use of mbe inside a non-trivial encapsulate
; when translating for execution (stobjs-out not equal to t).  To see why, see
; the example in the comment near the top of :DOC note-3-4.  However, we
; subsequently disallowed guard verification for functions defined non-locally
; inside an encapsulate (see :DOC note-4-0), which is the proper fix for this
; issue.  What then is this issue?  The issue is that we need to be able to
; trust guard verification; evaluating the :exec branch of an mbe is just a
; special case.

                (trans-er-let*
                 ((targ2 (translate11 arg2
                                      (if (inside-defabsstobj wrld)
                                          t
                                        stobjs-out)
                                      bindings known-stobjs
                                      flet-alist x ctx wrld state-vars))
                  (targ3 (translate11 arg3 stobjs-out bindings known-stobjs
                                      flet-alist x ctx wrld state-vars)))
                 (trans-value
                  (fcons-term* 'return-last targ1 targ2 targ3))))
               ((and
                 (eq key 'ec-call1-raw)
                 (not
                  (and
                   (consp arg3)
                   (true-listp arg3)
                   (and
                    (symbolp (car arg3))
                    (let ((fn (if (function-symbolp (car arg3) wrld)
                                  (car arg3)
                                (corresponding-inline-fn (car arg3) wrld))))
                      (and fn
                           (not (member-eq fn *ec-call-bad-ops*))))))))
                (trans-er ctx
                          "A call of ~x0 (including macroexpansion of such a ~
                           call) must only be made on an argument of the form ~
                           (FN ...), where FN is a known function symbol of ~
                           the current ACL2 world not belonging to the list ~
                           that is the value of the constant ~x1, or is a ~
                           macro expanding in a certain direct way (as with ~
                           defun-inline) to a call of FN$INLINE (i.e., the ~
                           result of adding suffix \"$INLINE\" to the ~
                           symbol-name of FN).  The argument ~x2 is thus ~
                           illegal for ~x0, because ~@3.  See :DOC ec-call."
                          'ec-call '*ec-call-bad-ops* (car (last x))
                          (let* ((fn0 (and (consp arg3)
                                           (car arg3)))
                                 (fn (and fn0
                                          (symbolp fn0)
                                          (if (function-symbolp fn0 wrld)
                                              fn0
                                            (corresponding-inline-fn fn0
                                                                     wrld)))))
                            (cond ((not (and fn0
                                             (true-listp arg3)))
                                   (msg "~x0 does not have the form of a ~
                                         function call"
                                        arg3))
                                  ((not (symbolp fn0))
                                   (msg "~x0 is not a symbol" fn0))
                                  ((member-eq fn *ec-call-bad-ops*)
                                   (msg "~x0 belongs to the above list" fn))
                                  ((eq (getpropc fn0 'macro-args t wrld)
                                       t)
                                   (msg "~x0 is not a macro"
                                        fn0))
                                  (t (msg "~x0 is a macro, not a function ~
                                           symbol~@1"
                                          fn0
                                          (let ((sym (deref-macro-name
                                                      fn0
                                                      (macro-aliases wrld))))
                                            (cond
                                             ((eq sym fn0) "")
                                             (t
                                              (msg ".  Note that ~x0 is a ~
                                                    macro-alias for ~x1 (see ~
                                                    :DOC ~
                                                    macro-aliases-table), so ~
                                                    a solution might be to ~
                                                    replace ~x0 by ~x1"
                                                   fn0 sym))))))))))
               ((and
                 (eq key 'with-guard-checking1-raw)
                 (or (not (case-match arg2
                            (('chk-with-guard-checking-arg &) t)
                            (& nil)))
                     (not (case-match arg3
                            (('translate-and-test gate form)
                             (equal gate (with-guard-checking-gate form)))
                            (& nil))))
                 (not (global-val 'boot-strap-flg
                                  wrld)) ; see ev-rec-return-last
                 (not (ttag wrld)))
                (trans-er+? cform x ctx
                            "The form ~x0 is essentially a call of ~x1, but ~
                             without certain checks performed.  This is ~
                             illegal unless there is an active trust tag; see ~
                             :DOC defttag.  To avoid this error without use ~
                             of a trust tag, call ~x1 directly."
                            x 'with-guard-checking))
               ((and keyp
                     (let ((val (return-last-lookup key wrld)))
                       (or (null val)
                           (and (consp val) ; see chk-return-last-entry
                                (eq stobjs-out :stobjs-out)))))

; In an early implementation of return-last, we insisted that keyp be true.  But
; when we attempted to update the "GL" work of Sol Swords to use return-last,
; we encountered the creation of symbolic terms (presumably for some sort of
; meta reasoning) for which the first argument was not quoted.  Rather than try
; to understand whether this was necessary, we decided that others might also
; want to write meta-level functions that cons up return-last terms without a
; quoted first argument; and since it is easy to support that, we do so.

                (cond
                 ((null (return-last-lookup key wrld))
                  (trans-er ctx
                            "The symbol ~x0 is specified in the first ~
                             argument of the form ~x1.  But ~x0 is not ~
                             associated in the table ~x2 with a non-nil ~
                             value.  See :DOC return-last."
                            key x 'return-last-table))
                 (t
                  (trans-er ctx
                            "Illegal call, ~x0: the association of ~x1 with ~
                             the symbol ~x2 has been restricted to avoid ~
                             top-level evaluation of such calls of ~x3.  See ~
                             :DOC return-last.  Also consider placing the ~
                             offending call inside a call of ~x4; see :DOC ~
                             ~x4."
                            x key
                            (car (return-last-lookup key wrld))
                            'return-last 'top-level))))
               (t
                (mv-let
                 (erp targ2 targ2-bindings)
                 (translate11 arg2 '(nil) bindings known-stobjs flet-alist x
                              ctx wrld state-vars)
                 (declare (ignore targ2-bindings))
                 (cond
                  (erp (mv erp targ2 bindings))
                  ((throw-nonexec-error-p1 targ1 targ2 :non-exec nil)
                   (mv-let
                    (erp targ3 targ3-bindings)
                    (translate11
                     arg3
                     t ; stobjs-out
                     bindings
                     nil ; known-stobjs is irrelevant
                     flet-alist x ctx wrld state-vars)
                    (declare (ignore targ3-bindings))
                    (cond
                     (erp (mv erp targ3 bindings))
                     (t (trans-value
                         (fcons-term* 'return-last
                                      targ1 targ2 targ3))))))
                  (t
                   (trans-er-let*
                    ((targ3 (translate11 arg3 stobjs-out bindings known-stobjs
                                         flet-alist x ctx wrld state-vars)))
                    (trans-value
                     (fcons-term* 'return-last
                                  targ1 targ2 targ3)))))))))))
          ((eq (getpropc (car x) 'non-executablep nil wrld)
               t)
           (let ((computed-stobjs-out (compute-stobj-flags (cdr x)
                                                           known-stobjs
                                                           wrld)))
             (trans-er-let*
              ((args (translate11-lst (cdr x) computed-stobjs-out bindings
                                      known-stobjs nil flet-alist x ctx wrld
                                      state-vars)))
              (trans-value (fcons-term (car x) args)))))
          ((and (member-eq (car x) '(makunbound-global put-global))
                (not (eq (access state-vars state-vars :temp-touchable-vars)
                         t))
                (or ; Keep this case in sync with the cond cases below
                 (not (and (consp (cadr x))
                           (eq (car (cadr x)) 'quote)
                           (null (cddr (cadr x)))
                           (symbolp (cadr (cadr x)))))
                 (and (member-eq (cadr (cadr x))
                                 (global-val 'untouchable-vars wrld))
                      (not (member-eq (cadr (cadr x))
                                      (access state-vars state-vars
                                              :temp-touchable-vars))))
                 (and (eq (car x) 'makunbound-global)
                      (or (always-boundp-global (cadr (cadr x)))
                          (member-eq (cadr (cadr x)) *brr-globals*)))

; It is tempting to get the following value of boot-strap from state-vars.  But
; some calls of translate11 supply state-vars using (default-state-vars nil),
; which sets field :boot-strap-flg to nil.  So we pay the price of checking the
; boot-strap-flg directly in wrld.  This seems a relatively minor deal, since
; presumably makunbound-global and put-global are not called by users all that
; often.  If performance becomes an issue, we can try deal with the issue at
; that point.

                 (and (global-val 'boot-strap-flg wrld)
                      (not (or (always-boundp-global (cadr (cadr x)))
                               (member-eq (cadr (cadr x)) *brr-globals*))))))
           (cond ( ; Keep this case the same as its twin above
                  (not (and (consp (cadr x))
                            (eq (car (cadr x)) 'quote)
                            (null (cddr (cadr x)))
                            (symbolp (cadr (cadr x)))))
                  (trans-er+ x ctx
                             "The first arg of ~x0 must be a quoted symbol, ~
                              unlike ~x1.  We make this requirement in ~
                              support of untouchable-vars."
                             (car x) (cadr x)))
                 ( ; Keep this case the same as its twin above
                  (and (member-eq (cadr (cadr x))
                                  (global-val 'untouchable-vars wrld))
                       (not (member-eq (cadr (cadr x))
                                       (access state-vars state-vars
                                               :temp-touchable-vars))))
                  (trans-er ctx
                            "State global variable ~x0 has been rendered ~
                             untouchable and thus may not be directly ~
                             altered, as in ~x1.~@2"
                            (cadr (cadr x))
                            x
                            (let ((set-fn (intern-in-package-of-symbol
                                           (concatenate 'string
                                                        "SET-"
                                                        (symbol-name (cadr (cadr x))))
                                           (cadr (cadr x)))))
                              (cond ((function-symbolp set-fn wrld)
                                     (msg "~|There is a function ~x0, which ~
                                           (from the name) may provide the ~
                                           functionality you desire."
                                          set-fn))
                                    (t "")))))
                 ((always-boundp-global (cadr (cadr x)))
                  (trans-er ctx
                            "Built-in state global variables may not be made ~
                             unbound, as in ~x0."
                            x))
                 (t ; (global-val 'boot-strap-flg wrld)
                  (trans-er ctx
                            "State global ~x0 needs to be declared for the ~
                             build by adding it to *initial-global-table*, ~
                             *initial-ld-special-bindings*, or *brr-globals*."
                            (cadr (cadr x))))))
          (t
           (let ((stobjs-out (translate-deref stobjs-out bindings))
                 (stobjs-out2 (let ((temp (translate-deref (car x) bindings)))
                                (cond (temp temp)
                                      (t (stobjs-out (car x) wrld))))))
             (translate11-call x (car x) (cdr x) stobjs-out stobjs-out2
                               bindings known-stobjs (car x) flet-alist
                               ctx wrld state-vars)))))
   ((arity (car x) wrld)
    (trans-er ctx
              "~x0 takes ~#1~[no arguments~/1 argument~/~x2 ~
               arguments~] but in the call ~x3 it is given ~#4~[no ~
               arguments~/1 argument~/~x5 arguments~].   The formal ~
               parameters list for ~x0 is ~X67."
              (car x)
              (zero-one-or-more (arity (car x) wrld))
              (arity (car x) wrld)
              x
              (zero-one-or-more (length (cdr x)))
              (length (cdr x))
              (formals (car x) wrld)
              nil))
   ((eq (car x) 'declare)
    (trans-er ctx
              "It is illegal to use DECLARE as a function symbol, as ~
               in ~x0.  DECLARE forms are permitted only in very ~
               special places, e.g., before the bodies of function ~
               definitions, LETs, and MV-LETs.  DECLARE forms are ~
               never permitted in places in which their ``values'' ~
               are relevant.  If you already knew this, it is likely ~
               you have made a typographical mistake, e.g., including ~
               the body in the DECLARE form or closing the superior ~
               form before typing the body."
              x))
   (t (trans-er+ x ctx
                 "The symbol ~x0 (in package ~x1) has neither a function nor ~
                  macro definition in ACL2.  ~#2~[Please define ~
                  it.~/Moreover, this symbol is in the main Lisp package; ~
                  hence, you cannot define it in ACL2.~]"
                 (car x)
                 (symbol-package-name (car x))
                 (if (equal (symbol-package-name (car x))
                            *main-lisp-package-name*)
                     1
                   0)))))

(defun translate11-lst (lst stobjs-out bindings known-stobjs
                            msg flet-alist cform ctx wrld state-vars)

; WARNING: This function's treatment of stobjs-out is unusual:
; (1) stobjs-out must be either t, nil, or list of stobj flags.
;     It CANNOT be a function name (``an unknown'').
; (2) If stobjs-out is nil, it is treated as though it were a list of
;     nils as long as lst.

; If stobjs-out is t, we translate each element of lst (with stobjs-out t)
; and return the resulting list.

; If stobjs-out is not t, it is a list of stobj flags as long as lst.
; We consider each element, x, of list in correspondence with each
; flag, flg.  If flg is nil, we insist that the translation of x
; return one non-stobj result.  If flg is a stobj, we insist that x BE
; flg -- except that x ``is'' a stobj, flg, only if x is flg and x is
; among known-stobjs (with proper treatment of known-stobjs = t).

; Msg is used to describe the form that contains the list, lst, of
; forms being translated.  It is only used if an error is caused when
; some element of lst violates the stobj restrictions of stobjs-out.
; If msg is nil, no allusion to the containing form is made.  If msg
; is a symbol, we describe the containing form as though it were a
; call of that function symbol.  Otherwise, we print msg with ~@ in
; ``the form x is being used, @msg, where a stobj...''.

; The cform argument is a form that provides context -- it is the one to be
; printed by trans-er+ when there isn't another obvious contextual form to
; print.  (Often x carries enough context.)

  (cond ((atom lst) (trans-value nil))
        ((eq stobjs-out t)
         (trans-er-let*
          ((x (translate11 (car lst) t bindings known-stobjs flet-alist
                           (car lst) ctx wrld state-vars))
           (y (translate11-lst (cdr lst) t bindings known-stobjs msg flet-alist
                               cform ctx wrld state-vars)))
          (trans-value (cons x y))))
        ((car stobjs-out)
         (trans-er-let*
          ((x (cond
               ((eq (if (or (eq known-stobjs t)
                            (member-eq (car lst) known-stobjs))
                        (car lst)
                      nil)
                    (car stobjs-out))
                (trans-value (car lst)))

; The following case is checked to allow our use of big-clock-entry to control
; recursion, a violation of our normal rule that state-producing forms are not
; allowed where STATE is expected (except when binding STATE).  We have to look
; for the unexpanded form of the macro f-decrement-big-clock as well.

               ((and (eq (car stobjs-out) 'state)
                     (or (equal (car lst)
                                '(decrement-big-clock state))
                         (equal (car lst)
                                '(f-decrement-big-clock state))))
                (trans-value '(decrement-big-clock state)))
               ((eq (car lst) (car stobjs-out))

; In this case, we failed because (car lst) is not considered a stobj even
; though it has the right name.

                (let ((known-stobjs (collect-non-x nil known-stobjs)))
                  (trans-er+ cform ctx
                             "The form ~x0 is being used~#1~[ ~/, as an ~
                              argument to a call of ~x2,~/, ~@2,~] where the ~
                              single-threaded object of that name is ~
                              required.  But in the current context, ~
                              ~#3~[there are no declared stobj names~/the ~
                              only declared stobj name is ~&4~/the only ~
                              declared stobj names are ~&4~]."
                             (car lst)
                             (if (null msg) 0 (if (symbolp msg) 1 2))
                             msg
                             (cond ((null known-stobjs) 0)
                                   ((null (cdr known-stobjs)) 1)
                                   (t 2))
                             known-stobjs)))
               ((and (symbolp (car lst))
                     (congruent-stobjsp (car lst)
                                        (car stobjs-out)
                                        wrld))
                (trans-er+ cform ctx
                             "The form ~x0 is being used~#1~[ ~/, as an ~
                              argument to a call of ~x2,~/, ~@2,~] where the ~
                              single-threaded object ~x3 was expected, even ~
                              though these are congruent stobjs.  See :DOC ~
                              defstobj, in particular the discussion of ~
                              congruent stobjs."
                             (car lst)
                             (if (null msg) 0 (if (symbolp msg) 1 2))
                             msg
                             (car stobjs-out)))
               (t (trans-er+ cform ctx
                             "The form ~x0 is being used~#1~[ ~/, as an ~
                              argument to a call of ~x2,~/, ~@2,~] where the ~
                              single-threaded object ~x3 is required.  Note ~
                              that the variable ~x3 is required, not merely a ~
                              term that returns such a single-threaded ~
                              object, so you may need to bind ~x3 with LET; ~
                              see :DOC stobj."
                             (car lst)
                             (if (null msg) 0 (if (symbolp msg) 1 2))
                             msg
                             (car stobjs-out)))))
           (y (translate11-lst (cdr lst) (cdr stobjs-out)
                               bindings known-stobjs msg flet-alist cform ctx
                               wrld state-vars)))
          (trans-value (cons x y))))
        (t (trans-er-let*
            ((x (translate11 (car lst) '(nil) bindings known-stobjs flet-alist
                             (car lst) ctx wrld state-vars))
             (y (translate11-lst (cdr lst) (cdr stobjs-out)
                                 bindings known-stobjs msg flet-alist cform ctx
                                 wrld state-vars)))
            (trans-value (cons x y))))))

)

(defun translate1-cmp (x stobjs-out bindings known-stobjs ctx w state-vars)

; See also translate1 for a corresponding version that also returns state.

; Stobjs-out should be t, a proper STOBJS-OUT setting, a function symbol, or
; the symbol :stobjs-out.

; Stobjs-out t means we do not enforce mv-let or stobjs restrictions.  A proper
; STOBJS-OUT setting (a list of stobj flags) enforces the given restrictions.
; A function symbol means we enforce the rules and determine the stobjs-out,
; binding the symbol in the returned bindings alist.  In addition, a function
; symbol tells us we are in a definition body and enforce certain rules
; prohibiting calls of functions like DEFUN and IN-PACKAGE.  The symbol
; :stobjs-out -- which is not a function symbol -- has the same meaning as a
; function symbol except that it tells us we are NOT processing a definition
; body.  As is noted below, if the initial stobjs-out is :stobjs-out, bindings
; MUST be '((:stobjs-out . :stobjs-out)) and we use (eq (caar bindings)
; :stobjs-out) to determine that we are not in a definition.

; CAUTION: If you call this function with stobjs-out being a symbol, say fn,
; make sure that

; (a) fn is bound to itself in bindings, e.g., bindings = ((fn . fn)), and
; (b) fn is not an existing function name in w, in particular, it must not have
;     a STOBJS-OUT setting, since that is what we use fn to compute.

; In general, bindings is a list of pairs, one for each fn in the clique being
; introduced, and each is initially bound to itself.  If a function symbol is
; not bound in bindings, its STOBJS-OUT is obtained from w.

; Known-stobjs is either a list of stobj names (but may contain some NIL
; elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or T (meaning, all stobj names in world w).  A name
; is considered a stobj only if it is in this list.

; State-vars is a state-vars record, typically (default-state-vars t) unless
; one does not have state available, and then (default-state-vars nil).

; We return (mv erp transx bindings), where transx is the translation and
; bindings has been modified to bind every fn (ultimately) to a proper stobjs
; out setting.  Use translate-deref to recover the bindings.

  (trans-er-let*
   ((result
     (translate11 x stobjs-out bindings known-stobjs nil x ctx w state-vars)))
   (cond ((and bindings
               (null (cdr bindings))
               (symbolp (caar bindings))
               (eq (caar bindings) (cdar bindings)))

; This case can happen because x is the call of a non-executable function.  We
; return a proper stobjs-out value, for example as passed by trans-eval to
; ev-for-trans-eval.  This treatment is necessary for the following example, to
; avoid being unable to determine the output signature of g.

; (defun-nx f (x) x)
; (defun g (x) (f x))

; This treatment is consistent with our use of stobjs-out = (nil) for
; non-executable functions.

          (trans-value result
                       (translate-bind (caar bindings) '(nil) bindings)))
         (t (trans-value result)))))

(defun@par translate1 (x stobjs-out bindings known-stobjs ctx w state)
  (cmp-and-value-to-error-quadruple@par
   (translate1-cmp x stobjs-out bindings known-stobjs ctx w
                   (default-state-vars t))))

(defun collect-programs (names wrld)
; Names is a list of function symbols.  Collect the :program ones.

  (cond ((null names) nil)
        ((programp (car names) wrld)
         (cons (car names) (collect-programs (cdr names) wrld)))
        (t (collect-programs (cdr names) wrld))))

; The following is made more efficient below by eliminating the mutual
; recursion.  This cut the time of a proof using bdds by nearly a factor of 4;
; it was of the form (implies (pred n) (prop n)) where pred has about 1800
; conjuncts.  The culprit was the call(s) of all-fnnames in bdd-rules-alist1, I
; think.

; (mutual-recursion
;
; (defun all-fnnames (term)
;   (cond ((variablep term) nil)
;         ((fquotep term) nil)
;         ((flambda-applicationp term)
;          (union-eq (all-fnnames (lambda-body (ffn-symb term)))
;                    (all-fnnames-lst (fargs term))))
;         (t
;          (add-to-set-eq (ffn-symb term)
;                         (all-fnnames-lst (fargs term))))))
;
; (defun all-fnnames-lst (lst)
;   (cond ((null lst) nil)
;         (t (union-eq (all-fnnames (car lst))
;                      (all-fnnames-lst (cdr lst))))))
; )

(defun all-fnnames1 (flg x acc)

; Flg is nil for all-fnnames, t for all-fnnames-lst.  Note that this includes
; function names occuring in the :exec part of an mbe.  Keep this in sync with
; all-fnnames1-exec.

  (cond (flg ; x is a list of terms
         (cond ((null x) acc)
               (t (all-fnnames1 nil (car x)
                                (all-fnnames1 t (cdr x) acc)))))
        ((variablep x) acc)
        ((fquotep x) acc)
        ((flambda-applicationp x)
         (all-fnnames1 nil (lambda-body (ffn-symb x))
                       (all-fnnames1 t (fargs x) acc)))
        (t
         (all-fnnames1 t (fargs x)
                       (add-to-set-eq (ffn-symb x) acc)))))

(defmacro all-fnnames (term)
  `(all-fnnames1 nil ,term nil))

(defmacro all-fnnames-lst (lst)
  `(all-fnnames1 t ,lst nil))

(defun translate-cmp (x stobjs-out logic-modep known-stobjs ctx w state-vars)

; See translate.  Here we return a context-message pair; see the Essay on
; Context-message Pairs.  State-vars is a state-vars record, typically
; (default-state-vars t) unless one does not have state available, and then
; (default-state-vars nil).

  (mv-let (erp val bindings)
          (translate1-cmp x stobjs-out nil known-stobjs ctx w state-vars)
          (declare (ignore bindings))
          (cond (erp ; erp is a ctx and val is a msg
                 (mv erp val))
                ((and logic-modep
                      (program-termp val w))
                 (er-cmp ctx
                         "Function symbols of mode :program are not allowed ~
                          in the present context.  Yet, the function ~
                          symbol~#0~[ ~&0 occurs~/s ~&0 occur~] in the ~
                          translation of the form~|~%  ~x1,~%~%which is~|~%  ~
                          ~x2."
                         (collect-programs (all-fnnames val) w)
                         x
                         val))
                (t (value-cmp val)))))

(defun@par translate (x stobjs-out logic-modep known-stobjs ctx w state)

; This is the toplevel entry into translation throughout ACL2,
; excepting translate-bodies, which translates the bodies of
; definitions.  The output of translate is (mv erp transx state).

; Stobjs-out should be
; * t           - to indicate that we are translating only for logical use, as
;                 in theorems etc.  Do NOT use t for defuns, defmacros,
;                 defconst, or other events involving Common Lisp execution.

; * (s1 ... sn) - where each si is either nil or a stobj name (possibly
;                 STATE) to indicate that the mv-let and stobj
;                 restrictions should be enforced AND that x is to have
;                 the indicated stobj signature.  See the Essay on
;                 STOBJS-IN and STOBJS-OUT.

; Logic-modep should be set when we want to ensure that the resulting
; term does not mention any function symbols of defun-mode :program.
; This check is NOT made on-the-fly (in translate1) but as an
; after-the-fact convenience here.

; Known-stobjs is either a list of stobj names (but may contain some NIL
; elements, to be ignored; see "slight abuse" comment in
; chk-acceptable-defuns1) or T (meaning, all stobj names in world w).  A name
; is considered a stobj only if it is in this list.

  (cmp-to-error-triple@par
   (translate-cmp x stobjs-out logic-modep known-stobjs ctx w
                  (default-state-vars t))))

(defun translatable-p (form stobjs-out bindings known-stobjs ctx wrld)
  (mv-let (erp val bindings)
          (translate1-cmp form stobjs-out bindings known-stobjs ctx wrld
                          (default-state-vars nil))
          (declare (ignore val bindings))
          (null erp)))

(defmacro chk-translatable (form shape)
  `(translate-and-test
    (lambda (qform)
      (cond ((translatable-p (cadr qform)
                             ',(cond ((eq shape 'state)
                                      '(state))
                                     (t (cdr shape)))
                             nil t 'chk-translatable
                             world)
             t)
            (t (msg "IO? was given the following body, which fails to ~
                     translate for the expected shape, STATE:~|~  ~y0"
                    ',form))))
    ',form))

; We now move on to the definition of the function trans-eval, which
; evaluates a form containing references to the free variable STATE,
; and possibly to other stobj names, by binding 'STATE to the given
; state and the other stobj names to their current values in that
; state.  Consing STATE and other stobjs into a list is a gross
; violation of our rules on the use of stobjs.  We believe it is
; legitimate in the special case that a stobj variable name is used in
; the appropriate places in the form, a check that we can make by
; translating the form and inspecting the STOBJS-IN and STOBJS-OUT.
; We arrange to admit trans-eval to the logic by special dispensation.

(defun replaced-stobj (name)
  (if (eq name 'STATE)
; This is just an optimization because it is so common.
      'REPLACED-STATE
    (packn (list "REPLACED-" name))))

(defun replace-stobjs1 (stobjs-out val)
  (cond ((endp val) val)
        ((car stobjs-out)
         (cons (replaced-stobj (car stobjs-out))
               (replace-stobjs1 (cdr stobjs-out) (cdr val))))
        (t (cons (car val)
                 (replace-stobjs1 (cdr stobjs-out) (cdr val))))))

(defun replace-stobjs (stobjs-out val)

; Replace the stobj objects indicated by the stobj flags in stobjs-out
; by an ordinary symbol derived from the stobj name.  In the case that
; the stobj objects are the live ones, this is crucial to do before
; returning out of trans-eval.  Val is either a single value or a list
; of 2 or more values, as indicated by stobjs-out.  If stobjs-out is
; nil it is treated as a list of as many nils as necessary and no
; change is made to val.

  (cond ((null stobjs-out) val)
        ((null (cdr stobjs-out))
         (cond ((car stobjs-out)
                (replaced-stobj (car stobjs-out)))
               (t val)))
        (t (replace-stobjs1 stobjs-out val))))

; The following is from an old attempt to make the read-eval-print loop handle
; free variables as references to globals.  We abandoned this attempt because
; the LAMBDA abstraction handling introduced by mv-let was forcing globals to
; be evaluated before they had been set, making it confusing which value of a
; global was to be used.  We have left in trans-eval the code that used this,
; within comments.  Note that such an attempt now would need to change
; 'untouchables to 'untouchable-vars.

; (defun build-alist (vars state)
;   (declare (xargs :guard (true-listp vars)))
;   (cond ((null vars) (value nil))
;         ((eq (car vars) 'state)
;          (build-alist (cdr vars) state))
;         ((member (car vars) (global-val 'untouchables (w state)))
;          (er soft 'trans-eval
;              "The global variable ~x0 is on untouchables."
;              (car vars)))
;         (t (er-let* ((alist (build-alist (cdr vars) state)))
;                     (value (cons (cons (car vars)
;                                        (list 'get-global
;                                              (list 'quote (car vars)) 'state))
;                                  alist))))))
;

(defun non-stobjps (vars known-stobjs w)
  (cond ((endp vars) nil)
        ((stobjp (car vars) known-stobjs w)
         (non-stobjps (cdr vars) known-stobjs w))
        (t (cons (car vars)
                 (non-stobjps (cdr vars) known-stobjs w)))))

(defun user-stobjsp (stobjs-out)
  (cond ((endp stobjs-out) nil)
        ((or (null (car stobjs-out))
             (eq (car stobjs-out) 'state))
         (user-stobjsp (cdr stobjs-out)))
        (t t)))

(defun put-assoc-eq-alist (alist1 alist2)

; Setting: A form has been evaluated, producing a state with alist1 as its
; user-stobj-alist.  The evaluation also produced some latches, which are
; alist2.  We wish to merge the latches into the user-stobj-alist of the state
; and this is the workhorse.  We know that the form returns at least one user
; stobj (and so, we know the form is not a DEFSTOBJ or DEFABSSTOBJ or its undo
; or redo).  Given this knowledge, we wish to store the new stobjs in latches
; back into the user-stobj-alist.

; Spec for this function: Both arguments are duplicate-free symbol alists.  For
; every (key . val) in alist2 we a put-assoc-eq of key and val into alist1.

  (cond ((endp alist2) alist1)

; The following clause is an optimization.  If alist1 and alist2 are equal and
; we continued as though this clause weren't here, then we would store each
; (key . val) pair of alist2 into an already identical pair of alist1,
; affecting no change of alist1.  So we can stop and return alist1 now.  (Note
; that if the two alists contained duplicate keys, this would not be an
; optimization: alist1 = alist2 = '((a . 1) (a . 2)) would yeild '((a . 1) (a
; . 2)) with this optimization in place but would yeild '((a . 2) (a . 2))
; without this optimization.)  This optimization increases the efficiency of
; trans-eval's handling of latches.  See the Essay on the Handling of
; User-Stobj-Alist in Trans-Eval.

        ((equal alist2 alist1) alist1)
        (t
         (put-assoc-eq-alist (put-assoc-eq (caar alist2)
                                           (cdar alist2)
                                           alist1)
                             (cdr alist2)))))

#-acl2-loop-only
(defun-one-output chk-user-stobj-alist (stobjs alist acc ctx)
  (if (endp alist)
      (if acc

; We use interface-er rather than (er hard ...) because we do not expect to be
; in the context of a (catch 'raw-ev-fncall ...).

          (interface-er
           "It is illegal to run ACL2 evaluators trans-eval and ~
            simple-translate-and-eval on any term that mentions a stobj that ~
            has been bound by with-local-stobj or stobj-let.  The reason is ~
            that those evaluators expect each stobj to match perfectly the ~
            corresponding global stobj that is stored in the ACL2 state.  The ~
            offending stobj name~#0~[ is~/s are~]:  ~&0."
           acc)
        t)
    (if (and (member-eq (caar alist) stobjs)
             (not (eq (symbol-value (the-live-var (caar alist)))
                      (cdar alist))))
        (chk-user-stobj-alist stobjs
                              (cdr alist)
                              (cons (caar alist) acc)
                              ctx)
      (chk-user-stobj-alist stobjs (cdr alist) acc ctx))))

(defun user-stobj-alist-safe (ctx stobjs state)
  #-acl2-loop-only
  (if stobjs ; optimization
      (chk-user-stobj-alist stobjs (user-stobj-alist state) nil ctx)
    (user-stobj-alist state))
  #+acl2-loop-only
  (declare (ignore ctx stobjs))
  (user-stobj-alist state))

(defun ev-for-trans-eval (trans vars stobjs-out ctx state aok)

; Trans is a translated term with the indicated stobjs-out, and vars is
; (all-vars term).  We return the result of evaluating trans, but formulated as
; an error triple with possibly updated state as described in trans-eval.

; This function is called by trans-eval, and is a suitable alternative to
; trans-eval when the term to be evaluated has already been translated by
; translate1 with stobjs-out = :stobjs-out.

  (let ((alist (cons (cons 'state
                           (coerce-state-to-object state))
                     (user-stobj-alist-safe 'trans-eval vars state))))
    (mv-let
     (erp val latches)
     (ev trans alist state alist nil aok)

; The first state binding below is the state produced by the evaluation of the
; form.  The second state is the first, but with the user-stobj-alist of that
; state (possibly) updated to contain the modified latches.  Note that we don't
; bother to modify the user-stobj-alist if the form's output signature does not
; involve a user-defined stobj.  The particular forms we have in mind for this
; case are DEFSTOBJ and DEFABSSTOBJ forms and their ``undoers'' and
; ``re-doers''.  They compute the state they mean and we shouldn't mess with
; the user-stobj-alist of their results, else we risk overturning carefully
; computed answers by restoring old stobjs.

     (let ((state
            (coerce-object-to-state (cdr (car latches)))))
       (let ((state
              (cond
               ((user-stobjsp stobjs-out)
                (update-user-stobj-alist
                 (put-assoc-eq-alist (user-stobj-alist state)
                                     (cdr latches))
                 state))
               (t state))))
         (cond
          (erp

; If ev caused an error, then val is a pair (str . alist) explaining the error.
; We will process it here (as we have already processed the translate errors
; that might have arisen) so that all the errors that might be caused by this
; translation and evaluation are handled within this function.

           (error1 ctx (car val) (cdr val) state))
          (t (mv nil
                 (cons stobjs-out
                       (replace-stobjs stobjs-out val))
                 state))))))))

#+acl2-par
(defun ev-w-for-trans-eval (trans vars stobjs-out ctx state aok)

; See analogous function ev-for-trans-eval.

; Parallelism wart: add an assertion that stobjs-out does not contain state (or
; any other stobj).  Perhaps the assertion should be that stobjs-out equals the
; representation for an ordinary value.

  (let ((alist (cons (cons 'state
                           (coerce-state-to-object state))
                     (user-stobj-alist-safe 'trans-eval vars state))))
    (mv-let
     (erp val)
     (ev-w trans alist
           (w state)
           (user-stobj-alist state)
           (f-get-global 'safe-mode state) (gc-off state)
           nil aok)

     (cond
      (erp

; If ev caused an error, then val is a pair (str . alist) explaining
; the error.  We will process it here (as we have already processed the
; translate errors that might have arisen) so that all the errors that
; might be caused by this translation and evaluation are handled within
; this function.

; Parallelism wart: check that the above comment is true and applicable in this
; function, even though we call ev-w instead of ev.

       (error1@par ctx (car val) (cdr val) state))
      (t (mv nil
             (cons stobjs-out
                   (replace-stobjs stobjs-out val))))))))

(defun macroexpand1* (x ctx wrld state)

; See macroexpand1*-cmp, including the Warning there to keep in sync with
; translate11.

  (cmp-to-error-triple
   (macroexpand1*-cmp x ctx wrld (default-state-vars t))))

(defun trans-eval1 (term stobjs-out ctx wrld state aok)
  (let ((vars (all-vars term)))
    (cond
     ((non-stobjps vars t wrld) ;;; known-stobjs = t
      (er soft ctx
          "Global variables, such as ~&0, are not allowed. See :DOC ASSIGN ~
           and :DOC @."
          (non-stobjps vars t wrld))) ;;; known-stobjs = t
     (t (ev-for-trans-eval term vars stobjs-out ctx state aok)))))

(defun trans-eval (form ctx state aok)

; Advice:  See if simple-translate-and-eval will do the job.

; This function translates form and then evaluates it, with 'state
; bound to state and the user's stobj names bound to their current
; values in (user-stobj-alist state).

; We return an error triple:  (mv erp val state').  If erp is t, then
; an error occurred (which has been printed into state').  State' will
; reflect changes caused to single-threaded objects prior to the
; error.

; If erp is nil, val is (stobjs-out . replaced-val), where stobjs-out
; is the stobjs out of the translated form and replaced-val is the
; value of the evaluation of form, with any output stobjs replaced by
; symbols as per replace-stobjs.  The final values of the stobjs may
; be found in (user-stobj-alist state').  Note that this change to
; state -- the storage of the final stobjs -- is done at the
; conclusion of the computation and is not directed by form.

  (let ((wrld (w state)))
    (er-let* ((form (macroexpand1* form ctx wrld state)))
      (cond
       ((and (consp form)
             (eq (car form) 'if)
             (true-listp form)
             (equal (length form) 4))

; Do some lazy evaluation, in order to avoid translating the unnecessary
; branch.

        (let ((simple-stobjs-out '(nil)))
          (er-let* ((arg0 (translate (cadr form) simple-stobjs-out nil t ctx wrld
                                     state))
                    (val0 (trans-eval1 arg0 simple-stobjs-out ctx wrld state
                                       aok)))
            (if (cdr val0) ; the actual value
                (trans-eval (caddr form) ctx state aok)
              (trans-eval (cadddr form) ctx state aok)))))
       (t
        (mv-let
         (erp trans bindings state)
         (translate1 form
                     :stobjs-out '((:stobjs-out . :stobjs-out))
                     t
                     ctx wrld state)

; Known-stobjs = t.  We expect trans-eval to be used only when the
; user is granted full access to the stobjs in state.  Of course, some
; applications of trans-eval, e.g., in eval-event-lst, first check
; that the form doesn't access stobjs or state.

         (cond
          (erp (mv t nil state))
          (t (trans-eval1 trans (translate-deref :stobjs-out bindings) ctx wrld
                          state aok)))))))))

(defun simple-translate-and-eval (x alist ok-stobj-names msg ctx wrld state
                                    aok)

; A Note on the Reason this Function Exists:

; This function is a cousin of trans-eval that is much easier to use
; in simple cases.  Trans-eval can handle any well-formed term.  Thus,
; it must have a way to communicate to the caller how many results are
; being returned and what they are.  The obvious thing for trans-eval
; to do is to list the results.  But if one of them is STATE or some
; other stobj, it cannot.  So trans-eval has a rather complicated
; interface that permits the caller to determine the mulitplicity of
; the result and whether and where the stobjs appear (or, more precisely,
; are supposed to appear) in the output vector.  See the documentation
; of trans-eval for its specification.

; This function, simple-translate-and-eval, is designed to handle more
; simply the most common case, namely, when x is supposed to be a term
; that returns one result and that result is not state or any other
; stobj.  In that case, we can return the result directly.

; While trans-eval may be used whenever translation and evaluation are
; needed, we recommend using simple-translate-and-eval if the given
; term returns a single, non-stobj result, simply because the
; interface is simpler.

; The Spec of SIMPLE-TRANSLATE-AND-EVAL: We translate x, requiring
; that it be a term that returns one non-stobj result.  We verify that
; the translation mentions no variables other than those bound in
; alist and the stobj names listed in ok-stobj-names.  We then
; evaluate the translation of x under alist', where alist' is obtained
; from alist by appending the bindings of 'state to state and
; (user-stobj-alist state).  (The extra bindings can't hurt.  The
; bindings of alist have priority.)  If no errors arise, we return a
; pair, (term .  val), where term is the translation of x and val is
; its value under alist'.

; Msg is a ~@ message that should describe x and begin with a capital
; letter.  For example, msg might be the string "The second argument
; to foo".

; Note that we call translate with logic-modep nil.  Thus, :program
; mode functions may appear in x.

; Keep in sync with simple-translate-and-eval@par.

  (er-let* ((term (translate x '(nil) nil t ctx wrld state)))

; known-stobjs = t.  We expect simple-translate-and-eval to be used
; only when the user is granted full access to the stobjs in state
; (without modification rights, of course).

           (let ((vars (all-vars term))
                 (legal-vars (append (strip-cars alist)
                                     ok-stobj-names)))
             (cond ((not (subsetp-eq vars legal-vars))
                    (er soft ctx
                        "~@0 may contain ~#1~[no variables~/only the ~
                         variable ~&2~/only the variables ~&2~], but ~
                         ~x3 contains ~&4."
                        msg
                        (cond ((null legal-vars) 0)
                              ((null (cdr legal-vars)) 1)
                              (t 2))
                        legal-vars
                        x
                        vars))
                   (t (mv-let (erp val latches)
                              (ev term
                                  (append alist
                                          (cons (cons 'state
                                                      (coerce-state-to-object
                                                       state))
                                                (user-stobj-alist-safe
                                                 'simple-translate-and-eval
                                                 (intersection-eq
                                                  ok-stobj-names
                                                  vars)
                                                 state)))
                                  state nil nil aok)
                              (declare (ignore latches))

; Parallelism wart: since we ignore latches, we should be able to create a
; version of simple-translate-and-eval that returns cmp's.

                              (cond
                               (erp (pprogn
                                     (error-fms nil ctx (car val) (cdr val)
                                                state)
                                     (er soft ctx
                                         "~@0 could not be evaluated."
                                         msg)))
                               (t (value (cons term val))))))))))

(defun error-fms-cw (hardp ctx str alist)
  (wormhole 'comment-window-io
            '(lambda (whs)
               (set-wormhole-entry-code whs :ENTER))
            (list hardp ctx str alist)
            `(let ((hardp (nth 0 (@ wormhole-input)))
                   (ctx (nth 1 (@ wormhole-input)))
                   (str (nth 2 (@ wormhole-input)))
                   (alist (nth 3 (@ wormhole-input))))
               (pprogn (error-fms hardp ctx str alist state)
                       (value :q)))
            :ld-error-action :error ; for robustness; no error is expected
            :ld-verbose nil
            :ld-pre-eval-print nil
            :ld-prompt nil))

#+acl2-par
(defmacro error-fms@par (&rest args)
  `(error-fms-cw ,@args))

(defun simple-translate-and-eval-cmp (x alist ok-stobj-names msg ctx wrld state
                                        aok safe-mode gc-off)

; Warning: Errors printed by this function are not inhibited by
; set-inhibit-output-lst.

; This version of simple-translate-and-eval returns a context-message pair; see
; the Essay on Context-message Pairs.  See simple-translate-and-eval for
; documentation, for example that translation is done under the assumption that
; the user is granted full access to the stobjs in state.

; Notice that we pass in safe-mode and gc-off explicitly, rather than reading
; them from state, because there are occasions (e.g., eval-theory-expr@par)
; where at least one of these parameters could differ from its corresponding
; state value.  But couldn't we have simply state-global-let*-bound the
; relevant state globals?  Well, no, not in contexts like eval-theory-expr@par
; that do not allow modification of state.

  (er-let*-cmp
   ((term (translate-cmp x '(nil) nil t ctx wrld (default-state-vars t))))
   (let ((vars (all-vars term))
         (legal-vars (append (strip-cars alist)
                             ok-stobj-names)))
     (cond ((not (subsetp-eq vars legal-vars))
            (er-cmp ctx
                    "~@0 may contain ~#1~[no variables~/only the variable ~
                     ~&2~/only the variables ~&2~], but ~x3 contains ~&4."
                    msg
                    (cond ((null legal-vars) 0)
                          ((null (cdr legal-vars)) 1)
                          (t 2))
                    legal-vars
                    x
                    vars))
           (t (mv-let (erp val)

; Note that because translate-cmp is called above with parameter stobjs-out =
; '(nil), we have met the requirement on ev-w; specifically, evaluation of the
; given form cannot modify any stobj.

                      (ev-w term
                            (append alist
                                    (cons (cons 'state
                                                (coerce-state-to-object
                                                 state))
                                          (user-stobj-alist-safe
                                           'simple-translate-and-eval
                                           (intersection-eq
                                            ok-stobj-names
                                            vars)
                                           state)))
                            (w state)
                            (user-stobj-alist state)
                            safe-mode gc-off nil aok)
                      (cond
                       (erp (prog2$
                             (error-fms-cw nil ctx (car val) (cdr val))
                             (er-cmp ctx
                                     "~@0 could not be evaluated."
                                     msg)))
                       (t (value-cmp (cons term val))))))))))

(defun simple-translate-and-eval-error-double (x alist ok-stobj-names msg ctx
                                                 wrld state aok safe-mode
                                                 gc-off)

; Warning: Errors printed by this function are not inhibited by
; set-inhibit-output-lst.

; This version of simple-translate-and-eval returns an error double (mv erp
; val).  See simple-translate-and-eval for documentation, for example that
; translation is done under the assumption that the user is granted full access
; to the stobjs in state.

; This function was requested by David Rager so that he could make the
; community book books/cutil/wizard.lisp thread-safe for ACL2(p).  We return an
; error double (mv erp val).

; Our plan is to introduce simple-translate-and-eval-cmp first, because we have
; nice idioms for context-message pairs.  Then we trivially define
; simple-translate-and-eval-error-double in terms of
; simple-translate-and-eval-cmp.

; See a comment in simple-translate-and-eval-cmp for why we pass in safe-mode
; and gc-off explicitly, rather than reading them from state.

  (cmp-to-error-double
   (simple-translate-and-eval-cmp x alist ok-stobj-names msg ctx wrld state
                                  aok safe-mode gc-off)))

#+acl2-par
(defun simple-translate-and-eval@par (x alist ok-stobj-names msg ctx wrld state
                                        aok safe-mode gc-off)

; This function is just an ACL2(p) wrapper for
; simple-translate-and-eval-error-double.  The history is that this function
; was defined first, but David Rager needed a version that worked in
; non-parallel ACL2 as well; see simple-translate-and-eval-error-double.

; We keep the function simple-translate-and-eval@par because of its handling in
; bodies of functions defined using defun@par according to the table
; *@par-mappings*.  See for example the call of simple-translate-and-eval@par
; in (defun@par translate-do-not-hint ...).

  (simple-translate-and-eval-error-double x alist ok-stobj-names msg ctx wrld
                                          state aok safe-mode gc-off))

(defun tilde-*-alist-phrase1 (alist evisc-tuple level)
  (cond ((null alist) nil)
        (t (cons (msg "~t0~s1 : ~Y23~|" level (caar alist) (cdar alist)
                      evisc-tuple)
                 (tilde-*-alist-phrase1 (cdr alist) evisc-tuple level )))))

(defun tilde-*-alist-phrase (alist evisc-tuple level)

; This prints out a substitution alist, e.g., ((x . a) (y . b) (z . c))
; in the form
;  x : a
;  y : b
;  z : c
; when the output is printed with ~*.

  (list "" "~@*" "~@*" "~@*"
        (tilde-*-alist-phrase1 alist evisc-tuple level)))

(defun set-temp-touchable-fns (x state)

; Keep this in sync with set-temp-touchable-vars.

; Why make the indicated check below, rather than using a guard?  Because we
; want that check to be made even when this function is called underneath
; :program mode functions, hence even when guards aren't checked.

  (cond ((or (eq x t) (symbol-listp x))
         (f-put-global 'temp-touchable-fns x state))
        (t (prog2$ (er hard 'set-temp-touchable-fns
                       "The first argument to ~x0 may must be either ~x0 or a ~
                        true list of symbols, unlike:~| ~x1"
                       'temp-touchable-fns
                       x)
                   state))))

(defun set-temp-touchable-vars (x state)

; Keep this in sync with set-temp-touchable-fns.

; Why make the indicated check below, rather than using a guard?  Because we
; want that check to be made even when this function is called underneath
; :program mode functions, hence even when guards aren't checked.

  (cond ((or (eq x t) (symbol-listp x))
         (f-put-global 'temp-touchable-vars x state))
        (t (prog2$ (er hard 'set-temp-touchable-vars
                       "The first argument to ~x0 may must be either ~x0 or a ~
                        true list of symbols, unlike:~| ~x1"
                       'temp-touchable-vars
                       x)
                   state))))

(defun clear-temp-touchable-fns (state)
  (f-put-global 'temp-touchable-fns nil state))

(defun clear-temp-touchable-vars (state)
  (f-put-global 'temp-touchable-vars nil state))

;  Note on functional programming.

; Lest anyone think that ACL2 fails to have a functional programming
; component, we here illustrate how to code some of the traditional
; function manipulating operations of Lisp in ACL2.  All these
; operations depend upon the function trans-eval.  These functions are
; at the moment not very efficient because they involve a runtime call
; to translate.  Futhermore, proving interesting theorems about these
; functions would not be easy because they are tied up with the
; ``big-clock'' story which makes our evaluator primitive recursive.
; But nevertheless it is worth pointing out that this capability at
; least exists in ACL2.

(defun mapcar$ (fn l state)

; A version of the traditional lisp mapper, e.g.
; (mapcar$ 'reverse '((1 2 3) (4 5)) state) =>
; ((3 2 1) (5 4))

  (cond ((null l) (value nil))
        (t (er-let* ((ans (trans-eval (list fn (list 'quote (car l)))
                                      'mapcar$ state t))
                     (rst (mapcar$ fn (cdr l) state)))

; Ans is (stobjs-out . replaced-val), where stobjs-out indicates where
; stobjs are located in replaced-val.  However, those stobjs have been
; replaced by simple symbols.  The final value of state produced by fn
; is state, which may be among the stobjs-out.  We just cons the
; replaced-val into our answer, which is a little peculiar since it
; may contain 'replaced-state, but it's sufficient to indicate what is
; happening and the final state has been side-effected in the proper
; sequence.

             (value (cons (cdr ans) rst))))))

(defun mapdo (fn l state)

; A mapper that simply applies the fn for side effect (on the
; free variable state), e.g.
; (mapdo '(lambda (x) (princ$ x *standard-co* state)) '(1 2 3) state)
; prints 123  and returns nil.

  (cond ((null l) (value nil))
        (t (er-let* ((ans (trans-eval (list fn (list 'quote (car l)))
                                      'mapdo state t))
                     (rst (mapdo fn (cdr l) state)))
             (value nil)))))

(defun always (fn l state)

; A universal quantifier, e.g.  (always 'rationalp '(1 2 3) state) =>
; t

  (cond ((null l) (value t))
        (t (er-let* ((ans
                      (trans-eval
                       (list fn (list 'quote (car l)))
                       'always
                       state t)))
             (cond ((null (cdr ans)) (value nil))
                   (t (always fn (cdr l) state)))))))

(defun thereis (fn l state)

; An existential quantifier, e.g.
; (thereis 'rationalp '(a 2 b) state) => '(2 B)

  (cond ((null l) (value nil))
        (t (er-let* ((ans
                      (trans-eval
                       (list fn (list 'quote (car l)))
                       'thereis
                       state t)))
             (cond ((cdr ans) (value l))
                   (t (thereis fn (cdr l) state)))))))

; Now that ev-w, translate, untranslate, and so on are all defined, let us
; populate guard-msg-table.

(table guard-msg-table nil nil
       :guard
       (and (symbolp key)
            (or (null val)
                (termp val world))))

(defmacro set-guard-msg (fn form)
  (declare (xargs :guard (symbolp fn)))
  `(table guard-msg-table
          ',fn
          (mv-let
           (erp term bindings)
           (translate1-cmp ',form
                           '(nil)        ; stobjs-out
                           nil           ; bindings
                           t             ; known-stobjs
                           'set-guard-msg ; ctx
                           world
                           (default-state-vars nil))
           (declare (ignore bindings))
           (prog2$ (and erp ; erp is ctx, term is msg
                        (er hard! erp "~@0" term))
                   term))))

(set-guard-msg the-check
               (msg "The object ~x0 does not satisfy the type declaration ~
                     ~x1.~@2"
                    (nth 2 args)
                    (nth 1 args)
                    coda))

(set-guard-msg the-check-for-*1*
               (msg "The object ~x0 does not satisfy the type declaration ~x1 ~
                     for bound variable ~x2.~@3"
                    (nth 2 args)
                    (nth 1 args)
                    (nth 3 args)
                    coda))

(set-guard-msg check-dcl-guardian
               (msg "The guard condition ~x0, which was generated from a type ~
                     declaration, has failed.~@1"
                    (untranslate (cadr args) t world)
                    coda))