File: bound-rewriter.lisp

package info (click to toggle)
acl2 8.3dfsg-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 309,408 kB
  • sloc: lisp: 3,311,842; javascript: 22,569; cpp: 9,029; ansic: 7,872; perl: 6,501; xml: 3,838; java: 3,738; makefile: 3,383; ruby: 2,633; sh: 2,489; ml: 763; python: 741; yacc: 721; awk: 260; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (1184 lines) | stat: -rw-r--r-- 46,141 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
; Centaur Miscellaneous Books
; Copyright (C) 2008-2011 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original authors: Sol Swords <sswords@centtech.com>
;                   Jared Davis <jared@centtech.com>

(in-package "ACL2")

(include-book "std/util/define" :dir :system)
(include-book "std/util/deflist" :dir :system)
(include-book "clause-processors/meta-extract-user" :dir :System)
(include-book "clause-processors/unify-subst" :dir :System)
(include-book "std/lists/mfc-utils" :dir :system)
(include-book "clause-processors/sublis-var-meaning" :dir :system)
(include-book "std/util/defaggrify-defrec" :dir :system)
(include-book "std/util/defaggregate" :dir :system)
(local (include-book "std/basic/arith-equivs" :dir :system))
(local (include-book "centaur/bitops/equal-by-logbitp" :dir :system))
(local (include-book "centaur/bitops/ihsext-basics" :dir :system))
(local (include-book "arithmetic/top-with-meta" :dir :system))


;; Linearly traverse an arithmetic comparison term and replace positive
;; occurrences with lower bounds and negative occurrences with upper bounds.

;; Terminology: If we are trying to prove the inequality
;; (< A B) or (<= A B),
;; then we can soundly [not necessarily completely] replace A by its upper
;; bound and/or B by its lower bound.  We say A is a negative occurrence and B
;; is a positive occcurrence.  If this inequality occurs in a hyp, then the
;; roles of A and B are switched.

;; Arithmetic operators +, *, -, / have simple rules:

;; If (+ A B) occurs positively then A and B are both positive occurrences, and
;; similarly for negative.
;; If (- A) occurs positively then this A is a negative occurrence, and vice versa.
;; If (* A B) occurs positively, then:
;;   - if A is known nonnegative, then B is a positive occurrence
;;   - if A is known nonpositive, then B is a negative occurrence
;; and symmetrically for B and for negative occurrences.
;; If (/ A) occurs positively, then A is a negative occurrence, and vice versa.



(defevaluator-fast boundrw-ev boundrw-ev-lst
  ;; required for meta-extract:
  ((typespec-check ts x)
   (if a b c)
   (equal a b)
   (not a)
   (iff a b)
   (implies a b)
   
   (cons a b) ;; required for unify

   ;; required for sublis-var
   (acl2-numberp x)
   (binary-* x y)
   (binary-+ x y)
   (unary-- x)
   (unary-/ x)
   (< x y)
   (car x)
   (cdr x)
   (char-code x)
   (characterp x)
   (code-char x)
   (complex x y)
   (complex-rationalp x)
   (coerce x y)
   (cons x y)
   (consp x)
   (denominator x)
   (equal x y)
   (imagpart x)
   (integerp x)
   (intern-in-package-of-symbol x y)
   (numerator x)
   (rationalp x)
   (realpart x)
   (stringp x)
   (symbol-name x)
   (symbol-package-name x)
   (symbolp x)
   (if x y z)
   (not x)

   (< a b)
   (binary-+ a b)
   (unary-- a)
   (binary-* a b)
   (unary-/ a)

   (hide a))
  :namedp t)

(def-meta-extract boundrw-ev boundrw-ev-lst)
(def-unify boundrw-ev boundrw-ev-alist)




(defthm boundrw-ev-of-sublis-var
  (implies (and (pseudo-termp x)
                (not (assoc nil alist)))
           (equal (boundrw-ev (sublis-var alist x) a)
                  (boundrw-ev x (append (boundrw-ev-alist alist a) a))))
  :hints (("goal" :use ((:functional-instance eval-of-sublis-var
                         (cterm-ev boundrw-ev)
                         (cterm-ev-lst boundrw-ev-lst)
                         (cterm-ev-alist boundrw-ev-alist))))
          (and stable-under-simplificationp
               '(:in-theory (enable boundrw-ev-of-fncall-args)))))

(local (in-theory (disable pseudo-termp pseudo-term-listp)))

;; defined everywhere
(local (defthm assoc-nonnil-of-append
         (implies x
                  (equal (assoc x (append a b))
                         (or (assoc x a) (assoc x b))))))

(defthm-simple-term-vars-flag
  (defthm boundrw-ev-of-append-substs
    (implies (and (all-keys-bound (simple-term-vars x) a)
                  (pseudo-termp x))
             (equal (boundrw-ev x (append a b))
                    (boundrw-ev x a)))
    :hints ((and stable-under-simplificationp
                 '(:expand ((simple-term-vars x))))
            (and stable-under-simplificationp
                 '(:expand ((pseudo-termp x))
                   :in-theory (enable boundrw-ev-of-fncall-args))))
    :flag simple-term-vars)
  (defthm boundrw-ev-lst-of-append-substs
    (implies (and (all-keys-bound (simple-term-vars-lst x) a)
                  (pseudo-term-listp x))
             (equal (boundrw-ev-lst x (append a b))
                    (boundrw-ev-lst x a)))
    :hints ((and stable-under-simplificationp
                 '(:expand ((simple-term-vars-lst x)))))
    :flag simple-term-vars-lst))

  


(local (in-theory (disable sublis-var)))

(std::defaggregate boundrw-subst
  ((lhs pseudo-termp)
   (rhs pseudo-termp)
   (alist pseudo-term-substp))) 

(std::deflist boundrw-substlist-p (x)
  (boundrw-subst-p x))

(set-state-ok t)

(local (defthm alistp-when-pseudo-term-substp
         (implies (pseudo-term-substp x)
                  (alistp x))
         :hints(("Goal" :in-theory (enable pseudo-term-substp)))))

; Matt K. mod, 1/7/2016: The use of (logbitp-reasoning) makes ACL2(p) with
; waterfall-parallelism enabled complain that "the form (LOGBITP-REASONING) was
; expected to represent an ordinary value, not an error triple (mv erp val
; state), as would be acceptable in a serial execution of ACL2.  So I'll turn
; off waterfall parallelism here.
(local (set-waterfall-parallelism nil))

;; Check whether a term's sign is known.  Returns :nonnegative, :nonpositive, or nil.
(define ts-check-sign ((x pseudo-termp)
                       mfc state)

  :returns (category symbolp)
  (b* ((ts (mfc-ts x mfc state :forcep nil))
       ((unless (integerp ts)) nil))
    (cond ((eql 0 (logand (lognot (logior *ts-positive-integer*
                                          *ts-positive-ratio*
                                          *ts-zero*))
                          ts))
           ;; Its typeset can't be anything other than a positive integer,
           ;; positive rational, or zero.  So it's nonnegative.
           :nonnegative)
          ((eql 0 (logand (lognot (logior *ts-negative-integer*
                                          *ts-negative-ratio*
                                          *ts-zero*))
                          ts))
           :nonpositive)
          (t nil)))
  ///
  (local (defthm logand-with-negative-when-negative
           (implies (and (< (ifix x) 0)
                         (< (ifix y) 0))
                    (not (equal 0 (logand x y))))
           :hints (("goal" :in-theory (enable* bitops::ihsext-recursive-redefs
                                               bitops::ihsext-inductions)))))
  
  (defret ts-check-sign-nonnegative-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and (equal category :nonnegative)
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (rationalp val)
                    (<= 0 val)
                    (equal (< 0 val)
                           (not (equal val 0))))))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask))
            (logbitp-reasoning)))

  (defret ts-check-sign-nonpositive-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and (equal category :nonpositive)
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (rationalp val)
                    (<= val 0)
                    (equal (< val 0)
                           (not (equal val 0))))))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask))
            (logbitp-reasoning)))

  (defthm ts-check-sign-nonnil-casesplit
    (implies (rewriting-negative-literal `(ts-check-sign ,x ,m ,s))
             (let ((category (ts-check-sign x m s)))
               (iff category
                    (or (equal category :nonpositive)
                        (equal category :nonnegative)))))))


(define ts-check-sign-strict ((x pseudo-termp)
                              mfc state)

  :returns (category symbolp)
  (b* ((ts (mfc-ts x mfc state :forcep nil))
       ((unless (integerp ts)) nil))
    (cond ((eql 0 (logand (lognot (logior *ts-positive-integer*
                                          *ts-positive-ratio*))
                          ts))
           ;; Its typeset can't be anything other than a positive integer,
           ;; positive rational, or zero.  So it's nonnegative.
           :positive)
          ((eql 0 (logand (lognot (logior *ts-negative-integer*
                                          *ts-negative-ratio*))
                          ts))
           :negative)
          (t nil)))
  ///
  (local (defthm logand-with-negative-when-negative
           (implies (and (< (ifix x) 0)
                         (< (ifix y) 0))
                    (not (equal 0 (logand x y))))
           :hints (("goal" :in-theory (enable* bitops::ihsext-recursive-redefs
                                               bitops::ihsext-inductions)))))
  
  (defret ts-check-sign-strict-positive-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and (equal category :positive)
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (rationalp val)
                    (< 0 val))))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask
; Matt K. mod 5/2016 (type-set bit for {1}):
                                 bitp-loghead-1))
            (logbitp-reasoning)))

  (defret ts-check-sign-strict-negative-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and (equal category :negative)
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (rationalp val)
                    (< val 0))))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask))
            (logbitp-reasoning)))


  (defthm ts-check-sign-strict-nonnil-casesplit
    (implies (rewriting-negative-literal `(ts-check-sign-strict ,x ,m ,s))
             (let ((category (ts-check-sign-strict x m s)))
               (iff category
                    (or (equal category :positive)
                        (equal category :negative)))))))


(define ts-check-nonzero ((x pseudo-termp)
                       mfc state)

  :returns (nonzerop)
  (b* ((ts (mfc-ts x mfc state :forcep nil)))
    (and (integerp ts)
         (eql 0 (logand (logior *ts-zero*
                                (lognot (logior *ts-positive-integer*
                                                *ts-positive-ratio*
                                                *ts-negative-integer*
                                                *ts-negative-ratio*)))
                        ts))))
  ///
  (local (defthm logand-with-negative-when-negative
           (implies (and (< (ifix x) 0)
                         (< (ifix y) 0))
                    (not (equal 0 (logand x y))))
           :hints (("goal" :in-theory (enable* bitops::ihsext-recursive-redefs
                                               bitops::ihsext-inductions)))))
  
  (defret ts-check-sign-nonzero-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and nonzerop
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (rationalp val)
                    (not (equal 0 val)))))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask
; Matt K. mod 5/2016 (type-set bit for {1}):
                                 bitp-loghead-1))
            (logbitp-reasoning))))

(define ts-check-rational ((x pseudo-termp)
                       mfc state)

  :returns (rationalp)
  (b* ((ts (mfc-ts x mfc state :forcep nil)))
    (and (integerp ts)
         (eql 0 (logand (lognot (logior *ts-positive-integer*
                                        *ts-positive-ratio*
                                        *ts-negative-integer*
                                        *ts-negative-ratio*
                                        *ts-zero*))
                        ts))))
  ///
  (local (defthm logand-with-negative-when-negative
           (implies (and (< (ifix x) 0)
                         (< (ifix y) 0))
                    (not (equal 0 (logand x y))))
           :hints (("goal" :in-theory (enable* bitops::ihsext-recursive-redefs
                                               bitops::ihsext-inductions)))))
  
  (defret ts-check-sign-rational-correct
    (b* ((val (boundrw-ev x a)))
      (implies (and rationalp
                    (boundrw-ev-meta-extract-contextual-facts a))
               (rationalp val)))
    :hints (("goal" :use ((:instance boundrw-ev-meta-extract-typeset
                           (term x)))
             :in-theory (disable boundrw-ev-meta-extract-typeset
                                 bitops::logand-with-negated-bitmask))
            (logbitp-reasoning))))




(local
 (defthmd mult-both-sides-preserves-<=
   (implies (and ;; (rationalp x)
                 ;; (rationalp y)
                 (rationalp c)
                 (<= x y)
                 (<= 0 c))
            (<= (* c x) (* c y)))
   :hints (("goal" :nonlinearp t))))

(local
 (defthmd mult-both-sides-preserves-<
   (implies (and ;; (rationalp x)
                 ;; (rationalp y)
                 (rationalp c)
                 (< x y)
                 (< 0 c))
            (< (* c x) (* c y)))
   :hints (("goal" :nonlinearp t))))

(local
 (defthm assoc-in-boundrw-ev-alist
   (implies k
            (equal (assoc k (boundrw-ev-alist x a))
                   (and (assoc k x)
                        (cons k (boundrw-ev (cdr (assoc k x)) a)))))))

(local
 (defthm all-keys-bound-in-boundrw-ev-alist
   (implies (not (member nil keys))
            (equal (all-keys-bound keys (boundrw-ev-alist x a))
                   (all-keys-bound keys x)))
   :hints(("Goal" :in-theory (enable all-keys-bound)))))

(local
 (defthm all-keys-bound-when-subsetp
   (implies (and (subsetp x y)
                 (all-keys-bound y z))
            (all-keys-bound x z))
   :hints(("Goal" :in-theory (enable subsetp all-keys-bound)))))


(defthmd boundrw-dummy-rewrite
  (implies (= a b)
           (equal (< a b) nil)))

(define boundrw-apply-bound ((x pseudo-termp)
                             (direction booleanp)
                             (bound-list boundrw-substlist-p)
                             mfc state)
  :returns (mv changedp
               (new-x pseudo-termp :hyp (and (pseudo-termp x)
                                             (boundrw-substlist-p bound-list))))
  (b* (((when (atom bound-list)) (mv nil x))
       ((boundrw-subst bound) (car bound-list))
       ((mv unify-ok subst) (simple-one-way-unify bound.lhs x bound.alist))
       ((unless unify-ok)
        (boundrw-apply-bound x direction (cdr bound-list) mfc state))
       (vars-ok (all-keys-bound (simple-term-vars bound.rhs) subst))
       ((unless vars-ok)
        (raise "Bad substitution: unbound vars in RHS: ~x0~%" bound.rhs)
        (boundrw-apply-bound x direction (cdr bound-list) mfc state))
       (subst-ok (not (assoc nil subst)))
       ((unless subst-ok)
        (raise "Bad substitution: NIL bound in unify-subst: ~x0~%" bound)
        (boundrw-apply-bound x direction (cdr bound-list) mfc state))
       ;; Check that the substitution is ok using relieve-hyp.
       (hyp (if direction
                ;; rhs is upper bound
                `(not (< ,bound.rhs ,bound.lhs))
              ;; rhs is lower bound
              `(not (< ,bound.lhs ,bound.rhs))))
       ;; (- (cw "Checking hyp: ~x0 under substitution: ~x1~%" hyp subst))
       (bound-ok
        (mfc-relieve-hyp
         hyp
         subst '(:rewrite boundrw-dummy-rewrite) '(< fake term) 1 mfc state
         :forcep nil))
       ((when bound-ok)
        (cw "~x0: relieve-hyp~%" x)
        (mv t (substitute-into-term bound.rhs subst)))
       ;; (- (cw "hyp was not relieved: ~x0~%" x))
       ;; (res (mfc-rw+ hyp subst 't nil mfc state :forcep nil))
       ;; (- (cw "result of rewriting: ~x0~%" res))
       (new-x (substitute-into-term bound.rhs subst))
       (bound-ok (mfc-ap
                  ;; term to contradict:
                  (if direction
                      ;; new-x is upper bound
                      `(< ,new-x ,x)
                    ;; new-x is lower bound
                    `(< ,x ,new-x))
                  mfc state
                  :forcep nil))
       ((when bound-ok)
        (cw "~x0: ap~%" x)
        (mv t new-x))
       (- (cw "linear failed to solve: ~x0~%" x)))
    (boundrw-apply-bound x direction (cdr bound-list) mfc state))
  ///
  (defret boundrw-apply-bound-correct
    (implies (and (boundrw-ev-meta-extract-contextual-facts a)
                  (pseudo-termp x)
                  (boundrw-substlist-p bound-list))
             (and (implies direction
                           (<= (boundrw-ev x a) (boundrw-ev new-x a)))
                  (implies (not direction)
                           (<= (boundrw-ev new-x a) (boundrw-ev x a)))))))
  

(define boundrw-rewrite ((x pseudo-termp)
                         (direction booleanp)
                         (bound-alist boundrw-substlist-p)
                         (negative-bound-alist boundrw-substlist-p)
                         &key (mfc 'mfc) (state 'state))
  :irrelevant-formals-ok t
  :verify-guards nil
  :returns (new-x pseudo-termp
                  :hyp (and (pseudo-termp x)
                            (boundrw-substlist-p bound-alist)
                            (boundrw-substlist-p negative-bound-alist)))
  (b* (((mv changed new-x) (boundrw-apply-bound x direction bound-alist mfc state))
       ((when changed) new-x))
    (cond ((atom x) x)
          ((quotep x) x)
          (t
           (case-match x
             (('binary-+ a b) (list 'binary-+
                                    (boundrw-rewrite a direction bound-alist negative-bound-alist)
                                    (boundrw-rewrite b direction bound-alist negative-bound-alist)))

             (('unary-- a) (list 'unary--
                                 (boundrw-rewrite a (not direction) negative-bound-alist bound-alist)))
             (('unary-/ a)
              (b* ((a-sign (ts-check-sign-strict a mfc state))
                   ((unless a-sign) x)
                   (b (boundrw-rewrite a (not direction) negative-bound-alist bound-alist))
                   ((when (or (and (eq a-sign :positive) (not direction))
                              (and (eq a-sign :negative) direction)))
                    ;; a is positive and b is greater or equal, or a is negative
                    ;; and b is less or equal, just by correctness of this
                    ;; function.
                    (if (ts-check-rational b mfc state)
                        `(unary-/ ,b)
                      x))
                   (b-sign (ts-check-sign-strict b mfc state)))
                (if (eq a-sign b-sign)
                    `(unary-/ ,b)
                  x)))

             (('binary-* a b)
              ;; First rewrite a based on b's type, then rewrite b based on a's
              ;; type, then if necessary, go back and look at a again.
              (b* (((unless (and (ts-check-rational a mfc state)
                                 (ts-check-rational b mfc state)))
                    x)
                   (b-type (ts-check-sign b mfc state))
                   (new-a (if b-type
                              (b* (((mv a-dir a-bound-alist a-negative-bound-alist)
                                    (if (eq b-type :nonnegative)
                                        (mv direction bound-alist negative-bound-alist)
                                      (mv (not direction) negative-bound-alist bound-alist)))
                                   (res
                                    (boundrw-rewrite a a-dir a-bound-alist a-negative-bound-alist)))
                                (if (ts-check-rational res mfc state)
                                    res
                                  a))
                            a))
                   (a-type (ts-check-sign new-a mfc state))
                   (new-b (if a-type
                              (b* (((mv b-dir b-bound-alist b-negative-bound-alist)
                                    (if (eq a-type :nonnegative)
                                        (mv direction bound-alist negative-bound-alist)
                                      (mv (not direction) negative-bound-alist bound-alist)))
                                   (res (boundrw-rewrite b b-dir b-bound-alist b-negative-bound-alist)))
                                (if (ts-check-rational res mfc state)
                                    res
                                  b))
                            b))
                   ((when (or b-type (not a-type)))
                    `(binary-* ,new-a ,new-b))
                   (b-type (ts-check-sign new-b mfc state))
                   (new-a (if b-type
                              (b* (((mv a-dir a-bound-alist a-negative-bound-alist)
                                    (if (eq b-type :nonnegative)
                                        (mv direction bound-alist negative-bound-alist)
                                      (mv (not direction) negative-bound-alist bound-alist)))
                                   (res
                                    (boundrw-rewrite a a-dir a-bound-alist a-negative-bound-alist)))
                                (if (ts-check-rational res mfc state)
                                    res
                                  a))
                            a)))
                `(binary-* ,new-a ,new-b)))

             (& x)))))
  ///
  (verify-guards+ boundrw-rewrite)

  (local (defthm reciprocal-antimonotonic-pos
           (implies (and (case-split (< 0 a))
                         (<= a b)
                         (rationalp a)
                         (rationalp b))
                    (<= (/ b) (/ a)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))


  
  (local (defthm reciprocal-antimonotonic-neg
           (implies (and (case-split (< b 0))
                         (<= a b)
                         (rationalp a)
                         (rationalp b))
                    (<= (/ b) (/ a)))
           :hints (("goal" :use ((:instance mult-both-sides-preserves-<
                                  (x (/ a)) (y (/ b))
                                  (c (* a b)))))
                   (and stable-under-simplificationp
                        '(:nonlinearp t)))))


  (local (defthm mult-monotonic-pos
         (implies (and (rationalp a)
                       (<= 0 a)
                       (<= b c))
                  (<= (* a b) (* a c)))
         :hints (("goal" :nonlinearp t))))

  (local (defthm mult-monotonic-neg
           (implies (and (rationalp a)
                         (<= a 0)
                         (<= b c))
                    (<= (* a c) (* a b)))
           :hints (("goal" :nonlinearp t))))

  ;; Each of these covers a case where we replace a with c, then b with d.
  (local (defthm mult-monotonic-pos-pos-upper
           (implies (and (<= 0 b)
                         (<= a c)
                         (<= 0 c)
                         (<= b d)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* a b) (* c d)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-pos-pos-lower
           (implies (and (<= 0 b)
                         (<= c a)
                         (<= 0 c)
                         (<= d b)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* c d) (* a b)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-pos-neg-upper
           (implies (and (<= 0 b)
                         (<= a c)
                         (<= c 0)
                         (<= d b)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* a b) (* c d)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-pos-neg-lower
           (implies (and (<= 0 b)
                         (<= c a)
                         (<= c 0)
                         (<= b d)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* c d) (* a b)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-neg-pos-upper
           (implies (and (<= b 0)
                         (<= c a)
                         (<= 0 c)
                         (<= b d)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* a b) (* c d)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-neg-pos-lower
           (implies (and (<= b 0)
                         (<= a c)
                         (<= 0 c)
                         (<= d b)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* c d) (* a b)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-neg-neg-upper
           (implies (and (<= b 0)
                         (<= c a)
                         (<= c 0)
                         (<= d b)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* a b) (* c d)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (local (defthm mult-monotonic-neg-neg-lower
           (implies (and (<= b 0)
                         (<= a c)
                         (<= c 0)
                         (<= b d)
                         (rationalp a)
                         (rationalp b)
                         (rationalp c)
                         (rationalp d))
                    (<= (* c d) (* a b)))
           :hints ((and stable-under-simplificationp
                        '(:nonlinearp t)))))

  (defret boundrw-rewrite-correct
    (b* ((old (boundrw-ev x a))
         (new (boundrw-ev new-x a)))
      (implies (and (pseudo-termp x)
                    (boundrw-substlist-p bound-alist)
                    (boundrw-substlist-p negative-bound-alist)
                    (boundrw-ev-meta-extract-contextual-facts a))
               (and (implies direction
                             (<= old new))
                    (implies (not direction)
                             (<= new old)))))
    :hints (("goal" :induct t
             :in-theory (disable COMMUTATIVITY-OF-*)))
    :rule-classes (:rewrite :linear)))


(local (defthm boundrw-ev-of-hide
         (equal (boundrw-ev `(hide ,x) a)
                (boundrw-ev x a))
         :hints (("goal" :expand ((:free (x) (hide x)))))))

(std::defaggrify-defrec rewrite-constant)
(std::defaggrify-defrec metafunction-context)

(local (in-theory (disable metafunction-context->ancestors
                           metafunction-context->rcnst
                           rewrite-constant->current-literal
                           weak-metafunction-context-p
                           weak-rewrite-constant-p)))




(define bound-rewrite-metafn ((x pseudo-termp) mfc state)
  :returns (new-x)
  :prepwork ((local (defthm dumb-unquote-guard-lemma
                      (implies (and (pseudo-termp x)
                                    (quotep x))
                               (consp (cdr x)))
                      :hints(("Goal" :in-theory (enable pseudo-termp))))))
  (b* (((unless (and (consp x) (eq (car x) '<)))
        (cw "Bound-rewrite: applied to wrong term: ~x0~%" x)
        x)
       ((unless (and (weak-metafunction-context-p mfc)
                     (weak-rewrite-constant-p
                      (metafunction-context->rcnst mfc))))
        (cw "Bound-rewrite: malformed mfc/rnst?~%")
        x)
       ((when (metafunction-context->ancestors mfc)) ;; don't use this for backchaining
        ;; this is supposed to happen so don't print a warning
        x)
       (curr-lit (rewrite-constant->current-literal
                  (metafunction-context->rcnst mfc)))
       ((unless (and (consp curr-lit)
                     (equal (cdr curr-lit) x)))
        ;; this is supposed to happen so don't print a warning
        x)
       (hyp-p (car curr-lit))
       ;; OK, now we've established that we're rewriting a clause literal and
       ;; if hyp-p, it's negated, otherwise not.

       ;; (< a b) can be replaced in a clause by
       ;; (or (hide (< a b))
       ;;     (< au bl))
       ;; where au is an upper bound for a, bl is a lower bound for b.
       ;; This equals (< a b) because (< au bl) implies (< a b).

       ;; (not (< a b)) can be replaced in a clause by
       ;; (not (and (hide (< a b))
       ;;           (< al bu)))
       ;; This is equal because (< a b) implies (< al bu).
       ((unless (and (boundp-global 'boundrw-upper-bounds state)
                     (boundp-global 'boundrw-lower-bounds state)))
        (cw "Bound-rewrite: Bounds lists don't exist~%")
        x)
       (upper-bounds (@ boundrw-upper-bounds))
       (lower-bounds (@ boundrw-lower-bounds))
       ((unless (or (consp upper-bounds) (consp lower-bounds)))
        (cw "Bound-rewrite: Bounds lists are empty~%")
        x)
       ((unless (and (boundrw-substlist-p upper-bounds)
                     (boundrw-substlist-p lower-bounds)))
        (cw "Bound-rewrite: Bounds lists are not both boundrw-substlist-ps.~%")
        x)
       
       ((list a b) (cdr x))
       (new-a (if hyp-p
                  ;; (not (< a b)) case -- replace a by lower bound
                  (boundrw-rewrite a nil lower-bounds upper-bounds)
                ;; (< a b) case -- replace a by upper bound
                (boundrw-rewrite a t upper-bounds lower-bounds)))
       (new-b (if hyp-p
                  ;; (not (< a b)) case -- replace b by upper bound
                  (boundrw-rewrite b t upper-bounds lower-bounds)
                ;; (< a b) case -- replace b by lower bound
                (boundrw-rewrite b nil lower-bounds upper-bounds)))

       ((when (and (equal new-a a) (equal new-b b)))
        ;; failed to do any replacement, stick with current term
        x)
       (new-a (sublis-var nil new-a))
       (new-b (sublis-var nil new-b))
       ((when (and (quotep new-a)
                   (quotep new-b)
                   (let ((b (unquote new-b))
                         (a (unquote new-a)))
                     (and (rationalp b)
                          (rationalp a)
                          ;; If it's going to reduce to just the HIDE term below, then skip it.
                          (if hyp-p
                              (< a b)
                            (<= b a))))))
        ;; Reduced it to NIL -- skip instead.
        x))
        
    (if hyp-p
        ;; (not (< a b)) -- use AND
        `(if (hide ,x)
             (< ,new-a ,new-b)
           'nil)
      ;; (< a b) -- use OR
      `(if (hide ,x)
           (hide ,x)
         (< ,new-a ,new-b))))
  ///
  (defthmd bound-rewrite
    (implies (and (pseudo-termp x)
                  (alistp a)
                  (boundrw-ev-meta-extract-contextual-facts a))
             (equal (boundrw-ev x a)
                    (boundrw-ev (bound-rewrite-metafn x mfc state) a)))
    :rule-classes ((:meta :trigger-fns (<)))))
             

(define boundrw-translate-subst (cmp lhs rhs freevars state)
  :returns (mv upperp (subst t))
  :mode :program
  (b* (((unless (member cmp '(< <= > >=)))
        (raise "Boundrw-hint: Malformed comparison in substitutions: ~x0~%" cmp)
        (mv nil nil))
       ((mv errp lhs) (translate-cmp lhs t nil nil 'boundrw-hint (w state)
                                     (default-state-vars t)))
       ((when errp) (er hard? errp "~@0~%" lhs) (mv nil nil))
       ((mv errp rhs) (translate-cmp rhs t nil nil 'boundrw-hint (w state)
                                     (default-state-vars t)))
       ((when errp) (er hard? errp "~@0~%" rhs) (mv nil nil))
       (lhs-vars (all-vars lhs))
       (rhs-vars (all-vars rhs))
       ((unless (symbol-listp freevars))
        (raise "Boundrw-hint: freevars must be a symbol list: ~x0~%" freevars)
        (mv nil nil))
       ((unless (subsetp (intersection$ freevars rhs-vars) lhs-vars))
        (raise
         "Boundrw-hint: Free variables must appear in the LHS if they appear in the RHS~%")
        (mv nil nil))
       (bound-vars (set-difference$ (union-eq lhs-vars rhs-vars) freevars))
       (alist (pairlis$ bound-vars bound-vars))
       (subst (make-boundrw-subst :lhs lhs :rhs rhs :alist alist)))
    (mv (consp (member cmp '(< <=))) subst)))

(define boundrw-translate-substs
  ((substs "A list of inequalities, each either the form @('(<= lhs rhs)'), @('(<
            lhs rhs)'), @('(>= lhs rhs)'), or @('(> lhs rhs)'). These are used
            as substitution rules for contexts in which @('lhs') may be replaced
            by its upper or lower bound.")
   state)
  :mode :program
  :returns (mv (upper-bounds)
               (lower-bounds))
  (b* (((when (atom substs)) (mv nil nil))
       ((mv rest-upper rest-lower)
        (boundrw-translate-substs (cdr substs) state))
       (subst (car substs))
       ((mv upperp bound)
        (case-match subst
          ((':free vars (cmp lhs rhs))
           (boundrw-translate-subst cmp lhs rhs vars state))
          ((cmp lhs rhs)
           (boundrw-translate-subst cmp lhs rhs nil state))
          (& (prog2$ (raise "Boundrw-hint: Malformed comparison in substitutions: ~x0~%" subst)
                     (mv nil nil))))))
    (if upperp
        (mv (cons bound rest-upper) rest-lower)
      (mv rest-upper (cons bound rest-lower)))))
       

       
(define rewrite-bounds-fn (substs
                         in-theory
                         wait-til-stablep
                         stablep
                         state)
  :mode :program
  (b* (((unless (or (not wait-til-stablep) stablep))
        (value nil))
       ((mv upper-bounds lower-bounds) (boundrw-translate-substs substs state))
       (state (f-put-global 'boundrw-upper-bounds upper-bounds state))
       (state (f-put-global 'boundrw-lower-bounds lower-bounds state)))
    (value `(:in-theory (cons 'bound-rewrite ,in-theory)))))

(defmacro rewrite-bounds (substs
                        &key
                        (in-theory '(enable))
                        (wait-til-stablep 't)
                        (stablep 'stable-under-simplificationp)
                        (state 'state))
  `(rewrite-bounds-fn ',substs ',in-theory ,wait-til-stablep ,stablep ,state))





(local
 (defthm hard-nonlinear-problem
   (implies (and (rationalp a)
                 (rationalp b)
                 (rationalp c)
                 (<= 0 a)
                 (<= 0 b)
                 (<= 1 c)
                 (<= a 10)
                 (<= b 20)
                 (<= c 30))
            (<= (+ (* a b c)
                   (* a b)
                   (* b c)
                   (* a c))
                (+ (* 10 20 30)
                   (* 10 20)
                   (* 20 30)
                   (* 10 30))))
   :hints (;; (and stable-under-simplificationp
           ;;      '(:nonlinearp t))
           (rewrite-bounds ((<= a 10)
                            (<= b 20)
                            (<= c 30))))))

(defxdoc rewrite-bounds
  :short "Substitute upper bounds and lower bounds for subterms in comparisons."
  :long " <p>Replace expressions by upper and lower bounds for them inside
inequalities.  Usage, as a computed hint:</p>

@({
 (rewrite-bounds ((<= a 10)
                  ;; replace the variable a by 10 in upper-boundable contexts

                  (:free (b) (> (foo b c) (bar b)))
                  ;; replace (foo b c), for any b, by (bar b) in
                  ;; lower-boundable contexts (note: C is not a free variable)

                  ...)

                  ;; optional keywords:

                  ;; theory to use in addition to the bound-rewrite meta rule
                  ;; -- default is (enable), i.e., the ambient theory for the
                  ;; event
                  :in-theory (enable foo bar)

                  ;; wait until stable under simplification (default t)
                  :wait-til-stablep nil)
  })

<p>Here, lower-boundable contexts are locations where decreasing the
subexpression makes the goal stronger, and upper boundable contexts are
locations where increasing the value of the subexpression makes the goal
stronger (the new goal implies the original goal).  More on this below.</p>

<p>Note that performing such replacements may change a theorem to a
non-theorem.  Actually, this procedure leaves the original literals behind
inside @('hide') forms, but it still is best to be careful to apply this
strategy in the right places.</p>

<h3>Details</h3>

<p>ACL2 has a powerful nonlinear arithmetic decision procedure, but
often it stalls on relatively simple proofs.  For example, it goes out to
lunch on this problem:</p>

@({
 (defthm hard-nonlinear-problem
   (implies (and (rationalp a)
                 (rationalp b)
                 (rationalp c)
                 (<= 0 a)
                 (<= 0 b)
                 (<= 1 c)
                 (<= a 10)
                 (<= b 20)
                 (<= c 30))
            (<= (+ (* a b c)
                   (* a b)
                   (* b c)
                   (* a c))
                (+ (* 10 20 30)
                   (* 10 20)
                   (* 20 30)
                   (* 10 30))))
   :hints ((and stable-under-simplificationp
                '(:nonlinearp t))))
 })

<p>This can be proved using a fairly simple argument: each variable only occurs
in the conclusion in a context where the LHS expression increases monotonically
as it increases (because the rest of the variables are nonnegative).
Therefore, to find the upper bound for the LHS expression, set each variable to
its upper bound.  This upper bound is the same as the RHS, and the comparison
is non-strict, so the conclusion holds.</p>

<p>The computed hint @('rewrite-bounds') can run this sort of proof: it
replaces subterms within comparisons with user-provided upper or lower bounds,
depending on the context in which they occur.  In this theorem all of the
occurrences of the variables in the conclusion are upper-boundable instances,
because replacing them by some larger expression results in a new conjecture
that implies the original conjecture.  So we can use the following hint to
prove the theorem instantaneously:</p>

@({
 (rewrite-bounds ((<= a 10)
                  (<= b 20)
                  (<= c 30)))
 })

<p>This instructs our metafunction to replace @('a') by 10, @('b') by 20, and
@('c') by 30 when it encounters them in upper-boundable contexts.  It will also
only do the replacement if it can prove that the inequality holds in its
context.</p>

<p>A final detail: Observe that the occurrence of @('a') in @('(<= 0 a)') is
also an upper-boundable context.  However, performing the replacement here
would be bad because it would destroy the information that @('a') is
nonnegative.  In particular, replacing @('a') by its bound here would result in
a trivially true hypothesis.  The meta rule avoids making such replacements
when it can determine that they are trivial.</p>

<h3>Boundable Contexts</h3>

<p>The rules used for determining which contexts are upper or lower boundable
are as follows.</p>

<table>
<tr><th>Preconditions</th>
    <th>Results</th>
</tr>
<tr><td>@('(< a b)') or @('(<= a b)') in hypothesis/negated literal</td>
    <td>@('a') lower boundable, @('b') upper boundable</td>
</tr>
<tr><td>@('(< a b)') or @('(<= a b)') in conclusion/non-negated literal</td>
    <td>@('a') upper boundable, @('b') lower boundable</td>
</tr>
<tr><td>@('(+ a b)') in upper/lower boundable context</td>
    <td>@('a'), @('b') upper/lower boundable</td>
</tr>
<tr><td>@('(- a)') in upper/lower boundable context</td>
    <td>@('a') lower/upper boundable</td>
</tr>
<tr><td>@('(* a b)') in upper/lower boundable context, @('b') nonnegative</td>
    <td>@('a') upper/lower boundable</td>
</tr>
<tr><td>@('(* a b)') in upper/lower boundable context, @('b') nonpositive</td>
    <td>@('a') lower/upper boundable</td>
</tr>
<tr><td>@('(/ a)') in upper/lower boundable context, @('a') positive/negative</td>
    <td>@('a') lower/upper boundable if bound is also positive/negative</td>
</tr>
</table>

<h3>Future work</h3>

<ul>
<li>Add better control over replacements</li>
<li>Add more boundable contexts</li>
<li>Add more smarts to prevent bad replacements.</li>
</ul>")


(local
 (progn
   (defstub a () nil)
   (defstub b () nil)
   (defstub c () nil)
   (defstub d () nil)

   (in-theory (disable <-*-left-cancel
                       <-*-right-cancel
                       commutativity-of-*
                       (tau-system)))

   (defthm mult-monotonic-neg-pos-lower-foo
     (implies (and (<= (b) 0)
                   (<= (a) (c))
                   (<= 0   (c))
                   (<= (d) (b))
                   (rationalp (a))
                   (rationalp (b))
                   (rationalp (c))
                   (rationalp (d)))
              (<= (* (c) (d)) (* (a) (b))))
     :hints ((rewrite-bounds ((<= (a) (c))
                            (<= (d) (b))))))

   (defthm mult-monotonic-neg-pos-lower-foo2
     (implies (and (<= b 0)
                   (<= a c)
                   (<= 0   c)
                   (<= d b)
                   (rationalp a)
                   (rationalp b)
                   (rationalp c)
                   (rationalp d))
              (<= (* c d) (* a b)))
     :hints ((rewrite-bounds ((<= a c)
                            (<= d b)))))))




#||

dead code
(define boundrw-alist-okp ((alist boundrw-substlist-p)
                           (direction booleanp)
                           a)
  ;; Each key of alist is a term and each value is that term's bound.
  ;; If direction is T, then they are upper bounds, and if NIL, lower bounds.
  :returns (ok)
  (b* (((when (atom alist)) t)
       ((unless (mbt (consp (car alist))))
        (boundrw-alist-okp (cdr alist) direction a))
       ((cons key val) (car alist))
       (kv (boundrw-ev key a))
       (vv (boundrw-ev val a)))
    (and (rationalp kv)
         (rationalp vv)
         (if direction
             (<= kv vv)
           (<= vv kv))
         (boundrw-alist-okp (cdr alist) direction a)))
  ///
  (defret boundrw-alist-ok-correct
    (implies (and ok
                  (hons-assoc-equal x alist))
             (let ((bound (cdr (hons-assoc-equal x alist))))
               (and (rationalp (boundrw-ev bound a))
                    (implies direction
                             (not (< (boundrw-ev bound a)
                                     (boundrw-ev x a))))
                    (implies (not direction)
                             (not (< (boundrw-ev x a)
                                     (boundrw-ev bound a))))))))

  (defcong iff equal (boundrw-alist-okp alist direction a) 2))

||#