1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
|
;;; ============================================================================
;;; terms-as-dag.lisp
;;; TÃtulo: Storing first--order terms as dags
;;; ============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "terms-as-dag")
|#
(in-package "ACL2")
(include-book "dag-unification-rules")
;;; ============================================================================
;;;
;;; 0) Introducción
;;;
;;; ============================================================================
;;; In this book ({\tt terms-as-dag.lisp}), we define a function to
;;; store first--order terms (respresented in standard list/prefix
;;; notation) as directed acyclic graphs (dags), with shared
;;; variables. This function is essential (it is the first step) in the
;;; design of a unification algorithm using a dag representation.
;;; The following function {\tt term-as-dag-l} (with its main auxiliary
;;; function {\tt term-as-dag-aux-l}) receives as input a first--order
;;; term and a graph and returns a graph that stores the input terms
;;; (following the conventions explained in the book {\tt
;;; dags.lisp}). Note that the result is a graph such that the term
;;; pointed by the index @0@ is the input term:
(defun term-as-dag-aux-l (flg term g h variables)
(if flg
(if (variable-p term)
(let* ((bound (assoc term variables))
(g (update-dagi-l h (if bound (cdr bound) (cons term t)) g))
(new-variables (if bound variables (acons term h variables))))
(mv g (1+ h) nil new-variables))
(mv-let (g h1 hsl var1)
(term-as-dag-aux-l nil (cdr term) g (1+ h) variables)
(let* ((g (update-dagi-l h (cons (car term) hsl) g)))
(mv g h1 nil var1))))
(if (endp term)
(mv g h term variables)
(mv-let (g hcar ign varcar)
(term-as-dag-aux-l t (car term) g h variables)
(declare (ignore ign))
(mv-let (g hcdr hsl varcdr)
(term-as-dag-aux-l nil (cdr term) g hcar varcar)
(mv g hcdr (cons h hsl) varcdr))))))
(defun term-as-dag-l (term g)
(mv-let (g h hs var)
(term-as-dag-aux-l t term g 0 nil)
(declare (ignore h hs var))
g))
;;; Example:
; ACL2 !>(term-as-dag-l
; '(f (h x) y (k (g (k y) (k x z))))
; '(nil nil nil nil nil nil nil nil nil nil nil))
; ((F 1 3 4) (H 2) (X . T)
; (Y . T)
; (K 5) (G 6 8) (K 7) 3 (K 9 10) 2 (Z . T))
;;; The main auxiliary function {\tt term-as-dag-aux-l} is defined
;;; recursively in the structure of the term stored. The flag @flg@
;;; indicates if @term@ is considered to be a term or a list of terms,
;;; as usual. The argument @h@ is an index in the graph @g@; from this index
;;; on, the term is going to be stored in the graph. Since the term is
;;; stored with shared variables, the argument @variables@ stored a
;;; association list, associating variables previously stored with the
;;; corresponding index of the node where the variable is already stored
;;; in the graph.
;;; This function returns a multivalue with four values. The first one
;;; is the new graph obtained, the second is the first available index
;;; after the proccess, the third (only makes sense for the case of
;;; lists of terms) is the list of initial indices where each of the
;;; terms of the list have been stored, and the fourth is the new
;;; association list of variables to indices, extending the input
;;; association list.
;;; Our goal in this book is to verify this function, showing that it
;;; sores a term in the conditions required by the rules of
;;; transformation of a unification algorithm acting on term dags (see
;;; {\tt dag\--unification\--rules\-.lisp}. That is, we prove the
;;; following theorems (the predicate {\tt empty-graph-p} describes
;;; graphs with @nil@ in all its positions):
; (defthm term-as-dag-l-term-graph-p
; (implies (and (empty-graph-p g) (term-p term))
; (term-graph-p (term-as-dag-l term g))))
; (defthm term-as-dag-l-dag-p
; (implies (and (empty-graph-p g) (term-p term))
; (dag-p (term-as-dag-l term g))))
; (defthm term-as-dag-l-stores-term
; (implies (and (empty-graph-p g) (term-p term))
; (equal (dag-as-term-l t 0 (term-as-dag-l term g))
; term)))
; (defthm term-as-dag-l-no-duplicatesp-variables
; (implies (and (empty-graph-p g) (term-p term))
; (no-duplicatesp
; (list-of-term-dag-variables (term-as-dag-l term g))))
;;; These theorems ensure that we can use the function @term-as-dag@ to
;;; store well--formed unification problems (see the book {\tt
;;; dag-unification-rules.lisp}). In fact, in the last section of this
;;; book, we define and verify a function that (using the above function
;;; {\tt term-as-dag-l}) stores a given unification problem as directed
;;; acyclicic graph.
;;; Finally, note that for the moment we are not talking about
;;; single--threaded objects. But later (book {\tt
;;; dag-unification-st.lisp}), we will use the properties of
;;; these functions to verify an analogue functions defined using stobjs
;;; (that is, the graph obtained will be destructively updated).
;;; The following books are used, and contain information that is
;;; relevant to understand the contents of this book:
;;; *)
;;; The book {\tt dag-unification-rules} describes the rules of
;;; transformation of unification, done with a dag representation of
;;; terms. It includes the book {\tt dags.lisp}, where it is described
;;; how term graphs are represented and the meaning of the information
;;; stored in the nodes
;;; -)
;;; ============================================================================
;;;
;;; 1) The proof strategy
;;;
;;; ============================================================================
;;; Note that verifying the function @term-as-dag-l@ may be difficult,
;;; for several reasons:
;;; *)
;;; We use an association list to avoid duplication of variables.
;;; *)
;;; The node corresponding to a function symbol is updated {\em after}
;;; the list of its arguments have been stored.
;;; *)
;;; To store a list of terms, the @cdr@ of the list is stored having
;;; as input the graph obtained after storing the @car@ of the list.
;;; *)
;;; We must ensure that the graph stored is a directed acyclic graph
;;; (as defined by @dag-p@). In particular this property has to be
;;; held in every stage of the proccess (because we need to use
;;; induction hypothesis in the proof of the theorems).
;;; -)
;;; We tried to verify the functions directly and it turned (not very
;;; surprisingly) very difficult. So we explain now the approach we
;;; followed. The main idea is to employ some kind of compositional
;;; reasoning, in order to consider the difficult issues of the proofs
;;; separately. In particular, we reason about "shared variables" and
;;; the proccess of "storing the term", separately.
;;; For that purpose, we define a version of {\tt term-as-dag-aux-l},
;;; called {\tt term-as-dag-aux-l-ns}, storing terms (or list of terms)
;;; but without the burden of getting shared variables. Note that we do
;;; not need in this case the association list of variables to indices:
(local
(defun term-as-dag-aux-l-ns (flg term g h)
(if flg
(if (variable-p term)
(let ((g (update-dagi-l h (cons term t) g)))
(mv g (1+ h) nil))
(mv-let (g h1 hsl)
(term-as-dag-aux-l-ns nil (cdr term) g (1+ h))
(let* ((g (update-dagi-l h (cons (car term) hsl) g)))
(mv g h1 nil))))
(if (endp term)
(mv g h term)
(mv-let (g hcar ign)
(term-as-dag-aux-l-ns t (car term) g h)
(declare (ignore ign))
(mv-let (g hcdr hsl)
(term-as-dag-aux-l-ns nil (cdr term) g hcar)
(mv g hcdr (cons h hsl))))))))
;;; We also define a function that makes variables to be shared in a
;;; given graph. More precisely, the following function {\tt
;;; make\--shared\--variables} receives as input a graph, an association
;;; list (associating variables to indices pointing where they appear
;;; for the first time in the graph) and a pair of indices (indicating a
;;; range), and returns a multivalue with a graph where all the
;;; variables in the range of indices are shared and a new computed
;;; association list. Note that during the proccess, if a variable node
;;; is found and the variable is bound in the associaton list to an
;;; index, then the node is updated to that index. If the variable node
;;; is not bound in the association list, then the node is not updated,
;;; but the association list is extended, binding the new variable to
;;; the current index.
(local
(defun make-shared-variables (h1 h2 g variables)
(declare (xargs :measure (nfix (- h2 h1))))
(cond ((zp (- h2 h1))
(mv g variables))
((term-dag-variable-p h1 g)
(let ((bound (assoc (term-dag-symbol h1 g) variables)))
(if bound
(let ((g (update-nth h1 (cdr bound) g)))
(make-shared-variables (1+ h1) h2 g variables))
(make-shared-variables
(1+ h1) h2 g (acons (term-dag-symbol h1 g) h1
variables)))))
(t (make-shared-variables (1+ h1) h2 g variables)))))
;;; Our strategy is as follows:
;;; *)
;;; Verify the properties of {\tt term-as-dag-aux-l-ns}, showing that
;;; stores the input term as a directed acyclic graph.
;;; *)
;;; Show that {\tt make-shared-variables} preserves those properties.
;;; *)
;;; Prove that the composition of {\tt make-shared-variables} and {\tt
;;; term-as-dag-aux-l-ns} is equal to {\tt term-as-dag-aux-l}
;;; *)
;;; Combine all the above results to prove the intended properties of
;;; {\tt term-as-dag-aux-l}. As a particular case, the properties of
;;; {\tt term-as-dag-l}.
;;; -)
;;; There is an exception to this strategy: when we prove the {\tt
;;; term-graph-p} property of the graph obtained by {\tt
;;; term-as-dag-l} (theorem {\tt term-as-dag-l-term-graph-p} above),
;;; we will reason directly with the definition of the function {\tt
;;; term-as-dag-l}.
(local (in-theory (disable assoc-val)))
;;; ============================================================================
;;;
;;; 2) Some properties related to {\tt dag-p}
;;;
;;; ============================================================================
;;; One of the main drawbacks in the proof effort described in this book
;;; is the proof that the graphs obtained are acyclic, as defined by the
;;; function @dag-p@ (see {\tt dags.lisp}). In this section we define
;;; some conditions on graphs stronger than the @dag-p@ condition.
;;; -----------------------------------
;;;
;;; 2.1) The property {\tt init-term-dag-p}
;;;
;;; -----------------------------------
;;; The property @init-term-dag-p@ defined below describes a particular
;;; type of directed acyclicic graphs: those obtained storing terms
;;; using the function @term-as-dag-l@.
;;; Note the style of the definition: we define {\em a property of
;;; nodes} ({\tt property\--element\--init\--term\--dag-p} in this
;;; case). Then we define a function ({\tt init\--term\--dag-p\--aux} in
;;; this case) checking if that property holds in a list of given
;;; nodes. Finally we define the function {\tt init\--term\--dag-p}
;;; checking the property in the list off all the nodes of a graph.
;;; A graph has the property {\tt init-term-dag-p} if every node is
;;; @nil@, or a compound node such that its arguments are bigger
;;; indices, or a variable node, or an "is" node pointing to a previous
;;; variable node:
(local
(defun smaller-than-list (h l)
(if (endp l)
t
(and (< h (car l))
(smaller-than-list h (cdr l))))))
(local
(defun property-element-init-term-dag-p (h node g)
(or (and (natp node) (< node h) (term-dag-variable-p node g))
(equal node nil)
(and (consp node)
(variable-p (car node)) (equal (cdr node) t))
(and (consp node)
(nat-true-listp (cdr node))
(smaller-than-list h (cdr node))))))
(local
(defun init-term-dag-p-aux (hs g)
(if (endp hs)
t
(and (property-element-init-term-dag-p (car hs) (nth (car hs) g) g)
(init-term-dag-p-aux (cdr hs) g)))))
(defun list-from-to (n m)
(declare (xargs :measure (nfix (- m n))
:guard (and (natp n) (natp m) (<= n m))))
(if (zp (- m n))
nil
(cons n (list-from-to (1+ n) m))))
;;; First, some properties about the function {\tt list-from-to}:
(local
(defthm list-from-to-main-property
(implies (and (natp n) (natp m))
(iff (member x (list-from-to n m))
(and (natp x) (<= n x) (< x m))))))
(local
; Renamed from nat-listp by Matt K. after v4-3, to avoid conflict with
; books/arithmetic/nat-listp.lisp.
(defun local-nat-listp (l)
(if (endp l)
t
(and (natp (car l))
(local-nat-listp (cdr l))))))
(local
(defthm list-from-to-local-nat-listp
(implies (and (natp h1) (natp h2))
(local-nat-listp (list-from-to h1 h2)))))
(local
(defthm append-list-from-to
(implies (and (natp h1) (natp h2) (natp h3)
(<= h1 h2) (<= h2 h3))
(equal (append (list-from-to h1 h2)
(list-from-to h2 h3))
(list-from-to h1 h3)))))
(local
(defun init-term-dag-p (g)
(init-term-dag-p-aux (list-from-to 0 (len g)) g)))
;;; -----------------------------------
;;;
;;; 2.2) The property {\tt tree-p}
;;;
;;; -----------------------------------
;;; A particular case of {\tt init\--term\--dag\--p} is the property
;;; {\tt tree-p}. In this case we do not allow "is" nodes. This kind iof
;;; graphs are the graphs built by the function {\tt
;;; term-as-dag-aux-l-ns}:
(local
(defun property-element-tree-p (h node)
(or (equal node nil)
(and (consp node)
(variable-p (car node)) (equal (cdr node) t))
(and (consp node)
(nat-true-listp (cdr node))
(smaller-than-list h (cdr node))))))
(local
(defun tree-p-aux (hs g)
(if (endp hs)
t
(and (property-element-tree-p (car hs) (nth (car hs) g))
(tree-p-aux (cdr hs) g)))))
(local
(defun tree-p (g)
(tree-p-aux (list-from-to 0 (len g)) g)))
;;; -----------------------------------
;;;
;;; 2.2) The property {\tt init-term-dag-p} implies {\tt dag-p}
;;;
;;; -----------------------------------
;;; Due to the main properties of {\tt dag-p} (see {\tt dags.lisp}) we
;;; only has to show that every path in graph verifying {\tt
;;; init-term-dag-p} has no duplicates nodes. But this is true because
;;; the paths in this case are strictly increasing except (possibly) the
;;; last node (and in that case, this last node is a variable node and
;;; obvioulsy it has to be the first time it appears in a path):
;;; We first prove some properties about {\tt init-term-dag-p} before
;;; disabling the function:
(local
(encapsulate
()
(local
(defthm init-term-dag-p-aux-member-1
(implies (and (init-term-dag-p-aux hs g)
(member h hs)
(not (term-dag-is-p h g)))
(smaller-than-list h (neighbors h g)))))
(local
(defthm init-term-dag-p-aux-member-2
(implies (and (member x (neighbors h g))
(init-term-dag-p-aux hs g)
(member h hs)
(term-dag-is-p h g))
(not (consp (neighbors x g))))))
(local
(defthm init-term-dag-p-aux-member-3
(implies (and (init-term-dag-p-aux hs g)
(member h hs))
(nat-true-listp (neighbors h g)))))
(local
(defthm nth-non-nil
(implies (and (<= (len l) n) (natp n))
(not (nth n l)))))
;; If a node is not an "is" node, then is smaller than its neighbors.
(defthm init-term-dag-p-property-1
(implies (and (natp h)
(init-term-dag-p g)
(not (term-dag-is-p h g)))
(smaller-than-list h (neighbors h g)))
:hints (("Goal" :cases ((< h (len g))))
("Subgoal 1" :in-theory (disable neighbors))))
;; Non--terminal nodes are not neighbors of an "is" node:
(defthm init-term-dag-p-property-2
(implies (and (natp h)
(init-term-dag-p g)
(term-dag-is-p h g)
(consp (neighbors x g)))
(not (member x (neighbors h g))))
:hints (("Goal" :cases ((< h (len g))))
("Subgoal 1" :in-theory (disable neighbors))))
;; The list neighbors of every node is a true list of natural numbers:
(defthm init-term-dag-p-property-3
(implies (and (init-term-dag-p g) (natp h))
(nat-true-listp (neighbors h g)))
:hints (("Goal" :cases ((< h (len g))))
("Subgoal 1" :in-theory (disable neighbors))))))
;;; The three above properties should suffice:
(local (in-theory (disable neighbors init-term-dag-p)))
;;; The following sequence of events show that every path in graph
;;; verifying {\tt init-term-dag-p} has no duplicates. The main idea is
;;; to split every path into two pieces. The first one is a path with
;;; its nodes in a strictly increasing order. The second part is empty
;;; or a variable node that (obviusly) does not appear in the first
;;; part. Both parts has no nodes in common and no duplicate nodes:
(local
(encapsulate
()
(local
(defun strictly-increasing-path-piece (p)
(cond ((or (endp p) (endp (cdr p))) p)
((< (first p) (second p)) (cons (car p)
(strictly-increasing-path-piece (cdr
p))))
(t (list (first p))))))
(local
(defun remaining-path-piece (p)
(cond ((endp p) p)
((endp (cdr p)) (cdr p))
((< (first p) (second p)) (remaining-path-piece (cdr p)))
(t (cdr p)))))
(local
(defthm strictly-increasing-path-piece-append-remaining-path-piece
(equal (append (strictly-increasing-path-piece p)
(remaining-path-piece p))
p)))
(local
(defun strictly-increasing-list (l)
(cond ((endp l) t)
((endp (cdr l)) t)
(t (and (< (first l) (second l))
(strictly-increasing-list (cdr l)))))))
(local
(defthm strictly-increasing-path-piece-strictly-increasing
(strictly-increasing-list (strictly-increasing-path-piece p))))
(local
(defthm smaller-than-list-main-property
(implies (and (member y l)
(not (< x y)))
(not (smaller-than-list x l)))))
(local
(defthm map-nfix-true-listp
(implies (nat-true-listp l)
(equal (map-nfix l) l))))
(local
(defthm init-term-dag-p-neighbors-main-property
(implies (and (natp h)
(<= x h)
(consp (neighbors x g))
(init-term-dag-p g))
(not (member x (neighbors h g))))
:hints (("Goal" :cases ((term-dag-is-p h g)))
("Subgoal 2" :use init-term-dag-p-property-1))))
(local
(defthm remaining-path-piece-main-property
(implies (and (path-p p g)
(init-term-dag-p g)
(not (endp (remaining-path-piece p))))
(not (consp (neighbors (first (remaining-path-piece p)) g))))))
(local
(defthm path-p-with-its-first-a-terminal-node
(implies (and (path-p p g)
(not (endp (cdr p))))
(consp (neighbors (first p) g)))))
(local
(defthm remaining-path-piece-main-property-corollary
(implies (and (path-p p g)
(init-term-dag-p g)
(not (endp (remaining-path-piece p))))
(not (consp (cdr (remaining-path-piece p)))))))
(local
(defthm strictly-increasing-path-piece-non-terminal-nodes
(implies (and (path-p p g)
(member x (strictly-increasing-path-piece p))
(not (endp (remaining-path-piece p))))
(consp (neighbors x g)))))
(local
(defthm no-duplicatesp-strictly-increasing
(implies (strictly-increasing-list p)
(no-duplicatesp p))))
(local
(defthm no-duplicatesp-unitary
(implies (endp (cdr l))
(no-duplicatesp l))))
(local
(defthm disjointp-remaining-path-piece-and-strictly-increasing-path-piece
(implies (and (consp (remaining-path-piece p))
(path-p p g)
(init-term-dag-p g))
(disjointp (remaining-path-piece p)
(strictly-increasing-path-piece p)))
:hints (("Goal" :expand (disjointp (remaining-path-piece p)
(strictly-increasing-path-piece
p))
:in-theory (disable disjointp-conmutative))
("Goal'" :use remaining-path-piece-main-property))))
(local
(defthm path-p-init-term-dag-p-previous-lemma
(implies (and (path-p p g)
(init-term-dag-p g))
(no-duplicatesp
(append (strictly-increasing-path-piece p)
(remaining-path-piece p))))
:hints (("Goal"
:in-theory
(disable
strictly-increasing-path-piece-append-remaining-path-piece)
:cases ((endp (remaining-path-piece p)))))))
(local
(defthm path-p-init-term-dag-p
(implies (and (path-p p g)
(init-term-dag-p g))
(no-duplicatesp p))
:hints (("Goal" :use path-p-init-term-dag-p-previous-lemma))))
(defthm init-term-dag-p-implies-dag-p
(implies (init-term-dag-p g)
(dag-p g))
:hints (("Goal" :use dag-p-soundness)))))
;;; -----------------------------------
;;;
;;; 2.3) The property {\tt tree-p-p} implies {\tt dag-p}
;;;
;;; -----------------------------------
;;; This is an easy corollary of the result of the previous section and
;;; the fact that @tree-p@ is a particular case of @init-term-dag-p@:
(local
(defthm tree-p-aux-implies-init-term-dag-p-aux
(implies (tree-p-aux hs g)
(init-term-dag-p-aux hs g))))
(local
(defthm tree-p-implies-init-term-dag-p
(implies (tree-p g)
(init-term-dag-p g))
:hints (("Goal" :in-theory (enable init-term-dag-p)))))
;;; ============================================================================
;;;
;;; 3) About the {\tt tree-p} property of terms stored with {\tt term\--as\--dag\--aux\--l-ns}
;;;
;;; ============================================================================
;;; We now show that, under some conditions, the graph stored by the
;;; function {\tt term-as-dag-aux-l-ns} has the {\tt tree-p} property:
;;; First, we are prove some interesting properties about the function
;;; {\tt term-as-dag-aux-l-ns} that will be useful in general:
;;; The available index after storing is an integer bigger than the
;;; input index. For terms, it is strictly bigger.
(local
(defthm term-as-dag-aux-ns-increases-index
(<= h (second (term-as-dag-aux-l-ns flg term g h)))
:rule-classes :linear))
(local
(defthm term-as-dag-aux-ns-increases-index-strictly
(< h (second (term-as-dag-aux-l-ns t term g h)))
:rule-classes :linear))
(local
(defthm term-as-dag-aux-l-ns-second-value-integerp
(implies (integerp h)
(integerp (second (term-as-dag-aux-l-ns flg term g h))))))
;;; The list of indices returned as the third value is a natural true
;;; list that with all its indices bigger than the input index:
(local
(defthm term-as-dag-aux-l-ns-nat-true-listp
(implies (and (natp h) (term-p-aux flg term))
(nat-true-listp
(third (term-as-dag-aux-l-ns flg term g h))))))
(local
(defthm term-as-dag-aux-l-ns-smaller-than-list
(implies (and (natp h) (natp h1) (< h h1))
(smaller-than-list h
(third (term-as-dag-aux-l-ns nil term g h1))))))
;;; The length of the graph finally obtained is bigger (or equal) than
;;; the the first available index returned:
(local
(defthm len-term-as-dag-aux-l-ns
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(gf (first res))
(hf (second res)))
(implies (and (natp h) (or flg (consp term)))
(<= hf (len gf))))
:rule-classes :linear))
;;; All the indices in the list returned are smaller than the first
;;; available index returned:
(local
(defun bigger-than-list (h l)
(if (endp l)
t
(and (> h (car l))
(bigger-than-list h (cdr l))))))
(local
(defthm term-as-dag-aux-l-ns-bigger-than-list
(implies (natp h)
(bigger-than-list (second (term-as-dag-aux-l-ns flg term g h))
(third (term-as-dag-aux-l-ns flg term g h))))))
;;; The following sequence of events leads to show the intended property
;;; for {\tt term-as-dag-aux-l-ns}.
;;; The elements above the input index are not modified, so the
;;; @tree-p-aux@ property is preserved:
(local
(defthm term-as-dag-aux-l-ns-initial-segment-nth
(implies (and (natp h) (natp h1) (< h h1))
(equal (nth h (first (term-as-dag-aux-l-ns flg term g h1)))
(nth h g)))))
(local
(defthm tree-p-aux-term-as-dag-aux-l-ns-initial-segment
(implies (and (natp h) (natp h1) (<= h h1))
(equal (tree-p-aux (list-from-to h h1)
(first (term-as-dag-aux-l-ns flg term g h1)))
(tree-p-aux (list-from-to h h1) g)))))
;;; Concatenation of list of indices w.r.t. {\tt tree-p-aux}:
(local
(defthm tree-p-aux-append
(equal (tree-p-aux (append l1 l2) g)
(and (tree-p-aux l1 g) (tree-p-aux l2 g)))))
;;; A particular case, applied to solve one of the induction case of the
;;; theorem below:
(local
(defthm tree-p-aux-append-particular-case
(let* ((h1 (second (term-as-dag-aux-l-ns flg1 term1 g1 h)))
(h2 (second (term-as-dag-aux-l-ns flg2 term2 g2 h1))))
(implies (natp h)
(equal (tree-p-aux (list-from-to h h2) g3)
(and (tree-p-aux (list-from-to h h1) g3)
(tree-p-aux (list-from-to h1 h2) g3)))))
:hints (("Goal"
:in-theory (disable tree-p-aux-append)
:use
(:instance
tree-p-aux-append
(l1 (list-from-to
h
(second (term-as-dag-aux-l-ns flg1 term1 g1 h))))
(l2 (list-from-to
(second
(term-as-dag-aux-l-ns flg1 term1 g1 h))
(second
(term-as-dag-aux-l-ns
flg2 term2 g2
(second (term-as-dag-aux-l-ns flg1 term1 g1 h))))))
(g g3))))))
;;; Above the first available index, the graph is not modified:
(local
(defthm term-as-dag-aux-l-ns-final-segment-nth
(let* ((res (term-as-dag-aux-l-ns flg term g h1))
(hf (second res)))
(implies (and (natp h) (<= hf h) (natp h1))
(equal (nth h (car (term-as-dag-aux-l-ns flg term g h1)))
(nth h g))))))
;;; And finally the intended property about {\tt term-as-dag-aux-l-ns}:
(local
(encapsulate
()
(local
(defthm variable-p-property-element-tree-p
(implies (variable-p term)
(property-element-tree-p h (cons term t)))))
(local
(defthm compound-node-property-element-tree-p
(implies (and (natp h) (natp h1) (< h h1) (term-p-aux nil term))
(property-element-tree-p
h
(cons symb (third (term-as-dag-aux-l-ns nil term g h1)))))))
(defthm tree-p-aux-term-as-dag-aux-l-ns-update-nth
(implies (and (natp h) (natp h1) (< h h1))
(equal (tree-p-aux (list-from-to h1 h2)
(update-nth h x g))
(tree-p-aux (list-from-to h1 h2) g))))
(defthm term-as-dag-aux-l-ns-implies-tree-p-main-lemma
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(gf (first res))
(hf (second res)))
(implies (and (natp h) (term-p-aux flg term))
(tree-p-aux (list-from-to h hf) gf)))
:hints (("Goal" :in-theory (disable property-element-tree-p))))))
;;; The above property about {\tt tree-p-aux} can be used to prove the
;;; intended property about {\tt tree-p}, but before we need some
;;; technical lemmas:
(local
(encapsulate
()
(local
(defthm nth-non-nil
(implies (and (<= (len l) n) (natp n))
(not (nth n l)))))
(local
(defthm tree-p-aux-member
(implies (and (tree-p-aux l g) (member x l))
(property-element-tree-p x (nth x g)))
:rule-classes nil))
(defthm tree-p-aux-property-element-p
(implies (and (tree-p g) (natp h))
(property-element-tree-p h (nth h g)))
:hints (("Goal" :cases ((< h (len g))))
("Subgoal 1" :use
(:instance tree-p-aux-member
(x h)
(l (list-from-to 0 (len g)))))))))
;;; The following sequence of events show the intended result:
(local
(encapsulate
()
(local
(defthm term-as-dag-aux-l-ns-implies-tree-p-initial-segment
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(gf (first res)))
(implies (and (natp h) (tree-p g) (subsetp l (list-from-to 0 h)))
(tree-p-aux l gf)))
:hints (("Goal"
:induct (len l)
:in-theory (disable property-element-tree-p)))))
(local
(defthm term-as-dag-aux-l-ns-implies-tree-p-final-segment
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(gf (first res))
(hf (second res)))
(implies (and (natp h) (tree-p g) (subsetp l (list-from-to hf (len gf))))
(tree-p-aux l gf)))
:hints (("Goal"
:induct (len l)
:in-theory (disable property-element-tree-p)))))
(local
(defthm term-as-dag-aux-l-ns-implies-tree-p-almost
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(gf (first res))
(hf (second res))
(l1 (list-from-to 0 h))
(l2 (list-from-to h hf))
(l3 (list-from-to hf (len gf))))
(implies (and (natp h) (tree-p g) (term-p-aux flg term))
(tree-p-aux (append l1 (append l2 l3)) gf)))
:rule-classes nil))
;; This is the intended result of this section: the term stored by {\tt
;; term-as-dag-aux-l-ns} verifies {\tt tree-p}:
(defthm term-as-dag-aux-l-ns-implies-tree-p
(implies (and (natp h)
(tree-p g)
(term-p-aux flg term))
(tree-p (first (term-as-dag-aux-l-ns flg term g h))))
:hints (("Goal"
:cases ((and (not flg) (not (consp term)))))
("Subgoal 2"
:in-theory (disable
tree-p-aux-append
append-list-from-to)
:use
(term-as-dag-aux-l-ns-implies-tree-p-almost
(:instance append-list-from-to
(h1 0) (h2 h)
(h3 (cadr (term-as-dag-aux-l-ns flg term g h))))
(:instance append-list-from-to
(h1 h)
(h2 (cadr (term-as-dag-aux-l-ns flg term g h)))
(h3 (len (car (term-as-dag-aux-l-ns flg term g h)))))
(:instance append-list-from-to
(h1 0) (h2 h)
(h3 (len (car (term-as-dag-aux-l-ns flg term g h)))))))))))
;;; ============================================================================
;;;
;;; 4) The term stored using {\tt term-as-dag-aux-l-ns} is the input term
;;;
;;; ============================================================================
;;; In this section we show that {\tt term-as-dag-aux-l-ns} builds a
;;; graph that represents the input term. That is, we want to show the
;;; following theorem:
; (defthm term-as-dag-aux-l-ns-dag-as-term-aux-relationship
; (let* ((res (term-as-dag-aux-l-ns flg term g h))
; (g-ret (first res))
; (hs-ret (third res)))
; (implies (and (natp h)
; (term-p-aux flg term)
; (tree-p g))
; (equal (dag-as-term-l flg (if flg h hs-ret) g-ret)
; term))))
;;; We consider three stage in our proof:
;;; *)
;;; First we show how the {\tt tree-p} property is related to updating
;;; the graph. This is esssential to be able to use induction
;;; hypothesis in the proof of the main result.
;;; *)
;;; Then we introduce the notion of subgraph, and coincidence in a list
;;; of indices. We show that when two graphs coincide in a subgraph,
;;; then the terms stored are the same.
;;; *)
;;; The above property can be used to use the induction hypothesis in
;;; the proof of the main theorem, since, for example, it allows to use
;;; the value of {\tt dag-as-term-l} in the rest of arguments of a list
;;; of terms.
;;; *)
;;; We prove the main theorem by induction on the structure of terms.
;;; -)
;;; -----------------------------------
;;;
;;; 4.1) The property {\tt tree-p} when updating a graph
;;;
;;; -----------------------------------
;;; The following sequence of events are needed to prove the theorems
;;; {\tt tree-p-update-nth-variables} and {\tt
;;; tree-p-update-nth-smaller-than-list} below, showing how the {\tt
;;; tree-p} property is preserved by the updatings done during the
;;; proccess of {\tt terms-as-dag-l-ns}:
(local
(encapsulate
()
(local
(defthm len-update-nth-2
(implies (natp h) (<= (1+ h) (len (update-nth h x g))))
:rule-classes :linear))
(local
(defthm property-element-tree-p-variable-p
(implies (variable-p term)
(property-element-tree-p h (cons term t)))))
(local
(defthm tree-p-aux-update-nth-variables
(implies (and (tree-p-aux hs g) (variable-p term))
(tree-p-aux hs (update-nth h (cons term t) g)))
:hints (("Goal" :in-theory (disable property-element-tree-p)
:induct (len hs)))))
(local
(defthm nth-non-nil
(implies (and (<= (len l) n) (natp n))
(not (nth n l)))))
(local
(defthm tree-p-aux-list-from-to-beyond-length-lemma
(implies (and (<= (len g) h1)
(natp h1)
(subsetp hs (list-from-to (len g) h1)))
(tree-p-aux hs g))))
(local
(defthm tree-p-aux-list-from-to-beyond-length
(implies (and (natp h1) (<= (len g) h1)
(tree-p-aux (list-from-to 0 (len g)) g))
(tree-p-aux (list-from-to 0 h1) g))
:hints (("Goal"
:in-theory (disable
tree-p-aux-append
append-list-from-to)
:use
((:instance append-list-from-to
(h1 0) (h2 (len g)) (h3 h1))
(:instance tree-p-aux-append
(l1 (list-from-to 0 (len g)))
(l2 (list-from-to (len g) h1))))))
:rule-classes nil))
(local
(defthm property-element-tree-p-smaller-than-list
(implies (and (nat-true-listp l)
(smaller-than-list h l))
(property-element-tree-p h (cons x l)))))
(local
(defthm tree-p-aux-update-nth-smaller-than-list
(implies (and (tree-p-aux hs g)
(natp h)
(local-nat-listp hs)
(nat-true-listp l)
(smaller-than-list h l))
(tree-p-aux hs (update-nth h (cons x l) g)))
:hints (("Goal" :in-theory (disable property-element-tree-p)
:induct (len hs)))))
;; These are the main theorems in this subsection, establishing that the
;; {\tt tree-p} property is preserved after updating the graph like our
;; function does:
(defthm tree-p-update-nth-variables
(implies (and (tree-p g) (variable-p term) (natp h))
(tree-p (update-nth h (cons term t) g)))
:hints (("Goal"
:use
(:instance tree-p-aux-list-from-to-beyond-length
(h1 (len (update-nth h (cons term t) g)))))))
(defthm tree-p-update-nth-smaller-than-list
(implies (and (tree-p g) (natp h)
(nat-true-listp l)
(smaller-than-list h l))
(tree-p (update-nth h (cons x l) g)))
:hints (("Goal" :use
(:instance tree-p-aux-list-from-to-beyond-length
(h1 (len (update-nth h (cons x l) g)))))))))
;;; All the needed properties about {\tt tree-p} are now extracted:
(local (in-theory (disable tree-p)))
;;; -----------------------------------
;;;
;;; 4.2) Subgraphs and coincidence in subgraphs.
;;;
;;; -----------------------------------
;;; When proving (by induction on the structure of terms) the main
;;; theorem of this section, one of the induction case is a to prove the
;;; result for non--empty list of terms, having as induction hypothesis
;;; the result for the first term and the result for the list of the
;;; rest of terms. To be able to use the first hypothesis, we must show
;;; that the first term after completing the process it is stored in the
;;; same way as before storing the rest of the terms. And this is true
;;; because every time a subterm is stored in the graph, it is stored in
;;; a subgraph, and subgraphs are "closed" w.r.t. the terms
;;; stored. We prove this in this subsection.
;;; Let us first define the notion of {\em subgraph}. The following
;;; function checks that that all the neighbors (in a graph @g@) of a
;;; list of nodes @hs1@ are a subset of the list of nodes @hs2@:
(local
(defun subsetp-all-neighbors (hs1 hs2 g)
(if (endp hs1)
t
(and (subsetp (neighbors (car hs1) g) hs2)
(subsetp-all-neighbors (cdr hs1) hs2 g)))))
;;; A list of nodes @hs@ is a subgraph of a graph @g@ if all the
;;; neighbors of the nodes of the list are in the same list.
(local
(defun subgraph-p (hs g)
(subsetp-all-neighbors hs hs g)))
;;; The following function define the notion of {\em coincidence} in a
;;; set of indices of two given graphs.
(local
(defun graph-coincide (hs g1 g2)
(if (endp hs)
t
(and (equal (nth (car hs) g1) (nth (car hs) g2))
(graph-coincide (cdr hs) g1 g2)))))
;;; Now we show that if we have two directed acyclic graphs such that a
;;; given set of indices form a subgraph and coincide in both subgraphs,
;;; then the function @dag-as-term-l@ behaves in the same way in both
;;; subgraphs, for every index of the subgraph. The following sequence
;;; of events show this (theorem {\tt
;;; dag-as-term-l-equal-when-coincide-in-subgraphs} below):
(local
(encapsulate
()
(local
(defthm graph-coincide-forward-chaining
(implies (and (graph-coincide hs g1 g2)
(member h hs))
(equal (nth h g1) (nth h g2)))
:rule-classes :forward-chaining))
(local (in-theory (enable neighbors)))
(local
(defthm subsetp-coincide-property-1
(implies (and (subsetp-all-neighbors hs1 hs2 g)
(not (term-dag-variable-p h g))
(not (term-dag-is-p h g))
(member h hs1))
(subsetp (term-dag-args h g) hs2))))
(local
(defthm subsetp-coincide-property-2
(implies (and (subsetp-all-neighbors hs1 hs2 g)
(term-dag-is-p h g)
(member h hs1))
(member (nth h g) hs2))))
(defthm subsetp-all-neighbors-forward-chaining
(implies (and (subsetp-all-neighbors hs1 hs2 g1)
(graph-coincide hs1 g1 g2))
(subsetp-all-neighbors hs1 hs2 g2))
:rule-classes (:forward-chaining :rewrite))
(local (in-theory (disable neighbors)))
(defthm dag-as-term-l-equal-when-coincide-in-subgraphs
(implies (and (subgraph-p hs g1)
(graph-coincide hs g1 g2)
(dag-p g1) (dag-p g2)
(if flg (member h hs) (subsetp h hs)))
(equal (dag-as-term-l flg h g1)
(dag-as-term-l flg h g2)))
:rule-classes :forward-chaining)))
;;; -----------------------------------
;;;
;;; 4.3) Subgraphs and coincidence in {\tt term-as-dag-aux-l-ns}
;;;
;;; -----------------------------------
;;; We prove now that the terms stored by {\tt term-as-dag-aux-l-ns} are
;;; subgraphs of the entire graph. And we also prove that if two terms
;;; are stored sequentially, then the graph obtained after storing the
;;; first term coincide, in the subgraph corresponding to that subterm,
;;; with the graph obtained after succesively storing the first and then
;;; the second.
;;; In this way, we can use the result in the previous subsection to
;;; prove two theorems that will allow us to use the induction
;;; hypothesis in the proof of the main theorem in this section.
;;; First, we show the result about coincidence of graphs obtained after
;;; storing two terms sequentially:
(local
(defthm graph-coincide-term-as-dag-aux-l-ns
(implies (and (natp h)
(subsetp
hs
(list-from-to h (second (term-as-dag-aux-l-ns flg1 term1 g h)))))
(graph-coincide
hs
(first (term-as-dag-aux-l-ns flg1 term1 g h))
(first (term-as-dag-aux-l-ns
flg2 term2
(first (term-as-dag-aux-l-ns flg1 term1 g h))
(second (term-as-dag-aux-l-ns flg1 term1 g h))))))
:hints (("Goal" :induct (len hs)))))
;;; And now, the following sequence of events show that the nodes of the
;;; graph used to store a term are a subgraph of the entire graph:
(local
(encapsulate
()
(local
(defthm subsetp-all-neighbors-append
(implies (and (subsetp-all-neighbors hs11 hs12 g)
(subsetp-all-neighbors hs21 hs22 g))
(subsetp-all-neighbors (append hs11 hs21)
(append hs12 hs22)
g))))
(local
(defthm very-ugly-lemma
(let* ((ret-term1 (term-as-dag-aux-l-ns t term1 g h))
(g-term1 (first ret-term1))
(h1 (second ret-term1))
(ret-term2 (term-as-dag-aux-l-ns nil term2 g-term1 h1))
(g-term2 (first ret-term2))
(h2 (second ret-term2))
(l1 (list-from-to h h1))
(l2 (list-from-to h1 h2))
(l (list-from-to h h2)))
(implies (and (natp h)
(subsetp-all-neighbors l1 l1 g-term2)
(subsetp-all-neighbors l2 l2 g-term2))
(subsetp-all-neighbors l l g-term2)))
:hints (("Goal" :use
(:instance
subsetp-all-neighbors-append
(hs11 (list-from-to h (second (term-as-dag-aux-l-ns t term1 g h))))
(hs12 (list-from-to h (second (term-as-dag-aux-l-ns t term1 g h))))
(hs21 (list-from-to
(second (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns
nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))))
(hs22 (list-from-to
(second (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns
nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t
term1 g h))))))
(g (first (term-as-dag-aux-l-ns
nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g
h))))))))))
(local
(defthm subsetp-all-neighbors-coincide-particular-case
(let* ((ret-term (term-as-dag-aux-l-ns flg term g h))
(g-term1 (first ret-term))
(h1 (second ret-term))
(hs (list-from-to h h1))
(g-term2 (first (term-as-dag-aux-l-ns flg2 term2 g-term1 h1))))
(implies (and (natp h) (subsetp-all-neighbors hs hs g-term1))
(subsetp-all-neighbors hs hs g-term2)))))
(local
(defthm subsetp-all-neighbors-cons-second-argument-lemma
(implies (subsetp-all-neighbors l1 l2 g)
(subsetp-all-neighbors l1 (cons x l2) g))))
(local
(defthm subsetp-all-neighbors-cons-second-argument
(implies (and (subsetp (neighbors x g) l)
(subsetp-all-neighbors l l g))
(subsetp-all-neighbors (cons x l) (cons x l) g))))
(local
(defthm subsetp-all-neighbors-update-nth-not-member
(implies (and (not (member h hs1))
(natp h)
(nat-true-listp hs1)
(subsetp-all-neighbors hs1 hs2 g))
(subsetp-all-neighbors hs1 hs2 (update-nth h x g)))
:hints (("Goal" :in-theory (enable neighbors)))))
(local
(defthm nat-true-listp-list-from-to
(implies (natp h)
(nat-true-listp (list-from-to h h1)))))
(defthm term-as-dag-aux-l-ns-local-nat-listp
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(hs-ret (third res)))
(implies (natp h)
(local-nat-listp hs-ret))))
(defthm subsetp-list-from-to
(implies
(and (natp h1) (natp h2)
(local-nat-listp hs)
(smaller-than-list h1 hs)
(bigger-than-list h2 hs))
(subsetp hs (list-from-to (1+ h1) h2))))
(defthm subgraph-p-term-as-dag-aux-l-ns
(implies (natp h)
(subgraph-p
(list-from-to
h
(second (term-as-dag-aux-l-ns flg term g h)))
(first (term-as-dag-aux-l-ns flg term g h))))
:hints (("Goal" :in-theory (enable neighbors))))))
(local (in-theory (disable subgraph-p)))
;;; -----------------------------------
;;;
;;; 4.4) The main result of this section
;;;
;;; -----------------------------------
;;; We apply the results of the previous subsections to prove the main
;;; lemmas needed to deal with two induction hypothesis in the proof of
;;; the main result of this subsection.
(local
(encapsulate
()
;; This lemma allows to use one the induction hypothesis (the one for
;; the first term of the list) in the induction case corresponding to
;; non-empty list of terms:
(local
(defthm equal-dag-as-term-l-composition-of-term-as-dag-l
(let* ((ret-term1 (term-as-dag-aux-l-ns t term1 g h))
(g-term1 (first ret-term1))
(h1 (second ret-term1))
(ret-term2 (term-as-dag-aux-l-ns nil term2 g-term1 h1))
(g-term2 (first ret-term2)))
(implies (and (natp h) (tree-p g)
(term-p-aux t term1) (term-p-aux nil term2))
(equal (dag-as-term-l t h g-term2)
(dag-as-term-l t h g-term1))))
:hints (("Goal" :use
(:instance
dag-as-term-l-equal-when-coincide-in-subgraphs
(flg t)
(g1 (first (term-as-dag-aux-l-ns t term1 g h)))
(g2 (first
(term-as-dag-aux-l-ns
nil term2
(first
(term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h)))))
(hs (list-from-to
h (second (term-as-dag-aux-l-ns t term1 g h)))))))))
(local
(defthm graph-coincide-update-nth
(implies (and (not (member h hs)) (natp h) (local-nat-listp hs))
(graph-coincide hs g (update-nth h x g)))))
(local
(defthm list-from-to-local-nat-listp
(implies (and (natp h1) (natp h2))
(local-nat-listp (list-from-to h1 h2)))))
;; And this lemma allows to use the induction hypothesis (the one for
;; the list of its arguments) corresponding to the induction case of
;; non-variable terms:
(local
(defthm equal-dag-as-term-l-update-nth
(implies
(and (natp h)
(term-p-aux nil term)
(tree-p g))
(equal
(dag-as-term-l
nil
(third (term-as-dag-aux-l-ns nil term g (+ 1 h)))
(update-nth h
(cons f (third (term-as-dag-aux-l-ns nil term g (1+ h))))
(first (term-as-dag-aux-l-ns nil term g (+ 1 h)))))
(dag-as-term-l
nil
(third (term-as-dag-aux-l-ns nil term g (+ 1 h)))
(first (term-as-dag-aux-l-ns nil term g (+ 1 h))))))
:hints
(("Goal"
:use
(:instance
dag-as-term-l-equal-when-coincide-in-subgraphs
(flg nil)
(h (third (term-as-dag-aux-l-ns nil term g (+ 1 h))))
(g1 (first (term-as-dag-aux-l-ns nil term g (+ 1 h))))
(g2 (update-nth
h
(cons f (third (term-as-dag-aux-l-ns nil term g (1+ h))))
(first (term-as-dag-aux-l-ns nil term g (+ 1 h)))))
(hs (list-from-to
(1+ h)
(second (term-as-dag-aux-l-ns nil term g (+ 1 h))))))))))
;; And finally the intended result of this section:
(local
(defthm term-as-dag-aux-l-ns-dag-as-term-aux-relationship
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(g-ret (first res))
(hs-ret (third res)))
(implies (and (natp h)
(term-p-aux flg term)
(tree-p g))
(equal (dag-as-term-l flg (if flg h hs-ret) g-ret)
term)))
:rule-classes nil))
;; This result is better used in form of a rewriting rule:
(defthm term-as-dag-aux-l-ns-dag-as-term-aux-relationship-rewrite-rule
(let* ((res (term-as-dag-aux-l-ns flg term g h))
(g-ret (first res))
(hs-ret (third res)))
(implies (and (natp h)
(term-p-aux flg term)
(tree-p g)
(equal h1 (if flg h hs-ret)))
(equal (dag-as-term-l flg h1 g-ret)
term)))
:hints (("Goal"
:use term-as-dag-aux-l-ns-dag-as-term-aux-relationship)))))
;;; ============================================================================
;;;
;;; 5) Relationship between {\tt terms\--as\--dag\--aux\--l-ns} and {\tt terms\--as-dag\--aux\--l}
;;;
;;; ============================================================================
;;; Our goal in this subsection is to prove the following theorem:
; (defthm term-as-dag-aux-l-in-two-steps
; (let* ((res1 (term-as-dag-aux-l flg term g h variables))
; (g-ret1 (first res1))
; (res2 (term-as-dag-aux-l-ns flg term g h))
; (g-ret2 (first res2))
; (h-ret2 (second res2)))
; (implies (and (natp h)
; (term-p-aux flg term))
; (equal g-ret1
; (first (make-shared-variables h h-ret2 g-ret2 variables))))
;;; That is, we are going to prove that the graph obtained after storing
;;; a term using the function {\tt term-as-dag-aux-l} is the same than
;;; the graph obtained storing the same term with {\tt
;;; term-as-dag-aux-l-ns} and after that applying {\tt
;;; make-shared-variables}.
;;; The following two properties show that the second value returned by
;;; term-as-dag-aux-l is a natural number (that is, the first available
;;; index after storing the graph).
(local
(defthm integerp-term-as-dag-aux-l
(implies (integerp h)
(integerp (second (term-as-dag-aux-l flg term g h variables))))))
(local
(defthm integerp-term-as-dag-aux-l-natp
(implies (natp h)
(>= (second (term-as-dag-aux-l flg term g h variables)) 0))
:rule-classes :linear))
;;; Now we establish some properties about the function {\tt
;;; make-shared-variables} (see its definition in Section 1):
;;; First, a property about updating the result of a {\tt
;;; make-shared-variables} outside the range where the sharing of
;;; variables occur.
(local
(defthm update-nth-update-nth-disjoint
(implies (and (natp h1) (natp h2) (< h2 h1))
(equal (update-nth h1 x (update-nth h2 y g))
(update-nth h2 y (update-nth h1 x g))))))
(local
(defthm make-shared-variables-update-nth-disjoint-graph
(implies
(and (natp h) (natp h1) (natp h2) (< h h1) (<= h1 h2))
(equal
(first (make-shared-variables
h1 h2 (update-nth h x g) variables))
(update-nth h x (first (make-shared-variables h1 h2 g variables)))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables))
("Subgoal *1/4.2" :expand (make-shared-variables h1 h2 (update-nth h x g)
variables))
("Subgoal *1/3.2" :expand (make-shared-variables h1 h2 (update-nth h x g)
variables))
("Subgoal *1/2.2" :expand (make-shared-variables h1 h2 (update-nth h x g)
variables)))))
;;; A fundamental lemma, describing how make shared variables can be
;;; done in several stages:
(local
(defthm make-shared-composition
(implies (and (<= h1 h2) (<= h2 h3)
(natp h1) (natp h2) (natp h3))
(equal (make-shared-variables h1 h3 g variables)
(make-shared-variables
h2 h3
(first (make-shared-variables h1 h2 g variables))
(second (make-shared-variables h1 h2 g variables)))))
:rule-classes nil))
;;; The following two lemmas show that some nodes of the original graph
;;; do not change after making the variables shared:
(local
(defthm nth-make-shared-variables
(implies (and (natp h) (natp h1) (natp h2) (< h h1))
(equal (nth h
(car
(make-shared-variables h1 h2 g variables)))
(nth h g)))))
(local
(defthm make-shared-variables-does-not-change-non-variables
(implies (not (term-dag-variable-p h g))
(equal (nth
h
(first (make-shared-variables h1 h2 g variables)))
(nth h g)))))
;;; The following @encapsulate@ contains the lemmas and definitions
;;; needed to deal with all the induction cases of the goal theorem in
;;; this section.
(local
(encapsulate
()
(local
(defun induct-hint-for-last-index-independent-of-graph
(flg term g1 g2 h)
(if flg
(if (variable-p term)
(list g1 g2 h)
(induct-hint-for-last-index-independent-of-graph
nil (cdr term) g1 g2 (1+ h)))
(if (endp term)
t
(mv-let (g1-n hcar ign)
(term-as-dag-aux-l-ns t (car term) g1 h)
(declare (ignore ign))
(mv-let (g2-n ign1 ign2)
(term-as-dag-aux-l-ns t (car term) g2 h)
(declare (ignore ign1 ign2))
(and (induct-hint-for-last-index-independent-of-graph
t (car term) g1 g2 h)
(induct-hint-for-last-index-independent-of-graph
nil (cdr term) g1-n g2-n hcar))))))))
;; The second and third values returned by {\tt term-as-dag-aux-l-ns} do
;; not depend on the graph:
(local
(defthm last-index-independent-of-graph
(and
(equal (second (term-as-dag-aux-l-ns flg term g1 h))
(second (term-as-dag-aux-l-ns flg term g2 h)))
(equal (third (term-as-dag-aux-l-ns flg term g1 h))
(third (term-as-dag-aux-l-ns flg term g2 h))))
:hints (("Goal"
:induct
(induct-hint-for-last-index-independent-of-graph
flg term g1 g2 h)))
:rule-classes nil))
;; The second and third values returned by {\tt term-as-dag-aux-l-ns}
;; and {\tt term-as-dag-aux-l} are the same:
(local
(defthm term-as-dag-aux-l-ns-term-as-dag-aux-l-equal-second-argument
(equal (second (term-as-dag-aux-l flg term g h variables))
(second (term-as-dag-aux-l-ns flg term g h)))
:hints (("Subgoal *1/4'''" :use
(:instance last-index-independent-of-graph
(flg nil) (term term2)
(h (cadr (term-as-dag-aux-l-ns t term1 g h)))
(g1 (car (term-as-dag-aux-l t term1 g h
variables)))
(g2 (car (term-as-dag-aux-l-ns t term1 g h))))))))
(local
(defthm term-as-dag-aux-l-ns-term-as-dag-aux-l-equal-third-argument
(equal (third (term-as-dag-aux-l flg term g h variables))
(third (term-as-dag-aux-l-ns flg term g h)))
:hints (("Subgoal *1/4'''" :use
(:instance last-index-independent-of-graph
(flg nil) (term term2)
(h (cadr (term-as-dag-aux-l-ns t term1 g h)))
(g1 (car (term-as-dag-aux-l t term1 g h
variables)))
(g2 (car (term-as-dag-aux-l-ns t term1 g h))))))))
;; The following (very long lemmas) deal with induction case 4 of the
;; induction proof of our main goal:
(local
(defthm last-index-independent-of-graph-particular-case
(equal
(cadr
(term-as-dag-aux-l-ns nil term2
(car (term-as-dag-aux-l t term1 g h variables))
(cadr (term-as-dag-aux-l-ns t term1 g h))))
(cadr (term-as-dag-aux-l-ns nil term2
(car (term-as-dag-aux-l-ns t term1 g h))
(cadr (term-as-dag-aux-l-ns t term1 g
h)))))
:hints (("Goal"
:use
(:instance last-index-independent-of-graph
(flg nil) (term term2)
(h (cadr (term-as-dag-aux-l-ns t term1 g h)))
(g1 (car (term-as-dag-aux-l t term1 g h
variables)))
(g2 (car (term-as-dag-aux-l-ns t term1 g h))))))))
(local
(defthm update-nth-term-as-dag-aux-l-ns-below
(implies (and (natp h1) (natp h2) (< h1 h2))
(equal
(first (term-as-dag-aux-l-ns
flg term (update-nth h1 x g) h2))
(update-nth h1 x
(first (term-as-dag-aux-l-ns
flg term g h2)))))
:hints (("Goal" :induct (term-as-dag-aux-l-ns
flg term g h2))
("Subgoal *1/4.1'"
:use (:instance last-index-independent-of-graph
(flg t) (term term1)
(h h2)
(g1 (update-nth h1 x g)) (g2 g)))
("Subgoal *1/2.1''"
:use (:instance last-index-independent-of-graph
(flg nil) (term term2) (g1 g) (h (+ 1 h2))
(g2 (update-nth h1 x g)))))))
(local
(defthm make-shared-variables-terms-as-dag-aux-l-ns-graph
(implies (and (natp h1) (natp h2))
(equal (first
(make-shared-variables
h1 h2
(car (term-as-dag-aux-l-ns flg term g h2))
variables))
(first
(term-as-dag-aux-l-ns
flg term (car (make-shared-variables h1 h2 g
variables))
h2))))))
(local
(defthm make-shared-variables-terms-as-dag-aux-l-ns-variables
(implies (and (natp h1) (natp h2))
(equal (second
(make-shared-variables
h1 h2
(car (term-as-dag-aux-l-ns flg term g h2))
variables))
(second
(make-shared-variables h1 h2 g variables))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables)))))
(local
(defthm induction-case-4-term-as-dag-aux-l-in-two-steps-graph
(implies
(and
(equal
(first (make-shared-variables h
(second (term-as-dag-aux-l-ns t term1 g h))
(first (term-as-dag-aux-l-ns t term1 g h))
variables))
(first (term-as-dag-aux-l t term1 g h variables)))
(equal
(second (make-shared-variables h
(second (term-as-dag-aux-l-ns t term1 g h))
(first (term-as-dag-aux-l-ns t term1 g h))
variables))
(fourth (term-as-dag-aux-l t term1 g h variables)))
(equal
(first
(make-shared-variables
(second (term-as-dag-aux-l-ns t term1 g h))
(second
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(fourth (term-as-dag-aux-l t term1 g h variables))))
(first
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h variables)))))
(equal
(second
(make-shared-variables
(second (term-as-dag-aux-l-ns t term1 g h))
(second
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(fourth (term-as-dag-aux-l t term1 g h variables))))
(fourth
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h variables)))))
(natp h))
(equal
(first
(make-shared-variables
h
(second (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
variables))
(first
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h variables))))))
:hints (("Goal" :use
(:instance make-shared-composition
(h1 h)
(h2 (cadr (term-as-dag-aux-l-ns t term1 g h)))
(h3 (cadr (term-as-dag-aux-l-ns
nil term2
(car (term-as-dag-aux-l-ns t term1 g h))
(cadr (term-as-dag-aux-l-ns t term1 g h)))))
(g (car (term-as-dag-aux-l-ns
nil term2
(car (term-as-dag-aux-l-ns t term1 g h))
(cadr (term-as-dag-aux-l-ns t term1 g h))))))))))
(local
(defthm induction-case-4-term-as-dag-aux-l-in-two-steps-variable
(implies
(and
(equal
(first (make-shared-variables h
(second (term-as-dag-aux-l-ns t term1 g h))
(first (term-as-dag-aux-l-ns t term1 g h))
variables))
(first (term-as-dag-aux-l t term1 g h variables)))
(equal
(second (make-shared-variables h
(second (term-as-dag-aux-l-ns t term1 g h))
(first (term-as-dag-aux-l-ns t term1 g h))
variables))
(fourth (term-as-dag-aux-l t term1 g h variables)))
(equal
(first
(make-shared-variables
(second (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(fourth (term-as-dag-aux-l t term1 g h variables))))
(first
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h variables)))))
(equal
(second
(make-shared-variables
(second (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first
(term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))))
(fourth (term-as-dag-aux-l t term1 g h variables))))
(fourth
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h variables)))))
(natp h))
(equal
(second
(make-shared-variables
h
(second (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
(first (term-as-dag-aux-l-ns nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))
variables))
(fourth
(term-as-dag-aux-l nil term2
(first (term-as-dag-aux-l t term1 g h variables))
(second (term-as-dag-aux-l-ns t term1 g h))
(fourth (term-as-dag-aux-l t term1 g h
variables))))))
:hints (("Goal" :use
(:instance
make-shared-composition
(h1 h)
(h2 (second (term-as-dag-aux-l-ns t term1 g h)))
(h3 (second (term-as-dag-aux-l-ns
nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h)))))
(g (first (term-as-dag-aux-l-ns
nil term2
(first (term-as-dag-aux-l-ns t term1 g h))
(second (term-as-dag-aux-l-ns t term1 g h))))))))))
;; The following deal with induction case 2 of the induction proof of
;; our main goal:
(local
(defthm update-nth-update-nth-at-the-same-index
(equal (update-nth h y (update-nth h x g))
(update-nth h y g))))
(local
(defthm make-shared-variables-non-variable-term
(implies
(and (natp h) (natp h2) (<= h h2)
(nat-true-listp l))
(equal
(make-shared-variables
h h2 (update-nth h (cons f l) g) variables)
(make-shared-variables
(1+ h) h2 (update-nth h (cons f l) g) variables)))))
(local
(defthm make-shared-variables-update-nth-disjoint-variables
(implies
(and (natp h) (natp h1) (natp h2) (< h h1) (<= h1 h2))
(equal
(cadr (make-shared-variables
h1 h2 (update-nth h x g) variables))
(cadr (make-shared-variables h1 h2 g variables))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables))
("Subgoal *1/4.2"
:expand (make-shared-variables h1 h2 (update-nth h x g) variables))
("Subgoal *1/3.2"
:expand (make-shared-variables h1 h2 (update-nth h x g) variables))
("Subgoal *1/2.2"
:expand (make-shared-variables h1 h2 (update-nth h x g) variables)))))
;; The following deals with base case 1 of the induction proof of our
;; main goal. Note that the lemma is needed because in some cases
;; the definition of {\tt make-shared-variables} is not expanded.
(local
(defthm make-shared-variables-one-position-one-variable
(implies (and (variable-p term)
(natp h))
(equal (make-shared-variables
h (1+ h) (update-nth h (cons term t) g) variables)
(if (assoc term variables)
(list
(update-nth h (cdr (assoc term variables)) g)
variables)
(list (update-nth h (cons term t) g)
(cons (cons term h) variables)))))))
;; And finally, the intended result, proved by induction on the
;; structure of @term@
(defthm term-as-dag-aux-l-in-two-steps
(let* ((res1 (term-as-dag-aux-l flg term g h variables))
(g-ret1 (first res1))
(var-ret1 (fourth res1))
(res2 (term-as-dag-aux-l-ns flg term g h))
(g-ret2 (first res2))
(h-ret2 (second res2)))
(implies (and (natp h)
(term-p-aux flg term))
(and (equal g-ret1
(first (make-shared-variables h h-ret2 g-ret2 variables)))
(equal var-ret1
(second (make-shared-variables h h-ret2 g-ret2
variables)))))))))
;;; ============================================================================
;;;
;;; 6) Sharing variables preserves {\tt dag-p}
;;;
;;; ============================================================================
;;; Our intention in this section is to prove a theorem that will allow
;;; us to conclude that after applying {\tt make-shared-variables} to
;;; the graph obtained by {\tt term-as-dag-aux-l-ns} we obtain a graph
;;; thta verifies the {\tt init-term-dag-p} property and, consequently,
;;; the {\tt dag-p} property. Since we have proved in section 3 that the
;;; graph obtained by {\tt term-as-dag-aux-l-ns} verifies {\tt tree-p}
;;; then the following theorem will be our final goal in this section:
; (defthm init-term-dag-p-make-shared-variables
; (implies (and (natp h1) (natp h2) (<= h1 h2) (<= h2 (len g))
; (tree-p g) (variables-well-stored-p h1 g variables))
; (init-term-dag-p
; (first (make-shared-variables h1 h2 g variables)))))
;;; This theorem will be a particular case of a more general theorem
;;; that can be proved by induction. The function {\tt
;;; variables-well-stored-p} defines some kind of "invariant" during the
;;; proccess of making variables shared; it defines how the association
;;; list computed by {\tt make-shared-variables} is related to the "piece"
;;; of graph already processed.
;;; -----------------------------------
;;;
;;; 6.1) Definition of the invariant
;;;
;;; -----------------------------------
;;; As we have said above, the following definition formalizes some kind
;;; of "invariant" during the proccess of making variables shared; it
;;; defines how the association list computed by {\tt
;;; make-shared-variables} is related to the "piece" of graph already
;;; processed. Intuitively, it establishes that the association list
;;; @variables@ binds the variable nodes of the graph @g@ to the index
;;; of the nodes of the graph where they appear, for all the nodes with
;;; index less than @h@. That is, if we have made variables shared in
;;; @g@ until index @h-1@ then {\tt ((variables-well-stored-p h g
;;; variables)} where @vraibles@ is the association list computed {\tt
;;; make-shared-variables} up to that moment.
(local
(defun variables-well-stored-p (h g variables)
(cond ((zp h) (equal variables nil))
((term-dag-variable-p (1- h) g)
(and (equal (term-dag-symbol (1- h) g) (caar variables))
(equal (cdar variables) (1- h))
(variables-well-stored-p (1- h) g (cdr variables))))
(t (variables-well-stored-p (1- h) g variables)))))
;;; Now we prove some properties about @variables-well-stored-p@. For
;;; example, if {\tt (variables-well-stored-p h1 g variables)}, then in
;;; the association list @variables@ the variables are bound to
;;; natural numbers strictly less than the index @h1@, and those numbers
;;; point to variable nodes in the graph.
(local
(defthm variables-well-stored-p-integerp
(implies (and (variables-well-stored-p h1 g variables)
(assoc x variables))
(integerp (cdr (assoc x variables))))
:rule-classes :type-prescription))
(local
(defthm variables-well-stored-p-positive
(implies (and (variables-well-stored-p h1 g variables)
(assoc x variables))
(<= 0 (cdr (assoc x variables))))
:rule-classes :linear))
(local
(defthm variables-well-stored-p-index-less-than
(implies (and (variables-well-stored-p h1 g variables)
(natp h1)
(assoc x variables))
(< (cdr (assoc x variables)) h1))
:rule-classes :linear))
(local
(defthm variables-well-stored-p-index-stores-variables
(implies (and (variables-well-stored-p h1 g variables)
(natp h1)
(assoc x variables))
(term-dag-variable-p (cdr (assoc x variables)) g))))
;;; These two lemmas establish how updating affects to {\tt
;;; variables-well-stored-p}:
(local
(defthm variales-well-stored-p-update-nth-above-the-index
(implies (and (natp h1) (natp h2) (<= h1 h2))
(equal (variables-well-stored-p h1 (update-nth h2 x g)
variables)
(variables-well-stored-p h1 g variables)))
:hints (("Goal" :induct (variables-well-stored-p h1 g variables))
("Subgoal *1/5"
:expand
(variables-well-stored-p h1 (update-nth h2 x g) variables)))))
(local
(defthm variables-well-stored-p-update-nth-at-the-index
(implies (and (assoc (car (nth h1 g)) variables)
(natp h1)
(variables-well-stored-p h1 g variables))
(variables-well-stored-p
(+ 1 h1)
(update-nth h1
(cdr (assoc (car (nth h1 g)) variables))
g)
variables))
:hints (("Goal" :expand (variables-well-stored-p
(+ 1 h1)
(update-nth h1
(cdr (assoc (car (nth h1 g)) variables))
g)
variables)))))
;;; -----------------------------------
;;;
;;; 6.2) Proving the invariant and the intended property
;;;
;;; -----------------------------------
;;; The following sequence of events helps to prove the lemma {\tt
;;; init-term-dag-p-make-shared-variables-main-lemma}, which describes
;;; the main invariant related to the {\tt init-term-dag-p} property
;;; during the proccess. The goal theorem in this section will be a
;;; particular case of that lemma.
(local
(encapsulate
()
(local
(defthm init-term-dag-p-aux-append
(equal (init-term-dag-p-aux (append hs1 hs2) g)
(and (init-term-dag-p-aux hs1 g)
(init-term-dag-p-aux hs2 g)))))
;; Needed for {\tt Subgoal *1/4.3}
(local
(defthm property-element-tree-p-property-element-init-term-dag-p
(implies (property-element-tree-p h node)
(property-element-init-term-dag-p h node g))))
(local
(in-theory (disable property-element-tree-p
property-element-init-term-dag-p)))
(local
(defthm init-term-dag-p-aux-property-element-tree-p-lemma
(implies (and (natp h1) (natp h0) (<= h0 h1)
(init-term-dag-p-aux (list-from-to h0 h1) g)
(property-element-tree-p h1 (nth h1 g)))
(init-term-dag-p-aux (append (list-from-to h0 h1)
(list-from-to h1 (1+ h1)))
g))))
(local
(defthm init-term-dag-p-aux-property-element-tree-p
(implies (and (natp h1) (natp h0) (<= h0 h1)
(init-term-dag-p-aux (list-from-to h0 h1) g)
(property-element-tree-p h1 (nth h1 g)))
(init-term-dag-p-aux (list-from-to h0 (1+ h1))
g))
:hints (("Goal" :use init-term-dag-p-aux-property-element-tree-p-lemma
:in-theory (disable list-from-to)))))
(local
(defthm tree-p-aux-implies-property-element-tree-p
(implies (and (natp h1) (natp h2) (< h1 h2)
(tree-p-aux (list-from-to h1 h2) g))
(property-element-tree-p h1 (nth h1 g)))))
(local
(defthm init-term-dag-p-aux-one-index-beyond
(implies (and (tree-p-aux (list-from-to h1 h2) g)
(natp h1) (natp h2) (< h1 h2) (natp h0) (<= h0 h1)
(init-term-dag-p-aux (list-from-to h0 h1) g))
(init-term-dag-p-aux (list-from-to h0 (1+ h1)) g))
:hints (("Goal"
:use init-term-dag-p-aux-property-element-tree-p))))
;; Needed for {\tt Subgoal *1/4.2}
(local
(defthm variables-well-stored-p-variables-one-index-beyond
(implies (and (not (term-dag-variable-p h1 g))
(variables-well-stored-p h1 g variables))
(variables-well-stored-p (1+ h1) g variables))))
;; Needed for {\tt Subgoal *1/4.1}
(local
(defthm tree-p-aux-one-index-less
(implies (and (natp h1) (natp h2) (< h1 h2)
(tree-p-aux (list-from-to h1 h2) g))
(tree-p-aux (list-from-to (1+ h1) h2) g))))
;; Needed for {\tt Subgoal *1/3.1}
(local
(defthm variables-well-stored-p-one-step-beyond
(implies (and (natp h1)
(term-dag-variable-p h1 g)
(variables-well-stored-p h1 g variables))
(variables-well-stored-p (1+ h1) g
(cons (cons (car (nth h1 g)) h1)
variables)))))
;; Needed for {\tt Subgoal *1/2.2'}
(local
(defthm variables-well-stored-p-not-variable-if-stored
(implies (and (variables-well-stored-p h1 g variables)
(assoc (car (nth h1 g)) variables))
(not (equal (cddr (assoc (car (nth h1 g)) variables))
t)))
:hints (("Goal" :use (:instance variables-well-stored-p-integerp
(x (car (nth h1 g))))))))
;; Needed for {\tt Subgoal *1/2.1}
(local
(defthm variables-well-stored-p-property-element-init-term-dag-p-update-nth
(implies (and (variables-well-stored-p h1 g variables)
(natp h1)
(assoc (car (nth h1 g)) variables))
(property-element-init-term-dag-p
h1 (cdr (assoc (car (nth h1 g)) variables))
(update-nth h1
(cdr (assoc (car (nth h1 g)) variables))
g)))
:hints (("Goal" :in-theory (enable property-element-init-term-dag-p)))))
(local
(defthm property-element-init-term-dag-p-update-nth
(implies (and (natp h0) (natp h2) (< h0 h2)
(property-element-init-term-dag-p h0 (nth h0 g)
g))
(property-element-init-term-dag-p h0 (nth h0 g)
(update-nth h2 x g)))
:hints (("Goal" :in-theory (enable property-element-init-term-dag-p)))))
(local
(defthm init-term-dag-p-aux-list-from-to-update-nth
(implies (and (natp h0) (natp h1) (natp h2) (<= h0 h1) (<= h1 h2)
(init-term-dag-p-aux (list-from-to h0 h1) g))
(init-term-dag-p-aux (list-from-to h0 h1) (update-nth h2 x g)))))
(local
(defthm init-term-dag-p-aux-update-nth-one-index-beyond-almost
(implies (and (variables-well-stored-p h1 g variables)
(natp h1) (natp h0) (<= h0 h1)
(init-term-dag-p-aux (list-from-to h0 h1) g)
(equal (cdr (nth h1 g)) t)
(assoc (car (nth h1 g)) variables))
(init-term-dag-p-aux (append (list-from-to h0 h1)
(list-from-to h1 (1+ h1)))
(update-nth h1
(cdr (assoc (car (nth h1 g)) variables))
g)))
:hints (("Goal" :in-theory (disable append-list-from-to)))))
(local
(defthm init-term-dag-p-aux-update-nth-one-index-beyond
(implies (and (variables-well-stored-p h1 g variables)
(natp h1) (natp h0) (<= h0 h1)
(init-term-dag-p-aux (list-from-to h0 h1) g)
(equal (cdr (nth h1 g)) t)
(assoc (car (nth h1 g)) variables))
(init-term-dag-p-aux (list-from-to h0 (+ 1 h1))
(update-nth h1
(cdr (assoc (car (nth h1 g)) variables))
g)))
:hints (("Goal" :use init-term-dag-p-aux-update-nth-one-index-beyond-almost
:in-theory (disable list-from-to)))))
;; And finally the main lemma:
(defthm init-term-dag-p-make-shared-variables-main-lemma
(implies (and (natp h1) (natp h2) (natp h0)
(<= h0 h1) (<= h1 h2)
(tree-p-aux (list-from-to h1 h2) g)
(init-term-dag-p-aux (list-from-to h0 h1) g)
(variables-well-stored-p h1 g variables))
(init-term-dag-p-aux
(list-from-to h0 h2)
(first (make-shared-variables h1 h2 g variables))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables))))
;; We now prove the theorem {\tt init-term-dag-p-make-shared-variables}
;; presented above, simply noting that when {\tt tree-p} is verified by
;; a graph, then it verifies {\tt tree-p-aux} for every range of natural
;; numbers:
(local (in-theory (disable property-element-tree-p)))
(local
(defthm property-element-tree-p-natp-all-indices
(implies (and (tree-p g)
(local-nat-listp hs))
(tree-p-aux hs g))))
(local
(defthm nth-aux-make-shared-variables-beyond-the-limit
(implies (and (natp h1) (natp h2) (natp h3) (<= h2 h3))
(equal (nth h3 (first (make-shared-variables h1 h2 g
variables)))
(nth h3 g)))))
(local
(defthm tree-p-aux-make-shared-variables-beyond-the-limit
(implies (and (natp h1) (natp h2) (natp h3)
(<= h2 h3) (natp h4)
(tree-p-aux (list-from-to h3 h4) g))
(tree-p-aux (list-from-to h3 h4)
(first (make-shared-variables h1 h2 g variables))))))
(local
(defthm init-term-dag-p-make-shared-variables-bridge-lemma
(implies (and (natp h1) (natp h2) (<= h1 h2)
(tree-p g) (variables-well-stored-p h1 g variables))
(init-term-dag-p-aux
(append (list-from-to 0 h2)
(list-from-to h2
(len
(first
(make-shared-variables h1 h2 g variables)))))
(first
(make-shared-variables h1 h2 g variables))))
:rule-classes nil))
(local
(defthm len-update-nth-corollary
(implies
(and (natp h1) (natp h2) (< h1 h2)
(< h1 h2) (<= h2 (len g)))
(not (< (len (update-nth h1 x g)) h2)))))
(local
(defthm len-make-shared-variables-auxiliar-property
(implies (and (natp h1) (natp h2) (<= h1 h2) (<= h2 (len g)))
(<= h2 (len (first (make-shared-variables h1 h2 g
variables)))))
:rule-classes :linear))
;; Finally, the intended property:
(defthm init-term-dag-p-make-shared-variables
(implies (and (natp h1) (natp h2) (<= h1 h2) (<= h2 (len g))
(tree-p g) (variables-well-stored-p h1 g variables))
(init-term-dag-p
(first (make-shared-variables h1 h2 g variables))))
:hints (("Goal" :use
init-term-dag-p-make-shared-variables-bridge-lemma
:in-theory (enable tree-p init-term-dag-p))))))
;;; Note that when @h1@ is @0@, then the condition {\tt
;;; (variables-well-stored-p 0 g nil)} trivially holds, so the above
;;; theorem trivially implies that whenever {\tt (tree-p g)} then the
;;; graph {\tt (first (make-shared-variables 0 (len g) g nil))} verifies
;;; the {\tt init-term-dag-p} property.
;;; ============================================================================
;;;
;;; 7) How making shared variables affects to the graph
;;;
;;; ============================================================================
;;; In this section we prove that the variables of the graph obtained
;;; after making the variables of a graph to be shared are
;;; not duplicated. That is, our goal in this sectionis:
; (defthm no-duplicatesp-make-shared-variables-particular-case
; (no-duplicatesp
; (list-of-term-dag-variables
; (first
; (make-shared-variables 0 (len g) g nil))))
;;; And also we show that making variables to be shared preserves the
;;; stored first--order terms. That is, the following theorem:
; (defthm dag-as-term-l-make-shared-variables
; (implies (and
; (natp h1) (natp h2) (<= h1 h2)
; (dag-p g)
; (variables-well-stored-p h1 g variables)
; (dag-p (first (make-shared-variables h1 h2 g variables))))
; (equal (dag-as-term-l
; flg h (first (make-shared-variables h1 h2 g
; variables)))
; (dag-as-term-l flg h g))))
;;; The main lemma needed in this section is the lemma {\tt
;;; make-shared-variables-variables-main-lemma} below establishing the
;;; relation between the variables bound by the association list
;;; computed by {\tt make-shared-variables}, and the variables appearing
;;; in the graph computed by {\tt make-shared-variables}:
(local
(encapsulate
()
(defun nths-from-to (l h1 h2)
(declare (xargs :measure (nfix (- h2 h1))))
(if (zp (- h2 h1))
nil
(cons (nth h1 l)
(nths-from-to l (1+ h1) h2))))
(defun my-subseq-list (l h1 h2)
(declare (xargs :measure (list* (cons 1 (1+ (nfix (- h2 h1)))) (nfix h1))))
(cond ((zp (- h2 h1)) nil)
((zp h1) (cons (car l) (my-subseq-list (cdr l) h1 (- h2 1))))
(t (my-subseq-list (cdr l) (- h1 1) (- h2 1)))))
(local
(defthm update-nth-nths-from-to
(implies (and (natp h) (natp h1) (natp h2) (< h h1))
(equal (nths-from-to (update-nth h x g) h1 h2)
(nths-from-to g h1 h2)))))
(defun alist-to-acl2-numberp (a)
(if (endp a)
t
(and (acl2-numberp (cdar a))
(alist-to-acl2-numberp (cdr a)))))
(local
(defthm alist-to-indices-does-not-provide-dag-variables
(implies (and (alist-to-acl2-numberp a)
(assoc x a))
(acl2-numberp (cdr (assoc x a))))
:rule-classes :type-prescription))
(defthm make-shared-variables-variables-main-lemma
(implies (and (natp h1)
(natp h2)
(alist-to-acl2-numberp variables))
(equal
(strip-cars
(second (make-shared-variables h1 h2 g variables)))
(revappend
(list-of-term-dag-variables
(nths-from-to
(first (make-shared-variables h1 h2 g variables))
h1 h2))
(strip-cars variables))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables))))))
;;; As a particular case of this main lemma, the lemma {\tt
;;; make-shared-variables-variables} below establish the relation
;;; between the variables bound by the association list and the
;;; variables of the graph after making variables to be shared in {\em all}
;;; the graph.
(local
(encapsulate
()
(local
(defthm equal-nths-from-to-my-subseq-list-lemma
(implies (and (natp h1) (natp h2) (< h1 h2))
(equal (my-subseq-list l h1 h2)
(cons (nth h1 l)
(my-subseq-list l (+ 1 h1) h2))))))
(local
(defthm equal-nths-from-to-my-subseq-list
(implies (and (natp h1) (natp h2))
(equal (nths-from-to l h1 h2)
(my-subseq-list l h1 h2)))))
(local
(defthm my-subseq-list-particular-case
(equal (my-subseq-list l 0 (len l))
(fix-true-list l))
:rule-classes nil))
(local
(defthm nths-from-to-particular-case
(equal (nths-from-to l 0 (len l)) (fix-true-list l))))
(local
(defthm list-of-term-dag-variables-fix-true-list-l
(equal (list-of-term-dag-variables (fix-true-list l))
(list-of-term-dag-variables l))))
(local
(defthm revappend-rev-list
(equal (revappend l ac)
(append (revlist l) ac))))
(local
(defthm len-update-nth-corollary-2
(implies (and (natp h) (< h (len g)))
(equal (len (update-nth h x g)) (len g)))))
(local
(defthm len-make-shared-variables-arithmetic-lemma
(implies (and (not (zp (- h2 h1)))
(natp h1) (natp h2)
(<= h1 h2)
(<= h2 x))
(< h1 x))
:rule-classes nil))
(local
(defthm len-make-shared-variables
(implies (and (natp h1) (natp h2) (<= h1 h2) (<= h2 (len g)))
(equal
(len (first (make-shared-variables h1 h2 g variables)))
(len g)))
:hints (("Subgoal *1/4"
:use (:instance len-make-shared-variables-arithmetic-lemma
(x (len g)))))
:rule-classes nil))
(local
(defthm make-shared-variables-variables
(equal
(revlist
(list-of-term-dag-variables
(first
(make-shared-variables 0 (len g) g nil))))
(strip-cars
(second (make-shared-variables 0 (len g) g nil))))
:hints (("Goal" :use
((:instance len-make-shared-variables
(h1 0) (h2 (len g)) (variables nil))
(:instance my-subseq-list-particular-case
(l (car (make-shared-variables 0 (len g) g nil)))))))))
;; Finally it is to show that the variables bound by the association
;; list are not duplicated, and consequently (using the previous lemmas)
;; we prove (theorem {\tt
;; no-duplicatesp-make-shared-variables-particular-case}) that the list
;; of variables of the graph after making variables to be shared are not
;; duplicated (that is, the main goal in this section):
(local
(defthm member-strip-cars-assoc
(implies (alistp a)
(iff (member x (strip-cars a))
(assoc x a)))))
(local
(defthm no-duplicatesp-make-shared-variables
(implies (and (alistp variables) (no-duplicatesp (strip-cars variables)))
(no-duplicatesp
(strip-cars
(second
(make-shared-variables h1 h2 g variables)))))))
(local
(defthm no-duplicatesp-make-shared-variables-particular-case-lemma
(no-duplicatesp
(revlist
(list-of-term-dag-variables
(first
(make-shared-variables 0 (len g) g nil)))))
:hints (("Goal"
:in-theory
(disable equal-nths-from-to-my-subseq-list
no-duplicatesp-revlist
make-shared-variables-variables-main-lemma)))))
(defthm no-duplicatesp-make-shared-variables-particular-case
(no-duplicatesp
(list-of-term-dag-variables
(first
(make-shared-variables 0 (len g) g nil))))
:hints (("Goal"
:use
no-duplicatesp-make-shared-variables-particular-case-lemma
:in-theory (disable
no-duplicatesp-make-shared-variables-particular-case-lemma
make-shared-variables-variables))))
;; {\bf We now prove the last piece of our strategy}, before assembling the
;; pieces to prove our main goals in this book. We show now that the
;; terms computed by the function {\tt dag-as-term-l} are preserved
;; after making variables to be shared.
(local
(defthm variables-are-not-is
(implies (term-dag-variable-p h g)
(not (term-dag-is-p h g)))))
(local
(defthm variables-well-stored-p-assoc
(implies (and (assoc x variables)
(variables-well-stored-p h g variables))
(equal (car (nth (cdr (assoc x variables)) g))
x))))
(local
(defthm car-update-nth-in-strictly-positives-indices
(implies (and (integerp h) (< 0 h))
(equal (car (update-nth h x g)) (car g)))))
;; Attention! The proof of the following lemma is very long, but I
;; prefer not to impose condition on @h@, since in that case I have to
;; impose conditions on @g@ and @gms@.
(local
(defthm make-shared-variables-dag-as-term-l-lemma
(let* ((c1 (nth h g))
(gms (first (make-shared-variables h1 h2 g variables)))
(c2 (nth h gms)))
(implies (and
(natp h1) (natp h2) (<= h1 h2)
(not (equal c1 c2))
(variables-well-stored-p h1 g variables)
(term-dag-variable-p h g))
(and (integerp c2)
(term-dag-variable-p c2 gms)
(equal (term-dag-symbol c2 gms)
(term-dag-symbol h g)))))
:hints (("Goal" :induct (make-shared-variables h1 h2 g variables)))))
(local
(defthm make-shared-variables-dag-as-term-l
(implies (and
(natp h1) (natp h2) (<= h1 h2)
(dag-p (first (make-shared-variables h1 h2 g variables)))
flg
(variables-well-stored-p h1 g variables)
(term-dag-variable-p h g))
(equal (dag-as-term-l flg h
(first (make-shared-variables h1 h2 g
variables)))
(car (nth h g))))
:hints
(("Goal"
:cases
((equal (nth h g)
(nth h (first (make-shared-variables h1 h2 g variables)))))))))
;; And finally one of the intended theorems in this section, showing that {\tt
;; make-shared-variables} preserves the value of {\tt dag-as-term-l}.
(defthm dag-as-term-l-make-shared-variables
(implies (and
(natp h1) (natp h2) (<= h1 h2)
(dag-p g)
(variables-well-stored-p h1 g variables)
(dag-p (first (make-shared-variables h1 h2 g variables))))
(equal (dag-as-term-l
flg h (first (make-shared-variables h1 h2 g
variables)))
(dag-as-term-l flg h g)))
:hints (("Goal" :induct (dag-as-term-l flg h g))))))
;;; ============================================================================
;;;
;;; 9) Assembling all the pieces
;;;
;;; ============================================================================
;;; Recall that our goal is to prove the main properties of the graph
;;; computed by {\tt term-as-dag-l}, those properties that allows us to
;;; apply our unification algorithm acting on term dags to that
;;; graph. That is, under certain initial conditions, the following
;;; properties hold:
;;; *)
;;; The graph is a well--formed directed acyclic graph
;;; *)
;;; The graph has no duplicates variables
;;; *)
;;; The term stored in the graph (at index 0) is the input term
;;; -)
;;; This is the initial conditions we will assume about the graph {\em
;;; before} storing the graph. We simply assume that all the nodes are empty:
(defun empty-graph-p-aux (hs g)
(declare (xargs :guard (and (nat-true-listp hs) (true-listp g))))
(if (endp hs)
t
(and (equal (nth (car hs) g) nil)
(empty-graph-p-aux (cdr hs) g))))
;;; For guard verification
(defthm nat-true-list-p-list-from-to
(implies (and (natp x) (natp y))
(nat-true-listp (list-from-to x y))))
(defun empty-graph-p (g)
(declare (xargs :guard (true-listp g)))
(empty-graph-p-aux (list-from-to 0 (len g)) g))
;;; This condition trivially implies {\tt tree-p}:
(local
(encapsulate
()
(local
(defthm empty-graph-p-aux-tree-p-aux
(implies (empty-graph-p-aux hs g)
(tree-p-aux hs g))
:hints (("Goal" :in-theory (enable property-element-tree-p)))))
(defthm empty-graph-p-tree-p
(implies (empty-graph-p g)
(tree-p g))
:hints (("Goal" :in-theory (enable tree-p))))))
;;; The graph obtained by {\tt term-as-dag-l} verifies {\tt
;;; init-term-dag-p}:
(local
(defthm term-as-dag-l-init-term-dag-p
(implies (and (tree-p g) (term-p term))
(init-term-dag-p (term-as-dag-l term g)))))
;;; The graph obtained by {\tt term-as-dag-l} is a directed acyclic graph
(defthm term-as-dag-l-dag-p
(implies (and (empty-graph-p g) (term-p term))
(dag-p (term-as-dag-l term g))))
;;; The graph obtained by {\tt term-as-dag-l} stores the input term (at
;;; index 0):
(defthm term-as-dag-l-stores-term
(implies (and (empty-graph-p g) (term-p term))
(equal (dag-as-term-l t 0 (term-as-dag-l term g))
term)))
;;; And the following sequence of events shows that the list of
;;; variables of the graph obtained by {\tt term-as-dag-l} has no
;;; duplicates (theorem {\tt term-as-dag-l-no-duplicatesp-variables}
;;; below):
(encapsulate
()
(local
(defthm empty-graph-p-aux-main-property
(implies (and (empty-graph-p-aux hs g)
(member h hs))
(equal (nth h g) nil))))
(local
(defthm nth-non-nil
(implies (and (<= (len l) n) (natp n))
(not (nth n l)))))
(local
(defthm empty-graph-p-main-property
(implies (and (empty-graph-p g) (natp h))
(equal (nth h g) nil))
:hints (("Goal" :cases ((member h (list-from-to 0 (len g))))))))
(local
(defthm make-shared-variables-empty-graph-p-aux-1
(implies (and (natp h2) (natp h3)
(<= h2 h3)
(empty-graph-p-aux (list-from-to h2 h3) g))
(equal (first (make-shared-variables h2 h3 g variables))
g))))
(local
(defthm make-shared-variables-empty-graph-p-aux-2
(implies (and (natp h1) (natp h2) (natp h3) (natp h4)
(<= h1 h2) (<= h2 h3) (<= h3 h4)
(empty-graph-p-aux (list-from-to h3 h4) g))
(empty-graph-p-aux (list-from-to h3 h4)
(first (make-shared-variables h1 h2 g variables))))))
(local
(defthm make-shared-variables-empty-graph-p-aux-final-segment
(implies (and (natp h1) (natp h2) (natp h3)
(<= h1 h2) (<= h2 h3)
(empty-graph-p-aux (list-from-to h2 h3) g))
(equal (first (make-shared-variables h1 h3 g variables))
(first (make-shared-variables h1 h2 g variables))))
:hints (("Goal" :use make-shared-composition))))
(local
(defthm empty-graph-p-covers-all-cases
(implies (and (natp h1) (natp h2)
(empty-graph-p g))
(empty-graph-p-aux (list-from-to h1 h2) g))))
(local
(defthm empty-graph-p-covers-all-cases-version-2
(implies (and (local-nat-listp hs)
(empty-graph-p g))
(empty-graph-p-aux hs g))))
(local
(defthm empty-graph-p-aux-term-as-dag-l-final-segment
(implies (and (empty-graph-p-aux hs g)
(natp h)
(subsetp hs
(list-from-to
(cadr (term-as-dag-aux-l-ns flg term g h))
(len (car (term-as-dag-aux-l-ns flg term g h))))))
(empty-graph-p-aux
hs (car (term-as-dag-aux-l-ns flg term g h))))
:hints (("Goal" :induct (empty-graph-p-aux hs g)))))
(defthm term-as-dag-l-no-duplicatesp-variables
(implies (and (empty-graph-p g) (term-p term))
(no-duplicatesp
(list-of-term-dag-variables (term-as-dag-l term g))))
:hints (("Goal" :use
(:instance make-shared-variables-empty-graph-p-aux-final-segment
(h1 0) (h2 (second (term-as-dag-aux-l-ns t term g 0)))
(h3 (len (first (term-as-dag-aux-l-ns t term g 0))))
(g (first (term-as-dag-aux-l-ns t term g 0)))
(variables nil))
:in-theory (disable
make-shared-variables-empty-graph-p-aux-final-segment)))))
(local (in-theory (disable tree-p)))
(local (in-theory (disable term-as-dag-aux-l-in-two-steps)))
;;; ============================================================================
;;;
;;; 10) The {\tt term-graph-p} property of {\tt term-as-dag-aux-l}
;;;
;;; ============================================================================
;;; We have left (intentionally) one property about {\tt
;;; term-as-dag-l}. We show in this section that the graph obtained by
;;; {\tt term-as-dag-l } acting on an empty graph is a well formed term
;;; graph.
;;; Unlike, the above properties, we will reason directly with the
;;; definition of {\tt term-as-dag-aux-l}. First, we prove that the
;;; property {\tt term-graph-p} is preserved by {\tt
;;; term-as-dag-aux-l}. And second, we show that {\tt empty-graph-p}
;;; implies {\tt term-graph-p}.
;;; -----------------------------------
;;;
;;; 10.1) The property {\tt term-graph-p} is preserved by {\tt term-as-dag-aux-l}
;;;
;;; -----------------------------------
;;; The following propeerties show how some updates to graph does not
;;; change the {\tt bounded-term-graph-p} property.
(local
(defthm bounded-term-graph-p-update-nth-args
(implies (and
(bounded-term-graph-p g n)
(eqlablep x)
(bounded-nat-true-listp l n))
(bounded-term-graph-p (update-nth h (cons x l) g) n))))
(local
(defthm bounded-term-graph-p-update-nth-variable
(implies (and
(bounded-term-graph-p g n)
(eqlablep x))
(bounded-term-graph-p (update-nth h (cons x t) g) n))))
(local
(defthm bounded-nat-substitution-p-assoc
(implies (and
(bounded-nat-substitution-p a n)
(assoc x a))
(and (integerp (cdr (assoc x a)))
(< (cdr (assoc x a)) n)
(<= 0 (cdr (assoc x a)))))))
(local
(defthm bounded-term-graph-p-update-nth-integer
(implies (and
(bounded-term-graph-p g n)
(natp x) (< x n))
(bounded-term-graph-p (update-nth h x g) n))))
;;; The main result of this subsection. Note that we prove an
;;; invariant of {\tt term-as-dag-aux-l}:
(defthm term-as-dag-aux-l-term-graph-p
(let* ((res (term-as-dag-aux-l flg term g h variables))
(g-res (first res))
(h-res (second res))
(hs-res (third res))
(var-res (fourth res)))
(implies (and (term-graph-p g)
(natp h)
(<= (+ h (length-term flg term)) (len g))
(bounded-nat-substitution-p variables (len g))
(term-p-aux flg term))
(and (term-graph-p g-res)
(equal h-res (+ h (length-term flg term)))
(equal (len g-res) (len g))
(bounded-nat-true-listp hs-res (len g))
(bounded-nat-substitution-p var-res (len g))))))
;;; And the intended result of this subsection, a particular case of the
;;; above theorem:
(defthm term-as-dag-l-term-graph-p
(implies (and (term-graph-p g)
(term-p term)
(<= (length-term t term) (len g)))
(term-graph-p (term-as-dag-l term g))))
(in-theory (disable term-as-dag-l))
;;; -----------------------------------
;;;
;;; 10.2) The property {\tt empty-graph-p} implies {\tt term-graph-p}
;;;
;;; -----------------------------------
;;; Now we prove that {\tt empty-graph-p} implies {\tt term-graph-p}
;;; (see the definition of {\tt term\--graph\--p} in the book {\tt
;;; dag-unification-rules}. Note the different styles in both
;;; definitions. The second one is defined recursively in the graph, and
;;; the first one is defined in terms of its indices. The implication
;;; can be proved by a general procedure. So we stablish the general
;;; reasoning and then obtain by functional instantiation the required
;;; property in this case.
;;; We assume the existence of a property @p-wit@ verified by all the
;;; elements (obtained with @nth@) of a list @l-wit@:
(local
(encapsulate
(((p-wit *) => *)
((l-wit) => *))
(local (defun p-wit (x) (list x)))
(local (defun l-wit () nil))
(defthm p-wit-l-wit-property
(implies (and (natp h) (< h (len (l-wit))))
(p-wit (nth h (l-wit)))))))
;;; We can show that, in this case, all the elements of the list (l-wit)
;;; verify p-wit, an this can be expresed in two ways (recursively on
;;; lists, and quantifying over its indices).
;;; The following function checks the property @p-wit@ recursively:
(local
(defun p-wit-list (l)
(if (endp l)
t
(and (p-wit (car l)) (p-wit-list (cdr l))))))
;;; The following sequence of events show that the the list @l-wit@
;;; verifies @p-wit-list@:
(local
(encapsulate
()
(local
(defun not-p-wit-aux (h l)
(cond ((endp l) nil)
((p-wit (car l)) (not-p-wit-aux (1+ h) (cdr l)))
(t h))))
(local
(defthm not-p-wit-aux-bigger-than-initial-index
(implies (and (natp h) (not (p-wit-list l)))
(<= h (not-p-wit-aux h l)))
:rule-classes :linear))
(local
(defthm not-p-wit-aux-at-most-total-length
(implies (and (natp h) (not (p-wit-list l)))
(< (not-p-wit-aux H L) (+ H (LEN L))))
:rule-classes :linear))
(local
(defthm not-p-wit-aux-main-lemma
(implies (natp h)
(iff (p-wit-list l)
(implies (and (natp (not-p-wit-aux h l))
(< (not-p-wit-aux h l)
(+ h (len l))))
(p-wit (nth (- (not-p-wit-aux h l) h) l)))))))
(local
(defthm not-p-wit-aux-main-lemma-corollary
(iff (p-wit-list l)
(implies (and (natp (not-p-wit-aux 0 l)) (< (not-p-wit-aux 0 l)
(len l)))
(p-wit (nth (not-p-wit-aux 0 l) l))))
:hints (("Goal" :use
(:instance not-p-wit-aux-main-lemma (h 0))))))
(defthm p-wit-list-l-wit (p-wit-list (l-wit)))))
;;; We define now the recursive version of {\tt empty-graph-p}, called
;;; {\tt empty-graph-p-rec}, which obviously implies {\tt
;;; bounded-term-graph-p}.
(defun empty-graph-p-rec (g)
(if (endp g)
t
(and (not (car g))
(empty-graph-p-rec (cdr g)))))
(defthm empty-graph-p-rec-bounded-term-graph-p
(implies (empty-graph-p-rec g)
(bounded-term-graph-p g n)))
;;; As we said above, we can use the above general result by functional
;;; instantiation, to show that {\tt empty-graph-p} implies
;;; @empty-graph-p-rec@. We simply has to previously show that the property
;;; of the nodes of a graph that verifies {\tt empty\--graph\--p}
;;; implies the property that verify the nodes of a graph that verifies
;;; {\tt empty\--graph\--p\--rec}:
(encapsulate
()
(local
(defun property-element-empty-graph-p-rec (x)
(not x)))
(local
(defthm init-term-dag-p-aux-term-dag-p
(implies (and (natp h) (natp h1) (natp h2)
(<= h1 h) (< h h2)
(nth h g))
(not (empty-graph-p-aux (list-from-to h1 h2) g)))
:rule-classes nil))
(defthm empty-graph-p-empty-graph-p-rec
(implies (empty-graph-p g)
(empty-graph-p-rec g))
:hints (("Goal" :use (:functional-instance
p-wit-list-l-wit
(p-wit property-element-empty-graph-p-rec)
(p-wit-list empty-graph-p-rec)
(l-wit (lambda () (if (empty-graph-p g) g
nil)))))
("Subgoal 2" :use (:instance init-term-dag-p-aux-term-dag-p
(h1 0) (h2 (len g)))))))
(defthm empty-graph-p-implies-bounded-term-graph-p
(implies (empty-graph-p g)
(bounded-term-graph-p g n)))
;;; In particular, the intended result:
(defthm empty-graph-p-implies-term-graph-p
(implies (empty-graph-p g)
(term-graph-p g))
:rule-classes nil)
(in-theory (disable empty-graph-p))
;;; ============================================================================
;;;
;;; 11) Building unification problems
;;;
;;; ============================================================================
;;; The function {\tt terms-as-dag-l} will be our main auxiliary
;;; function for building (dag) unification problems. Recall that a
;;; unification problem (see {\tt dags.lisp}) is determined by an
;;; indices system, an indices substitution and a well--formed directed
;;; acyclic graph. Initially, the indices substitution is empty. We now
;;; describe how we build the graph and the indices system for a
;;; unification problem of the form $\{t_1=t_2\}$:
;;; This function computes the graph. Note that the list that represents
;;; the graph is previously resized after computing how many nodes are
;;; needed. Also note that the term {\tt (equ t1 t2)} is stored in the
;;; graph using {\tt term-as-dag-l}:
(defun unif-two-terms-problem-l (t1 t2 g)
(let* ((size (+ (length-term t t1) (length-term t t2) 1))
(g (resize-list g size nil)))
(term-as-dag-l (list 'equ t1 t2) g)))
;;; The initial indices system is taken from the argument list of the
;;; first node:
(defun initial-to-be-solved-l (g)
(let ((args-0 (cdr (dagi-l 0 g))))
(list (cons (first args-0)
(second args-0)))))
;;; Following the results proved in the book {\tt
;;; dag-unification-rules}, our goal is to prove the following:
; If (empty-graph-p g)
; let* g-t1-t2 = (unif-two-terms-problem-l t1 t2 g)
; S-dag-t1-t2 = (initial-to-be-solved-l g-t1-t2)
; then:
; (well-formed-dag-system S-dag-t1-t2 g-t1-t2)
; and
; (equal (tbs-as-system S-dag-t1-t2 g-t1-t2)
; (list (cons t1 t2)))
;;; If we prove the above property, we will able to use the theorems
;;; proved in {\tt dag-unification-rules} to conclude the properties of
;;; a unification algorithm that applies the rules of transformation
;;; starting with the above initial unification problem.
;;; First, we show that resizing a list preserves the {\tt
;;; empty-graph-p} property:
(local
(encapsulate
()
(local
(defun same-element (l x)
(if (endp l)
t
(and (equal (car l) x)
(same-element (cdr l) x)))))
(local
(defthm resize-list-empty-graph-p-main-lemma
(implies (same-element g x)
(same-element (resize-list g n x) x))))
(local
(defthm resize-list-empty-graph-p-main-lemma-nth-version-lemma
(implies (same-element l nil)
(not (nth i l)))))
(local
(defthm empty-graph-p-decreasing-indices-by-one
(implies (and (natp n) (natp m) (<= n m) (< 0 n)
(not (empty-graph-p-aux
(list-from-to (- n 1) (- m 1)) g)))
(not (empty-graph-p-aux (list-from-to n m) (cons x g))))))
(local
(defthm resize-list-empty-graph-p-main-lemma-nth-version-lemma-2
(implies (empty-graph-p g)
(same-element g nil))
:hints (("Goal" :in-theory (enable empty-graph-p)))))
(local
(defthm resize-list-empty-graph-p-main-lemma-nth-version
(implies (empty-graph-p g)
(not (nth i (resize-list g n nil))))))
(local
(defthm resize-list-empty-graph-p-aux
(implies (empty-graph-p g)
(empty-graph-p-aux hs (resize-list g n nil)))
:hints (("Goal" :induct (len hs)))))
(defthm resize-list-empty-graph-p
(implies (empty-graph-p g)
(empty-graph-p (resize-list g n nil)))
:hints (("Goal" :in-theory (enable empty-graph-p))))))
;;; Resize list and {\tt length}
(local
(defthm len-resize-list
(implies (natp n)
(equal (len (resize-list l n x)) n))))
(local (in-theory (disable resize-list)))
;;; The following sequence of events show that the initial unification
;;; problem built by the function {\tt unif-two-terms-problem-l} and
;;; {\tt initial-to-be-solved-l} is a well--formed directed acyclic
;;; graph.
;;; Luego lo meto dentro
(defthm bounded-term-graph-p-particular-case
(implies (and (consp g) (term-graph-p g))
(and (< (cadar g) (len g))
(< (caddar g) (len g)))))
(defthm consp-term-as-dag-l
(implies (consp g)
(consp (term-as-dag-l term g )))
:hints (("Goal" :in-theory (enable term-as-dag-l))))
(defthm consp-resize-list
(implies (and (natp n) (< 0 n))
(consp (resize-list l n x)))
:hints (("Goal" :in-theory (enable resize-list))
("Subgoal *1/2''" :expand (RESIZE-LIST L 1 X))))
(encapsulate
()
(local
(defthm equal-nth-car
(equal (nth 0 g) (car g))))
(local
(defthm len-args-term-as-dag-aux-l
(equal (len (third (term-as-dag-aux-l nil args g h variables)))
(len args))))
(local
(defthm term-as-dag-aux-l-first-element-len
(equal
(len
(cdr
(car
(first
(term-as-dag-aux-l t (cons symb args) g 0 nil)))))
(len args))))
(local
(defthm term-as-dag-l-first-element
(equal
(len
(cdr
(car
(term-as-dag-l (list 'equ t1 t2) g))))
2)
:hints (("Goal" :in-theory (enable term-as-dag-l)))))
;;; Este me hace falta despues
(defthm term-as-dag-l-first-element-nth
(equal
(len
(cdr
(nth 0
(term-as-dag-l (list 'equ t1 t2) g))))
2)
:hints (("Goal" :in-theory (enable term-as-dag-l))))
(local
(defthm nat-true-listp-len-two-first
(implies (and (nat-true-listp l)
(equal (len l) 2))
(and (integerp (first l))
(<= 0 (first l))))))
(local
(defthm nat-true-listp-len-two-second
(implies (and (nat-true-listp l)
(equal (len l) 2))
(and (integerp (second l))
(<= 0 (second l))))))
(local
(defthm term-graph-p-first-element-nat-true-listp
(implies (and (equal (len (cdr (car g))) 2)
(term-graph-p g))
(nat-true-listp (cdr (car g))))))
(defthm unif-two-terms-problem-l-well-formed-dag-system
(let* ((g-t1-t2 (unif-two-terms-problem-l t1 t2 g))
(S-dag-t1-t2 (initial-to-be-solved-l g-t1-t2)))
(implies (and (empty-graph-p g) (term-p t1) (term-p t2))
(well-formed-dag-system S-dag-t1-t2 g-t1-t2)))
:hints (("Goal"
:use
(:instance term-as-dag-l-term-graph-p
(g (resize-list g (+ (length-term t t1) (length-term t t2)
1) nil))
(term (list 'equ t1 t2))))
("Subgoal 1" :in-theory (enable
well-formed-upl)))))
;;; And finally, the following sequence of events show that the initial
;;; unification problem built by the function {\tt
;;; unif-two-terms-problem-l} and {\tt initial-to-be-solved-l} stores
;;; (in a dag form) the initial unification problem:
(encapsulate
()
(local
(defthm unif-two-terms-problem-l-stores-the-problem-lemma-1
(implies (and
(equal (len (cdr (nth h g))) 2)
(equal (dag-as-term-l t h g)
(list 'equ t1 t2)))
(equal (dag-as-term-l t (first (cdr (nth h g))) g)
t1))
:hints (("Subgoal 1'" :expand (dag-as-term-l nil (cdr (nth h g)) g)))))
(local
(defthm unif-two-terms-problem-l-stores-the-problem-lemma-2
(implies (and
(equal (len (cdr (nth h g))) 2)
(equal (dag-as-term-l t h g)
(list 'equ t1 t2)))
(equal (dag-as-term-l t (second (cdr (nth h g))) g)
t2))
:hints (("Goal'''" :expand (dag-as-term-l nil (cdr (nth h g)) g))
("Goal'5'" :expand (dag-as-term-l nil (cddr (nth h g)) g)))))
(local
(defthm unif-two-terms-problem-l-stores-the-problem-almost
(let* ((g-t1-t2 (unif-two-terms-problem-l t1 t2 g))
(S-dag-t1-t2 (initial-to-be-solved-l g-t1-t2)))
(implies (and (empty-graph-p g) (term-p t1) (term-p t2)
(equal (dag-as-term-l t 0 g-t1-t2)
(list 'equ t1 t2)))
(equal (tbs-as-system S-dag-t1-t2 g-t1-t2)
(list (cons t1 t2)))))
:hints (("Goal" :in-theory
(disable nth term-as-dag-l-stores-term)))
:rule-classes nil))
(defthm unif-two-terms-problem-l-stores-the-problem
(let* ((g-t1-t2 (unif-two-terms-problem-l t1 t2 g))
(S-dag-t1-t2 (initial-to-be-solved-l g-t1-t2)))
(implies (and (empty-graph-p g) (term-p t1) (term-p t2))
(equal (tbs-as-system S-dag-t1-t2 g-t1-t2)
(list (cons t1 t2)))))
:hints (("Goal" :use unif-two-terms-problem-l-stores-the-problem-almost))))
;;; ===============================================================
|