1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
|
#| ;
In this Acl2 book, we prove that the square root function can be approximated
in Acl2. In particular, we prove the following theorem:
(defthm convergence-of-iter-sqrt
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 x))
(and (<= (* (iter-sqrt x epsilon) (iter-sqrt x epsilon)) x)
(< (- x (* (iter-sqrt x epsilon) (iter-sqrt x epsilon)))
epsilon))))
That is, for any non-negative number, we can approximate its square root within
an arbitrary positive epsilon.
The proof follows by introducing the bisection algorithm to approximate square
root. Our bisection function looks like
(iterate-sqrt-range low high x num-iters)
where low/high define the range being bisected, x is the number in whose square
root we're interested, and num-iters is the total number of iterations we wish
to perform. This function returns a pair of numbers low' and high' which
define the resulting range.
The proof consists of two parts. First of all, we show that for any high/low
range resulting from iterate-sqrt-range, if |high-low| is sufficiently small
(i.e., less than delta, which depends on epsilon) then |x-a^2| is less than
epsilon. Secondly, we show that for any desired delta, we can find an adequate
num-iters so that calling iterate-sqrt-range with num-iters will result in a
high' and low' returned with |high'-low'| < delta. The two proofs combined
give us our convergence result.
Note that we did not do the more natural convergence result, namely that after
iterating a number of times |low'-(sqrt x)| < epsilon. The reason is that the
number (sqrt x) may not exist. This result is shown in the companion book
"no-sqrt.lisp". However, for those cases where (sqrt x) does exist, our proof
will naturally imply that (since we'll have a < (sqrt x) < b as a consequence
of a^2 < x < b^2 and also that |b-a| < delta < epsilon). The interested reader
is encouraged to try that result.
To load this book, it is sufficient to do something like this:
(certify-book "sqrt" 0 nil)
|#
(in-package "ACL2") ; We're too lazy to build our own package
(local (include-book "arithmetic/idiv" :dir :system))
(local (include-book "arithmetic/realp" :dir :system))
(local (include-book "arithmetic/top" :dir :system))
(include-book "nsa")
; Added by Matt K. for v2-7.
(add-match-free-override :once t)
(set-match-free-default :once)
;;
;; We start out by defining the bisection approximation to square root. At one
;; time, we experimented with making this function return two values, but that
;; led to all sorts of confusion. So, we now return the cons of the new low
;; and high endpoints of the range. Perhaps we'll go back and change this.
;;
(defun iterate-sqrt-range (low high x num-iters)
(declare (xargs :measure (nfix num-iters)))
(if (<= (nfix num-iters) 0)
(cons (realfix low) (realfix high))
(let ((mid (/ (+ low high) 2)))
(if (<= (* mid mid) x)
(iterate-sqrt-range mid high x (1- num-iters))
(iterate-sqrt-range low mid x (1- num-iters))))))
;;
;; Acl2 doesn't seem to infer the type of the function above, so we give it
;; some help. Hmmm, maybe this is a candidate for builtin-clause?
;;
(defthm iterate-sqrt-range-type-prescription
(and (realp (car (iterate-sqrt-range low high x num-iters)))
(realp (cdr (iterate-sqrt-range low high x num-iters)))))
;;
;; We will now show some basic properties of iterate-sqrt-range. One important
;; property (since it'll be used in the induction hypotheses to come) is that
;; if the initial range is proper (i.e., non-empty and not a singleton), then
;; so are all resulting ranges from iterate-sqrt-root.
;;
(defthm iterate-sqrt-range-reduces-range
(implies (and (realp low)
(realp high)
(< low high))
(< (car (iterate-sqrt-range low high x num-iters))
(cdr (iterate-sqrt-range low high x num-iters))))
:rule-classes (:linear :rewrite))
;;
;; We had foolishly combined the two properties below into one, but then
;; discovered that in some cases we only had one of the needed hypothesis, so
;; we split the halves of the lemma. The first half says that the high
;; endpoint of the range under consideration can only decrease.
;;
(defthm iterate-sqrt-range-non-increasing-upper-range
(implies (and (realp low)
(realp high)
(< low high))
(<= (cdr (iterate-sqrt-range low high x num-iters))
high))
:rule-classes (:linear :rewrite))
;;
;; Similarly, the lower endpoint can only increase.
;;
(defthm iterate-sqrt-range-non-decreasing-lower-range
(implies (and (realp low)
(realp high)
(< low high))
(<= low
(car (iterate-sqrt-range low high x num-iters))))
:rule-classes (:linear :rewrite))
;;
;; Another property we need is that if the high endpoint starts out above the
;; square root of x, it will never be moved below its square root....
;;
(defthm iterate-sqrt-range-upper-sqrt-x
(implies (and (realp low)
(realp high)
(realp x)
(<= x (* high high)))
(<= x
(* (cdr (iterate-sqrt-range low high x num-iters))
(cdr (iterate-sqrt-range low high x num-iters)))))
:rule-classes (:linear :rewrite))
;;
;; ....And likewise for the lower endpoint.
;;
(defthm iterate-sqrt-range-lower-sqrt-x
(implies (and (realp low)
(realp high)
(realp x)
(<= (* low low) x))
(<= (* (car (iterate-sqrt-range low high x num-iters))
(car (iterate-sqrt-range low high x num-iters)))
x))
:rule-classes (:linear :rewrite))
;;
;; We are now trying to prove that if the final range is small enough, then the
;; squares of the endpoints are very close to x. To do that, we have to prove
;; some inequalities of real numbers (er, I mean rationals). We're working too
;; hard here, and that makes us suspicious. We're doing _something_ wrong, and
;; we're very open to suggestions.
;;
(encapsulate
()
;;
;; First, we show Acl2 how to 'discover' the needed delta.
;;
(local
(defthm sqrt-epsilon-delta-aux
(implies (and (realp a)
(realp b)
(realp epsilon)
(<= 0 a)
(< a b))
(equal (< (- (* b b) (* a a)) epsilon)
(< (- b a) (/ epsilon (+ b a)))))))
;;
;; This is really nothing more than transitivity of less-than. We want to
;; move away from reasoning about the specific delta found above, and move on
;; towards an arbitrarily small delta.
;;
(local
(defthm sqrt-epsilon-delta-aux-2
(implies (and (realp a)
(realp b)
(realp epsilon)
(<= 0 a)
(< a b)
(< (- b a) delta)
(<= delta (/ epsilon (+ b a))))
(< (- b a) (/ epsilon (+ b a))))
:rule-classes (:linear :rewrite)))
;;
;; Now, we have the mathematical high-point of this small derivation. If a
;; and b are within our chosen delta, then a^2 and b^2 are within epsilon.
;;
(local
(defthm sqrt-epsilon-delta-aux-3
(implies (and (realp a)
(realp b)
(realp epsilon)
(<= 0 a)
(< a b)
(< (- b a) delta)
(<= delta (/ epsilon (+ b a))))
(< (- (* b b) (* a a)) epsilon))
:hints (("Goal"
:use ((:instance sqrt-epsilon-delta-aux)
(:instance sqrt-epsilon-delta-aux-2))
:in-theory (disable sqrt-epsilon-delta-aux
sqrt-epsilon-delta-aux-2)))
:rule-classes (:linear :rewrite)))
;;
;; In anticipation of theorems to come, we modify our theorem so that a^2 is
;; within epsilon of x instead of within epsilon of b^2.
;;
(local
(defthm sqrt-epsilon-delta-aux-4
(implies (and (realp a)
(realp b)
(realp x)
(realp epsilon)
(<= 0 a)
(< a b)
(<= x (* b b))
(< (- b a) delta)
(<= delta (/ epsilon (+ b a))))
(< (- x (* a a)) epsilon))
:hints (("Goal"
:use ((:instance sqrt-epsilon-delta-aux-3))
:in-theory (disable sqrt-epsilon-delta-aux-3)))
:rule-classes (:linear :rewrite)))
;;
;; More anticipation. The hypothesis uses (+ a b). In our iteration, we're
;; guaranteed that b becomes smaller, but a becomes larger. So, it is very
;; advantageous to replace (+ a b) with the larger (+ b b), since we _know_
;; this term becomes smaller (and hence is easier to reason about). So, the
;; first step is to teach Acl2 the properties of (+ a b) and (+ b b) under our
;; assumptions. Incidentally, we need that (+ a b) is positive, because the
;; inequality rewriting below only works for positive terms (e.g., multiplying
;; both sides of an inequality by a term).
;;
(local
(defthm sqrt-epsilon-delta-aux-5
(implies (and (realp a)
(realp b)
(<= 0 a)
(< a b))
(and (< (+ a b) (+ b b))
(< 0 (+ a b))))))
;;
;; We discovered that it's easier to reason about A and B than about (+ a b)
;; and (+ b b) respectively. This is an instance of Acl2's problems with
;; non-recursive functions. I.e., it doesn't know that it shouldn't reason
;; about the shape of (+ a b). Can't blame it, really. It's a program.
;;
(local
(defthm sqrt-epsilon-delta-aux-6
(implies (and (realp a)
(realp b)
(realp c)
(< 0 a)
(< a b)
(< 0 c))
(<= (/ c b) (/ c a)))))
;;
;; Now, we translate the theorem above into the desired terms. What we have
;; is that (/ epsilon (+ b b)) is less than (/ epsilon (+ b a)) when a is less
;; than b and everything is non-negative. Not exactly reason to phone home
;; about, but it _does_ lead to the next theorem....
;;
(local
(defthm sqrt-epsilon-delta-aux-7
(implies (and (realp a)
(realp b)
(realp epsilon)
(< 0 epsilon)
(<= 0 a)
(< a b))
(<= (/ epsilon (+ b b)) (/ epsilon (+ b a))))
:hints (("Goal"
:use (:instance sqrt-epsilon-delta-aux-6
(a (+ b a))
(b (+ b b))
(c epsilon))
:in-theory (disable sqrt-epsilon-delta-aux-6)))))
;;
;; ....which is that as long as we choose a delta smaller than
;; (/ epsilon (+ b b)), a^2 will be close to x. This is a high point, because
;; when we translate this theorem back into ranges, we'll be able to pick the
;; delta before starting the iterations as follows. We know the initial
;; range [A, B]. The final range [a, b] will satisfy the theorem below if
;; delta < (/ epsilon (+ b b)) but since (+ b b) <= (+ B B), all we need to do
;; is make delta smaller than (/ epsilon (+ B B)).
;;
(defthm sqrt-epsilon-delta
(implies (and (realp a)
(realp b)
(realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 a)
(< a b)
(<= x (* b b))
(< (- b a) delta)
(<= delta (/ epsilon (+ b b))))
(< (- x (* a a)) epsilon))
:hints (("Goal"
:use ((:instance sqrt-epsilon-delta-aux-4)
(:instance sqrt-epsilon-delta-aux-7))
:in-theory (disable <-*-/-left <-*-/-right
<-*-left-cancel
sqrt-epsilon-delta-aux-4
sqrt-epsilon-delta-aux-6
sqrt-epsilon-delta-aux-7)))
:rule-classes (:linear :rewrite)))
;;
;; Now, we translate the results above into iter-sqrt-delta. Again, this seems
;; harder than it needs to be. It looks like my proof goes directly against
;; Acl2's inequality heuristics. We _must_ be doing something wrong.
;;
(encapsulate
()
;;
;; We start out with the simple lemma that dividing epsilon by something
;; larger results in something smaller. We do this just so that we can
;; instantiate this theorem below.
;;
(local
(defthm iter-sqrt-epsilon-delta-aux-1
(implies (and (realp epsilon)
(realp high)
(realp high2)
(< 0 epsilon)
(< 0 high2)
(<= high2 high))
(<= (/ epsilon high) (/ epsilon high2)))))
;;
;; Now, we extend the theorem above, but we add the extra delta inequality to
;; weaken the hypothesis. We end up having to disable many of Acl2's rewrite
;; rules, because they rewrite the intermediate terms before we can bring our
;; hypothesis to bear. This is our biggest indication that we just don't know
;; how to reason about inequalities in Acl2. Need more practice!
;;
(local
(defthm iter-sqrt-epsilon-delta-aux-2
(implies (and (realp epsilon)
(realp delta)
(realp high)
(realp high2)
(< 0 epsilon)
(<= delta (/ epsilon high))
(< 0 high2)
(<= high2 high))
(<= delta (/ epsilon high2)))
:hints (("Goal"
:use (:instance iter-sqrt-epsilon-delta-aux-1)
:in-theory (disable <-*-/-left
<-*-/-right
<-*-y-x-y
<-*-left-cancel
iter-sqrt-epsilon-delta-aux-1)))))
;;
;; And finally, we have the first half of the convergence proof. If we start
;; with a suitable choice of high and low, then if we iterate long enough that
;; the final range is less than delta, then our approximation is very close to
;; the square root of x (its squares are within epsilon).
;;
(defthm iter-sqrt-epsilon-delta
(implies (and (realp low)
(realp high)
(realp epsilon)
(realp delta)
(realp x)
(< 0 epsilon)
(<= 0 low)
(< low high)
(<= x (* high high))
(<= delta (/ epsilon (+ high high))))
(let ((range (iterate-sqrt-range low high x num-iters)))
(implies (< (- (cdr range) (car range)) delta)
(< (- x (* (car range) (car range))) epsilon))))
:hints (("Goal"
:do-not-induct t
:use (:instance sqrt-epsilon-delta
(a (car (iterate-sqrt-range low high x num-iters)))
(b (cdr (iterate-sqrt-range low high x num-iters))))
:in-theory (disable sqrt-epsilon-delta))
("subgoal 1"
:use (:instance iter-sqrt-epsilon-delta-aux-2
(high2 (+ (cdr (iterate-sqrt-range low high x
num-iters))
(cdr (iterate-sqrt-range low high x
num-iters))))
(high (+ high high)))
:in-theory (disable iter-sqrt-epsilon-delta-aux-2)))))
;;
;; For the second half of the proof, we have to reason about how quickly the
;; ranges become small. Since we halve the range at each step, it makes to
;; start out by introducing the computer scientist's favorite function:
;;
(defmacro 2-to-the-n (n)
`(expt 2 ,n))
#|
(defun 2-to-the-n (n)
(if (<= (nfix n) 0)
1
(* 2 (2-to-the-n (1- n)))))
|#
;;
;; Unfortunately, we have to use the ceiling function. Acl2 doesn't seem to
;; want to reason much about it, so we prove its fundamental theorem ourselves.
;;
(encapsulate
()
;;
;; Ceiling is defined in terms of nonnegative-integer-quotient (a recursive
;; function), so we prefer to reason about that first.
;;
(local
(defthm ceiling-greater-than-quotient-aux
(implies (and (integerp i)
(integerp j)
(< 0 j))
(< (/ i j) (1+ (nonnegative-integer-quotient i j))))
:rule-classes (:linear :rewrite)))
;;
;; Now, we can generalize the result for rationals.
;;
(local
(defthm ceiling-greater-than-quotient-for-rationals
(implies (and (rationalp (/ x y))
(realp x)
(realp y)
(> x 0)
(> y 0))
(>= (ceiling x y) (/ x y)))
:hints (("Subgoal 1"
:use (:instance ceiling-greater-than-quotient-aux
(i (numerator (* x (/ y))))
(j (denominator (* x (/ y)))))
:in-theory (disable ceiling-greater-than-quotient-aux))
)
:rule-classes (:linear :rewrite)))
;;
;; For irrationals, we need to reason about floor1
;;
(local
(defthm ceiling-greater-than-quotient-for-irrationals
(implies (and (not (rationalp (/ x y)))
(realp x)
(realp y)
(> x 0)
(> y 0))
(>= (ceiling x y) (/ x y)))
:hints (("Goal''"
:use (:instance x-<-add1-floor1-x (x (* x (/ y))))
:in-theory (disable x-<-add1-floor1-x)))))
(defthm ceiling-greater-than-quotient
(implies (and (realp x)
(realp y)
(> x 0)
(> y 0))
(>= (ceiling x y) (/ x y)))
:hints (("Goal" :cases ((rationalp (/ x y)))
:in-theory (disable ceiling))))
)
;;
;; This function is used to figure out how many iterations of iter-sqrt-range
;; are needed to make the final range sufficiently small. Since one can't
;; recurse on the rationals, we take the ceiling first, so that we can reason
;; strictly about integers.
;;
(defun guess-num-iters-aux (x num-iters)
(declare (xargs :measure (nfix (- x (2-to-the-n num-iters)))))
(if (and (integerp x)
(integerp num-iters)
(> num-iters 0)
(> x (2-to-the-n num-iters)))
(guess-num-iters-aux x (1+ num-iters))
(1+ (nfix num-iters))))
(defmacro guess-num-iters (range delta)
`(guess-num-iters-aux (ceiling ,range ,delta) 1))
;;
;; Now, we're ready to define our square-root approximation function. All it
;; does is initialize the high/low range, find a suitable delta, convert this
;; to a needed num-iters, and then return the low endpoint of the resulting
;; call to iter-sqrt-range.
;;
(defun iter-sqrt (x epsilon)
(if (and (realp x)
(<= 0 x))
(let ((low 0)
(high (if (> x 1) x 1)))
(let ((range (iterate-sqrt-range low high x
(guess-num-iters (- high low)
(/ epsilon
(+ high high))))))
(car range)))
0))
;;
;; To show how quickly the function converges, we teach Acl2 a simple way to
;; characterize the final range from a given initial range. As expected, the
;; powers of two feature prominently :-)
;;
(defthm expt-2-x-1
(implies (and (integerp x)
(< 0 x))
(equal (expt 2 (+ -1 x))
(* 1/2 (expt 2 x))))
:hints (("Goal"
:in-theory '(exponents-add-unrestricted (expt)))))
(defthm expt-2-x+1
(implies (and (integerp x)
(< 0 x))
(equal (expt 2 (+ 1 x))
(* 2 (expt 2 x))))
:hints (("Goal"
:in-theory '(exponents-add-unrestricted (expt)))))
(local (in-theory (disable expt
right-unicity-of-1-for-expt
expt-minus
exponents-add-for-nonneg-exponents
exponents-add
distributivity-of-expt-over-*
expt-1
exponents-multiply
functional-commutativity-of-expt-/-base)))
(defthm iterate-sqrt-reduces-range-size
(implies (and (<= (* low low) x)
(<= x (* high high))
(realp low)
(realp high)
(<= 0 num-iters)
(integerp num-iters))
(let ((range (iterate-sqrt-range low high x num-iters)))
(equal (- (cdr range) (car range))
(/ (- high low)
(2-to-the-n num-iters))))))
;;
;; So now, we show that our function to compute needed num-iters does produce a
;; large enough num-iters. First, we study the recursive function....
;;
(defthm guess-num-iters-aux-is-a-good-guess
(implies (and (integerp x)
(integerp num-iters)
(< 0 x)
(< 0 num-iters))
(< x (2-to-the-n (guess-num-iters-aux x num-iters))))
:rule-classes (:linear :rewrite))
;;
;; ...now, we convert that to the non-recursive front-end. This is where we
;; need to reason heavily about ceiling.
;;
(defthm guess-num-iters-is-a-good-guess
(implies (and (realp range)
(realp delta)
(< 0 range)
(< 0 delta))
(< (/ range delta) (2-to-the-n (guess-num-iters range delta))))
:hints (("Goal"
:use ((:instance ceiling-greater-than-quotient (x range) (y delta))
(:instance guess-num-iters-aux-is-a-good-guess
(x (ceiling range delta))
(num-iters 1))
(:instance <-*-left-cancel
(z delta)
(x (ceiling range delta))
(y (2-to-the-n (guess-num-iters-aux (ceiling
range
delta)
1)))))
:in-theory (disable ceiling
ceiling-greater-than-quotient
guess-num-iters-aux-is-a-good-guess
ceiling <-*-left-cancel))))
;;
;; Now, we're ready to show that iter-sqrt-range will produce a small enough
;; final range.
;;
(encapsulate
()
;;
;; We start out with a simple cancellation rule....
;;
(local
(defthm lemma-1
(implies (and (realp high)
(realp low)
(realp max)
(realp right)
(realp left)
(< 0 max)
(equal (- high low)
(- (* max right)
(* max left))))
(equal (- right left)
(/ (- high low) max)))
:hints (("Goal" :use (:instance left-cancellation-for-*
(z max)
(x (/ (- high low) max))
(y (- right left)))
:in-theory (disable left-cancellation-for-*)))
:rule-classes nil))
;;
;; Using that, we show Acl2 how to derive an inequality contradiction that
;; it'll see in the next proof.
;;
(local
(defthm lemma-2
(implies (and (realp high)
(realp low)
(realp delta)
(realp max)
(realp right)
(realp left)
(< 0 delta)
(< 0 max)
(< (- (/ high delta) (/ low delta))
max))
(< (- (/ high max) (/ low max))
delta))
:hints (("Goal" :use (:instance <-*-left-cancel
(z (/ delta max))
(x (- (/ high delta) (/ low delta)))
(y max))
:in-theory (disable <-*-left-cancel)))
:rule-classes nil))
;;
;; So now, we can prove a general form of our theorem without appealing to the
;; iter-sqrt functions (with all the added complication that excites Acl2's
;; rewriting heuristics)
;;
(local
(defthm lemma-3
(implies (and (realp high)
(realp low)
(realp delta)
(realp max)
(realp right)
(realp left)
(< 0 delta)
(< 0 max)
(equal (- high low)
(- (* max right)
(* max left)))
(< (- (/ high delta) (/ low delta))
max))
(< (- right left) delta))
:hints (("Goal" :use ((:instance lemma-1)
(:instance lemma-2))))))
;;
;; And finally, we translate the theorem above into iterate-sqrt-range itself.
;; This is the second major point, since it shows how we can force
;; iterate-sqrt-range to iterate long enough to produce a small enough range.
;; Together with the first major result, this will prove the convergence of
;; iter-sqrt-range.
;;
(defthm iterate-sqrt-range-reduces-range-size-to-delta
(implies (and (realp high)
(realp low)
(realp delta)
(< 0 delta)
(< low high)
(<= (* low low) x)
(<= x (* high high)))
(let ((range (iterate-sqrt-range low
high
x
(guess-num-iters (- high low)
delta))))
(< (- (cdr range) (car range)) delta)))
:hints (("Goal"
:use ((:instance iterate-sqrt-reduces-range-size
(num-iters (guess-num-iters (- high low) delta)))
(:instance guess-num-iters-is-a-good-guess
(range (- high low)))
(:instance lemma-3
(max (2-to-the-n (guess-num-iters (- high low)
delta)))
(left (car (iterate-sqrt-range
low high x
(guess-num-iters (- high low)
delta))))
(right (cdr (iterate-sqrt-range
low high x
(guess-num-iters (- high low)
delta))))))
:in-theory (disable iterate-sqrt-reduces-range-size
guess-num-iters-is-a-good-guess
ceiling lemma-3))
)))
;;
;; Finally, we prove the convergence theorem for our approximation function.
;;
(encapsulate
()
;;
;; The first convergence result is that the answer we give is no larger than
;; the correct one. Think of this as a (stronger) form a half of the absolute
;; value less than epsilon part of the proof.
;;
(local
(defthm convergence-of-iter-sqrt-1
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 x))
(<= (* (iter-sqrt x epsilon) (iter-sqrt x epsilon)) x))))
;;
;; Now, we show that our answer (which is known to be smaller than needed)
;; isn't too much smaller. I.e., it's within epsilon of the square root.
;;
(local
(defthm convergence-of-iter-sqrt-2
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 x))
(< (- x (* (iter-sqrt x epsilon) (iter-sqrt x epsilon)))
epsilon))
:hints (("Goal"
:use ((:instance iterate-sqrt-range-reduces-range-size-to-delta
(low 0)
(high (if (< x 1) 1 x))
(delta (/ epsilon (+ (if (< x 1) 1 x)
(if (< x 1) 1 x)))))
(:instance iter-sqrt-epsilon-delta
(low 0)
(high (if (< x 1) 1 x))
(delta (/ epsilon (+ (if (< x 1) 1 x)
(if (< x 1) 1 x))))
(num-iters (guess-num-iters (- (if (< x 1) 1 x)
0)
(/ epsilon
(+ (if (< x 1)
1
x)
(if (< x 1)
1
x)))))))
:in-theory (disable ceiling
iterate-sqrt-range-reduces-range-size-to-delta
iter-sqrt-epsilon-delta)))))
;;
;; For stylistic reasons, we combine the two results above into a single
;; theorem.
;;
(defthm convergence-of-iter-sqrt
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 x))
(and (<= (* (iter-sqrt x epsilon)
(iter-sqrt x epsilon))
x)
(< (- x (* (iter-sqrt x epsilon)
(iter-sqrt x epsilon)))
epsilon)))
:hints (("Goal"
:use ((:instance convergence-of-iter-sqrt-1)
(:instance convergence-of-iter-sqrt-2))
:in-theory (disable iter-sqrt
convergence-of-iter-sqrt-1
convergence-of-iter-sqrt-2)))))
;;; We will now use iter-sqrt to define the real square root function.
;;; The approach is simple. First, we establish that iter-sqrt
;;; returns a limited number for limited values. Thus, if we take the
;;; standard-part of iter-sqrt, that will be a standard result for a
;;; standard argument. Hence, we can use defun-std to define the
;;; square root function, provided we choose a small enough epsilon --
;;; any infinitesimal will do, but (/ (i-large-integer)) is the
;;; obvious candidate.
;; First, we need to create a type-prescription rule for iter-sqrt, so
;; that ACL2 can reason about formulas involving iter-sqrt terms.
;; Notice, this also establishes a lower bound on iter-sqrt (namely 0).
(defthm iter-sqrt-type-prescription
(and (realp (iter-sqrt x epsilon))
(<= 0 (iter-sqrt x epsilon)))
:rule-classes (:type-prescription :rewrite))
;; Next, we establish that iter-sqrt is bounded above.
(defthm iter-sqrt-upper-bound-1
(implies (and (realp x)
(<= 1 x))
(<= (iter-sqrt x epsilon) x)))
(defthm iter-sqrt-upper-bound-2
(implies (and (realp x)
(< x 1))
(<= (iter-sqrt x epsilon) 1)))
;; Since iter-sqrt is bounded above by max{1,x}, it is obviously
;; limited when x is limited.
(defthm limited-iter-sqrt
(implies (and (i-limited x)
(realp x)
(<= 0 x))
(i-limited (iter-sqrt x epsilon)))
:hints (("Goal"
:cases ((< x 1))
:in-theory (disable iter-sqrt))
("Subgoal 2"
:use ((:instance large-if->-large
(x (iter-sqrt x epsilon))
(y x)))
:in-theory (disable iter-sqrt
large-if->-large))
("Subgoal 1"
:use ((:instance large-if->-large
(x (iter-sqrt x epsilon))
(y 1)))
:in-theory (disable iter-sqrt
large-if->-large))))
;; A stronger version of the theorem avoids the check on x being
;; real. The reason this result is still true is that for non-real x,
;; iter-sqrt simply returns 0.
(defthm limited-iter-sqrt-strong
(implies (i-limited x)
(i-limited (iter-sqrt x epsilon)))
:hints (("Goal"
:cases ((and (realp x) (<= 0 x)))
:in-theory (disable iter-sqrt))
("Subgoal 2"
:expand (iter-sqrt x epsilon))))
(in-theory (disable iter-sqrt))
;; This means we can now define the square root function in ACL2. Of
;; course, we are not using any properties of epsilon here, so it is
;; possible to choose a "bad" value. For example, if 1 is used
;; instead of (/ (i-large-integer)), the resulting function would NOT
;; be the real square root function. The theorems below will show
;; that (/ (i-large-integer)) is a "good" value, so that acl2-sqrt has
;; the right properties.
(defun-std acl2-sqrt (x)
(standard-part (iter-sqrt (fix x) (/ (i-large-integer)))))
(in-theory (disable (:executable-counterpart acl2-sqrt)))
(in-theory (disable convergence-of-iter-sqrt))
;; The next theorem restates the convergence of iter-sqrt in terms of
;; infinitesimal scale. In particular, it shows that the square of
;; iter-sqrt is close to x when epsilon is small -- that's why we
;; wouldn't have been able to choose "1" as epsilon in the definition
;; above!
(defthm convergence-of-iter-sqrt-strong
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(i-small epsilon)
(<= 0 x))
(i-close (* (iter-sqrt x epsilon)
(iter-sqrt x epsilon))
x))
:hints (("Goal"
:use ((:instance convergence-of-iter-sqrt))
:in-theory (enable i-close))))
;; Now comes the fundamental theorem of the square root function!
;; This establishes that acl2-sqrt *is* the square root function as
;; promised.
(defthm-std sqrt-sqrt
(implies (and (realp x)
(<= 0 x))
(equal (* (acl2-sqrt x) (acl2-sqrt x)) x))
:hints (("Goal''"
:use (:instance convergence-of-iter-sqrt-strong
(epsilon (/ (i-large-integer))))
:in-theory (disable convergence-of-iter-sqrt-strong))
("Goal'4'"
:in-theory (enable i-close i-small))))
;; ACL2 is really bad at algebra. My dog knows more algebra -- and
;; it's not a smart breed. The following simply states that if x<y,
;; then x^2 < y^2.
(local
(encapsulate
()
; Added by Matt K., 1/14/2014:
; The following two lemmas are the versions of lemmas that existed though the
; time of the ACL2 6.4 release. The new versions, whose conclusions are calls
; of equal instead of iff, cause the proof of lemma-1 below to fail; so we
; :use these old ones instead.
(local
(defthm <-*-right-cancel-old
(implies (and (fc (real/rationalp x))
(fc (real/rationalp y))
(fc (real/rationalp z)))
(iff (< (* x z) (* y z))
(cond ((< 0 z) (< x y))
((equal z 0) nil)
(t (< y x)))))
:rule-classes nil))
(local
(defthm <-*-left-cancel-old
(implies (and (fc (real/rationalp x))
(fc (real/rationalp y))
(fc (real/rationalp z)))
(iff (< (* z x) (* z y))
(cond ((< 0 z) (< x y))
((equal z 0) nil)
(t (< y x)))))
:rule-classes nil))
(local
(defthm lemma-1
(implies (and (realp x)
(realp y)
(<= 0 x)
(<= 0 y)
(< x y))
(< (* x x) (* y y)))
:hints (("Goal"
:use ((:instance <-*-left-cancel-old (x x) (y y) (z x))
(:instance <-*-right-cancel-old (x x) (y y) (z y)))
:in-theory (disable <-*-left-cancel <-*-right-cancel)))))
(defthm x*x-<-y*y
(implies (and (realp x)
(realp y)
(<= 0 x)
(<= 0 y))
(equal (< (* x x) (* y y))
(< x y)))
:hints (("Goal"
:cases ((< x y) (= x y) (< y x)))))))
;; This theorem lets us reason about whether sqrt(x)<y for some y --
;; it rewrites those expressions into x < y^2 which should be easier
;; to prove.
(defthm sqrt-<-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< (acl2-sqrt x) y)
(< x (* y y))))
:hints (("Goal"
:use ((:instance x*x-<-y*y (x (acl2-sqrt x))))
:in-theory (disable x*x-<-y*y))))
;; This is the same theorem, but going the other way....
(defthm y-<-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< y (acl2-sqrt x))
(< (* y y) x)))
:hints (("Goal"
:use ((:instance x*x-<-y*y (x y) (y (acl2-sqrt x))))
:in-theory (disable x*x-<-y*y))))
;; Now comes an important theorem. If y^2 = x, then we can conclude
;; that y *is* the square root of x -- as long as y is a positive
;; real, anyway.
(defthm y*y=x->y=sqrt-x
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y)
(equal (* y y) x))
(equal (acl2-sqrt x) y))
:hints (("Goal"
:cases ((< (acl2-sqrt x) y)
(< y (acl2-sqrt x))))))
;; This simple theorem helps us decide when a number is equal to the
;; square root of x -- simply square both sides and go from
;; there....at least for positive numbers!
(defthm sqrt-=-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (equal (acl2-sqrt x) y)
(equal x (* y y))))
:hints (("Goal"
:cases ((equal (acl2-sqrt x) y)))))
;; Ditto, but in the other direction -- no way to tell which way ACL2
;; decided to order these terms...
(defthm y-=-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (equal y (acl2-sqrt x))
(equal (* y y) x)))
:hints (("Goal"
:use ((:instance sqrt-=-y))
:in-theory (disable sqrt-=-y))))
;; This theorem settles the question of sqrt(x) being larger than y by
;; squaring both sides.
(defthm sqrt->-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (> (acl2-sqrt x) y)
(> x (* y y))))
:hints (("Goal"
:use ((:instance y-<-sqrt))
:in-theory (disable y-<-sqrt))))
;; Ditto.
(defthm y->-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< y (acl2-sqrt x))
(< (* y y) x)))
:hints (("Goal"
:use ((:instance sqrt-<-y))
:in-theory (disable sqrt-<-y))))
;; Ah, useful theorems! The square root of a product is the product
;; of the square roots (as long as everything is positive....)
(defthm sqrt-*
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (acl2-sqrt (* x y))
(* (acl2-sqrt x) (acl2-sqrt y))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (* x y))
(y (* (acl2-sqrt x) (acl2-sqrt y))))))))
;; And, the square root of an inverse is the inverse of the square root.
(defthm sqrt-/
(implies (and (realp x)
(<= 0 x))
(equal (acl2-sqrt (/ x))
(/ (acl2-sqrt x))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (/ x))
(y (/ (acl2-sqrt x))))
(:instance distributivity-of-/-over-*
(x (acl2-sqrt x))
(y (acl2-sqrt x))))
:in-theory (disable y*y=x->y=sqrt-x distributivity-of-/-over-*))))
;; It follows, therefore, that the square root of x^2 is |x|.
(defthm sqrt-*-x-x
(implies (realp x)
(equal (acl2-sqrt (* x x)) (abs x)))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x (* x x)) (y (abs x)))))))
;; Some useful constants -- sqrt(0) = 0...
(defthm sqrt-0
(equal (acl2-sqrt 0) 0)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 0) (y 0))))))
;; ... and sqrt(1) = 1...
(defthm sqrt-1
(equal (acl2-sqrt 1) 1)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 1) (y 1))))))
;; ... and sqrt(4) = 2
(defthm sqrt-4
(equal (acl2-sqrt 4) 2)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 4) (y 2))))))
;; Sqrt(x) is positive when x is positive -- note that it's zero when
;; x is zero....
(defthm sqrt->-0
(implies (and (realp x)
(<= 0 x))
(equal (< 0 (acl2-sqrt x))
(< 0 x))))
;; If x <= 1, then so is its square root.
(defthm-std acl2-sqrt-x-<-1
(implies (and (realp x)
(<= 0 x)
(< x 1))
(<= (acl2-sqrt x) 1))
:hints (("Goal''"
:use ((:instance standard-part-<=
(x (ITER-SQRT X (/ (I-LARGE-INTEGER))))
(y 1))
(:instance iter-sqrt-upper-bound-2
(epsilon (/ (i-large-integer)))))
:in-theory (disable standard-part-<= iter-sqrt-upper-bound-2))))
;; For x >= 1, the square root is no larger than x.
(defthm-std acl2-sqrt-x-<-x
(implies (and (realp x)
(<= 0 x)
(<= 1 x))
(<= (acl2-sqrt x) x))
:hints (("Goal''"
:use ((:instance standard-part-<=
(x (iter-sqrt x (/ (i-large-integer))))
(y x))
(:instance iter-sqrt-upper-bound-1
(epsilon (/ (i-large-integer)))))
:in-theory (disable standard-part-<= iter-sqrt-upper-bound-1))))
;; The two theorems above demonstrate that sqrt(x) is limited as long
;; as x is limited, since sqrt(x) is always bounded by either 1 or x
(defthm limited-sqrt
(implies (and (realp x)
(<= 0 x)
(i-limited x))
(i-limited (acl2-sqrt x)))
:hints (("Goal"
:cases ((< x 1)))
("Subgoal 2"
:use ((:instance large-if->-large
(x (acl2-sqrt x))
(y x)))
:in-theory (disable large-if->-large))
("Subgoal 1"
:use ((:instance large-if->-large
(x (acl2-sqrt x))
(y 1)))
:in-theory (disable large-if->-large))))
;; An interesting theorem....the standard-part of a square root is the
;; square root of the standard-part of the argument! This is probably
;; true of all continuous functions, isn't it?
(defthm standard-part-sqrt
(implies (and (realp x)
(<= 0 x)
(i-limited x))
(equal (standard-part (acl2-sqrt x))
(acl2-sqrt (standard-part x))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (standard-part x))
(y (standard-part (acl2-sqrt x))))))
("Goal'''"
:use ((:instance standard-part-of-times
(x (acl2-sqrt x))
(y (acl2-sqrt x)))))))
|