File: gcd-body1.lisp

package info (click to toggle)
acl2 8.3dfsg-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 309,408 kB
  • sloc: lisp: 3,311,842; javascript: 22,569; cpp: 9,029; ansic: 7,872; perl: 6,501; xml: 3,838; java: 3,738; makefile: 3,383; ruby: 2,633; sh: 2,489; ml: 763; python: 741; yacc: 721; awk: 260; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (269 lines) | stat: -rw-r--r-- 9,269 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license.  See the LICENSE file distributed with
;; ACL2.

;; Cuong Chau <ckcuong@cs.utexas.edu>
;; March 2019

(in-package "ADE")

(include-book "../merge")
(include-book "../vector-module")
(include-book "../adders/subtractor")
(include-book "../comparators/v-less")

(local (include-book "arithmetic-3/top" :dir :system))

;; ======================================================================

;; DE Module Generator of GCD-BODY1
;;
;; GCD-BODY1 performs the gcd operation in one iteration.

(defconst *gcd-body1$go-num* *merge$go-num*)

(defun gcd-body1$data-ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ 2 (* 2 (mbe :logic (nfix data-size)
                 :exec  data-size))))

(defun gcd-body1$ins-len (data-size)
  (declare (xargs :guard (natp data-size)))
  (+ (gcd-body1$data-ins-len data-size)
     *gcd-body1$go-num*))

(module-generator
 gcd-body1* (data-size)
 (si 'gcd-body1 data-size)
 (list* 'full-in 'empty-out-
        (append (sis 'data-in 0 (* 2 data-size))
                (sis 'go 0 *gcd-body1$go-num*)))
 (list* 'act
        (sis 'data-out 0 (* 2 data-size)))
 ()
 (list
  (list 'a<b?
        '(a<b)
        (si 'v-< data-size)
        (append (rev (sis 'data-in 0 data-size))
                (rev (sis 'data-in data-size data-size))))

  (list 'a-b
        (sis 'a-b 0 (1+ data-size))
        (si 'ripple-sub data-size)
        (append (sis 'data-in 0 data-size)
                (sis 'data-in data-size data-size)))
  (list 'out0
        (sis 'data0-out 0 (* 2 data-size))
        (si 'v-buf (* 2 data-size))
        (append (sis 'a-b 0 data-size)
                (sis 'data-in data-size data-size)))
  (list 'b-a
        (sis 'b-a 0 (1+ data-size))
        (si 'ripple-sub data-size)
        (append (sis 'data-in data-size data-size)
                (sis 'data-in 0 data-size)))
  (list 'out1
        (sis 'data1-out 0 (* 2 data-size))
        (si 'v-buf (* 2 data-size))
        (append (sis 'b-a 0 data-size)
                (sis 'data-in 0 data-size)))

  (list 'me
        (list* 'act 'act0 'act1
               (sis 'data-out 0 (* 2 data-size)))
        (si 'merge (* 2 data-size))
        (list* 'full-in 'full-in 'empty-out- 'a<b
               (append (sis 'data0-out 0 (* 2 data-size))
                       (sis 'data1-out 0 (* 2 data-size))
                       (sis 'go 0 *merge$go-num*)))))
 (declare (xargs :guard (natp data-size))))

;; DE netlist generator.  A generated netlist will contain an instance of
;; GCD-BODY1.

(defund gcd-body1$netlist (data-size)
  (declare (xargs :guard (natp data-size)))
  (cons (gcd-body1* data-size)
        (union$ (merge$netlist (* 2 data-size))
                (v-buf$netlist (* 2 data-size))
                (v-<$netlist data-size)
                (ripple-sub$netlist data-size)
                :test 'equal)))

;; Recognizer for GCD-BODY1

(defund gcd-body1& (netlist data-size)
  (declare (xargs :guard (and (alistp netlist)
                              (natp data-size))))
  (b* ((subnetlist (delete-to-eq (si 'gcd-body1 data-size) netlist)))
    (and (equal (assoc (si 'gcd-body1 data-size) netlist)
                (gcd-body1* data-size))
         (merge& subnetlist (* 2 data-size))
         (v-buf& subnetlist (* 2 data-size))
         (v-<& subnetlist data-size)
         (ripple-sub& subnetlist data-size))))

;; Sanity check

(local
 (defthmd check-gcd-body1$netlist-64
   (and (net-syntax-okp (gcd-body1$netlist 64))
        (net-arity-okp (gcd-body1$netlist 64))
        (gcd-body1& (gcd-body1$netlist 64) 64))))

;; Extract the input and output signals for GCD-BODY1

(progn
  ;; Extract the input data

  (defun gcd-body1$data-in (inputs data-size)
    (declare (xargs :guard (and (true-listp inputs)
                                (natp data-size))))
    (take (* 2 (mbe :logic (nfix data-size)
                    :exec  data-size))
          (nthcdr 2 inputs)))

  (defthm len-gcd-body1$data-in
    (equal (len (gcd-body1$data-in inputs data-size))
           (* 2 (nfix data-size))))

  (in-theory (disable gcd-body1$data-in))

  ;; Extract the "a<b" signal

  (defund gcd-body1$a<b (inputs data-size)
    (b* ((data-in (gcd-body1$data-in inputs data-size)))
      (fv-< nil t
            (rev (take data-size data-in))
            (rev (nthcdr data-size data-in)))))

  ;; Extract the 1st input data item for the merge

  (defund gcd-body1$data0-out (inputs data-size)
    (b* ((data-in (gcd-body1$data-in inputs data-size)))
      (v-threefix
       (append (fv-adder-output t
                                (take data-size data-in)
                                (fv-not (nthcdr data-size data-in)))
               (nthcdr data-size data-in)))))

  (defthm len-gcd-body1$data0-out
    (equal (len (gcd-body1$data0-out inputs data-size))
           (* 2 (nfix data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$data0-out))))

  (defthm bvp-gcd-body1$data0-out
    (implies (bvp (gcd-body1$data-in inputs data-size))
             (bvp (gcd-body1$data0-out inputs data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$data0-out))))

  ;; Extract the 2nd input data item for the merge

  (defund gcd-body1$data1-out (inputs data-size)
    (b* ((data-in (gcd-body1$data-in inputs data-size)))
      (v-threefix
       (append (fv-adder-output t
                                (nthcdr data-size data-in)
                                (fv-not (take data-size data-in)))
               (take data-size data-in)))))

  (defthm len-gcd-body1$data1-out
    (equal (len (gcd-body1$data1-out inputs data-size))
           (* 2 (nfix data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$data1-out))))

  (defthm bvp-gcd-body1$data1-out
    (implies (bvp (gcd-body1$data-in inputs data-size))
             (bvp (gcd-body1$data1-out inputs data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$data1-out))))

  ;; Extract the inputs for the merge joint

  (defund gcd-body1$me-inputs (inputs data-size)
    (b* ((full-in    (nth 0 inputs))
         (empty-out- (nth 1 inputs))
         (go-signals (nthcdr (gcd-body1$data-ins-len data-size) inputs))

         (a<b (gcd-body1$a<b inputs data-size))
         (data0-out (gcd-body1$data0-out inputs data-size))
         (data1-out (gcd-body1$data1-out inputs data-size)))
      (list* full-in full-in empty-out- a<b
             (append data0-out data1-out go-signals))))

  ;; Extract the "act" signal

  (defund gcd-body1$act (inputs data-size)
    (merge$act (gcd-body1$me-inputs inputs data-size)
               (* 2 data-size)))

  (defthm gcd-body1$act-inactive
    (implies (or (not (nth 0 inputs))
                 (equal (nth 1 inputs) t))
             (not (gcd-body1$act inputs data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$me-inputs
                                       gcd-body1$act))))

  ;; Extract the output data

  (defund gcd-body1$data-out (inputs data-size)
    (fv-if (gcd-body1$a<b inputs data-size)
           (gcd-body1$data1-out inputs data-size)
           (gcd-body1$data0-out inputs data-size)))

  (defthm len-gcd-body1$data-out
    (equal (len (gcd-body1$data-out inputs data-size))
           (* 2 (nfix data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$data-out))))

  (defthm bvp-gcd-body1$data-out
    (implies (bvp (gcd-body1$data-in inputs data-size))
             (bvp (gcd-body1$data-out inputs data-size)))
    :hints (("Goal" :in-theory (enable gcd-body1$a<b
                                       gcd-body1$data-out))))
  )

;; The value lemma for GCD-BODY1

(encapsulate
  ()

  (local
   (defthm list-of-singleton
     (implies (and (true-listp l)
                   (equal (len l) 1))
              (equal (list (car l))
                     l))))

  (defthm gcd-body1$value
    (b* ((inputs (list* full-in empty-out-
                        (append data-in go-signals))))
      (implies (and (posp data-size)
                    (gcd-body1& netlist data-size)
                    (true-listp data-in)
                    (equal (len data-in) (* 2 data-size))
                    (true-listp go-signals)
                    (equal (len go-signals) *gcd-body1$go-num*))
               (equal (se (si 'gcd-body1 data-size) inputs st netlist)
                      (list* (gcd-body1$act inputs data-size)
                             (gcd-body1$data-out inputs data-size)))))
    :hints (("Goal"
             :do-not-induct t
             :expand (:free (inputs data-size)
                            (se (si 'gcd-body1 data-size) inputs st netlist))
             :in-theory (e/d (de-rules
                              fv-adder-output
                              gcd-body1&
                              gcd-body1*$destructure
                              gcd-body1$data-in
                              gcd-body1$me-inputs
                              gcd-body1$a<b
                              gcd-body1$act
                              gcd-body1$data-out
                              gcd-body1$data0-out
                              gcd-body1$data1-out)
                             (append-take-nthcdr
                              de-module-disabled-rules)))))
  )