1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
;;; subsumption-subst.lisp
;;; The subsumption relation between substitutions
;;; Created 13-10-99. Last revision: 09-01-2001
;;; =================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "subsumption-subst")
|#
(in-package "ACL2")
(include-book "subsumption")
;;; *******************************************************************
;;; THE SUBSUMPTION RELATION BETWEEN SUBSTITUTIONS.
;;; DEFINITION AND PROPERTIES.
;;; *******************************************************************
;;; Our goal is to define the subsumption relation between
;;; substitutions. In the literature, this relation is defined in this
;;; way:
;;; sigma <= delta iff (exists gamma) gamma·sigma = delta
;;; where "·" stands for composition.
;;; Note that equality between substitutions is functional equality (we cannot
;;; use equal), so we reformulate this property as:
;;; (*) sigma <= delta iff (exists gamma)
;;; s.t. for all term
;;; gamma·sigma(term) = delta(term)
;;; Our goal in this book is to define the subsumption relation between
;;; substitutions as a function, subs-subst. We will define that
;;; function paying attention only to a restricted list of
;;; variables. Then will prove (*) in the ACL2 logic. As subsumption
;;; between terms (due to existential quantification) we have to give
;;; the substitution gamma in a constructive way, so our definition of
;;; the subsumption relation will be based on a algorithm that finds
;;; such substitution gamma, whenever it exists.
;;; That is to say, we are going to:
;;; 1) Define the subsumption relation, (subs-subst sigma delta) as a
;;; function and the witness matching substitution, called
;;; (matching-subst-r sigma delta). Both functions will be based on a
;;; matching algorithm called subs-subst-mv.
;;; 2) Prove that if (subs-subst sigma delta), then
;;; (matching-subst-r sigma delta) applied to sigma(term) is equal to
;;; delta(term), with the same matching substitution, for all
;;; term. The reverse implication is trivial.
;;; ============================================================================
;;; 1. Definition of subs-subst
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 1.1. Some previous definitions and lemmas
;;; ----------------------------------------------------------------------------
;;; ===== TRUE-LIST-OF-VARIABLES
(local
(defun true-list-of-variables (l)
(if (atom l)
(equal l nil)
(and (variable-p (car l))
(true-list-of-variables (cdr l))))))
(local
(defthm true-list-of-variables-append
(implies (and (true-list-of-variables l)
(true-list-of-variables m))
(true-list-of-variables (append l m)))))
(local
(defthm true-list-of-variables-variables
(true-list-of-variables (variables flg term))))
;;; ===== TRUE-LIST-OF-EQLABLEP (needed for guard verification)
(local
(defun true-list-of-eqlablep (l)
(if (atom l)
(equal l nil)
(and (eqlablep (car l))
(true-list-of-eqlablep (cdr l))))))
(local
(defthm true-list-of-eqlablep-append
(implies (and (true-list-of-eqlablep l)
(true-list-of-eqlablep m))
(true-list-of-eqlablep (append l m)))))
(local
(defthm true-list-of-eqlablep-variables
(implies (term-s-p-aux flg term)
(true-list-of-eqlablep (variables flg term)))))
;;; ===== DOMAIN-VAR
;;; The variables of the domain (to remove anomalies).
(defun domain-var (sigma)
(if (endp sigma)
nil
(if (variable-p (caar sigma))
(cons (caar sigma) (domain-var (cdr sigma)))
(domain-var (cdr sigma)))))
;;; Its main properties
(local
(defthm domain-var-main-property
(iff (member x (domain-var sigma))
(and (member x (domain sigma))
(variable-p x)))))
;;; Needed for guard verification
(local
(defthm true-list-of-variables-domain-var
(true-list-of-variables (domain-var sigma))))
(local
(defthm true-list-of-eqlablep-domain-var
(implies (substitution-s-p sigma)
(true-list-of-eqlablep (domain-var sigma)))))
(local (in-theory (disable domain-var)))
;;; ====== CO-DOMAIN-VAR
;;; The "values" of the variables in domain-var
(defun co-domain-var (sigma)
(if (endp sigma)
nil
(if (variable-p (caar sigma))
(cons (cdar sigma) (co-domain-var (cdr sigma)))
(co-domain-var (cdr sigma)))))
;;; Needed for guard verification
(local
(defthm term-s-p-aux-co-domain-var
(implies (substitution-s-p sigma)
(term-s-p-aux nil (co-domain-var sigma)))))
;;; ====== IMPORTANT-VARIABLES
;;; For subsumption of substitutions, we only pay atention to these
;;; variables
(defun important-variables (sigma delta)
(append (domain-var sigma)
(append (domain-var delta)
(variables nil (co-domain-var sigma)))))
;;; ===== SYSTEM-SUBS-SUBST.
;;; A technical macro definition
;;; We will prove below that two substitutions are related by
;;; subsumption iff the following system of equations is matchable.
(local
(defmacro system-subs-subst (sigma delta)
`(first
(pair-args
(apply-subst nil ,sigma (important-variables ,sigma ,delta))
(apply-subst nil ,delta (important-variables ,sigma ,delta))))))
;;; ----------------------------------------------------------------------------
;;; 1.2. Definition of subs-subst
;;; ----------------------------------------------------------------------------
;;;; NOTATION:
;;;; ^^^^^^^^^
;;;; In the followin comments, V will be
;;;; (important-variables sigma delta))
;;; ===== SUBS-SUBST-MV
;;; Subsumption between substitutions.
;;; To decide wether sigma subsumes delta, then we take the list of
;;; variables of the domain of sigma, the domain of delta and the
;;; variables of the terms in the co-domain of sigma (i.e, the list V), and
;;; test if the list of terms sigma(V) subsumes the list of terms
;;; delta(V).
(defun subs-subst-mv (sigma delta)
(let ((V (important-variables sigma delta)))
(mv-let (system bool)
(pair-args (apply-subst nil sigma V)
(apply-subst nil delta V))
(declare (ignore bool))
(match-mv system))))
;;; ====== SUBS-SUBST
;;; The subsumption relation between substitutions:
(defun subs-subst (sigma delta)
(mv-let (match bool)
(subs-subst-mv sigma delta)
(declare (ignore match))
bool))
;;; ===== MATCHING-SUBST
;;; An important auxiliary definition: when
;;; (subs-subst sigma delta) returns t, this is the substitution that
;;; applied to the list (apply-subst nil sigma V) returns
;;; (apply-subst nil delta V)
(defun matching-subst (sigma delta)
(mv-let (match bool)
(subs-subst-mv sigma delta)
(declare (ignore bool))
match))
;;; ====== MATCHING-SUBST-R
;;; Restriction of (subs-sust sigma delta) to V.
(defun matching-subst-r (sigma delta)
(restriction (matching-subst sigma delta)
(important-variables sigma delta)))
;;; REMARKS:
;;;
;;; 1) The substitution subs-sust-r is the witness substitution to prove
;;; subsumption between sigma(term) and delta(term), for all terms, as
;;; we will prove.
;;; 2) For our particular implementation of subsumption between terms,
;;; subs-sust and subs-sust-r are exactly the same (from a functional
;;; pont of view) (when subs-sust is not nil). But we have to define
;;; subs-sust-r to assure explicitly that outside V, the substitution is
;;; the identity, because this is not derived from the soundness and
;;; completeness theorems of and we forbid ourselves to use particular
;;; properties of a particular matching algorithms.
;;; 3) Note that subst-sust-r probably has many repetitions in his
;;; domain, but this is not a problem for us. We will not use
;;; subs-sust-r to compute, only as a tool to deduce properties.
;;; ============================================================================
;;; 2. Soundness theorem
;;; ============================================================================
;;; We want to prove: if (subs-sust sigma delta), then
;;; the substitutions
;;; delta
;;; and
;;; (composition (subs-subst-r sigma delta) sigma)
;;; are functionally equal.
;;; ----------------------------------------------------------------------------
;;; 3.1 The main lemma needed for the soundness theorem
;;; ----------------------------------------------------------------------------
;;; The main goal here is to prove that:
;;; For all variable x,
;;; (val x (composition (subs-subst-r sigma delta) sigma)) = (val x delta)
;;; if (subs-sust sigma delta)
;;; WE DISTINGUISH THREE CASES.
;;; ············································································
;;; 3.1.1 Case 1: x is a variable outside V
;;; ············································································
(local
(defthm subs-subst-main-property-variable-x-not-in-V
(let ((V (important-variables sigma delta)))
(implies (and
(variable-p x)
(not (member x V))
(subs-subst sigma delta))
(equal (instance (val x sigma) (matching-subst-r sigma delta))
(val x delta))))
:hints (("Goal" :in-theory (enable x-not-in-domain-remains-the-same)))))
;;; ············································································
;;; 3.1.2. Case 2: x is a variable of (domain-var sigma)
;;; ············································································
;;; 3.1.2.1 A lemma for this case 2:
;;; subs-subst composed with sigma is equal to delta in V.
;;; ······················································
(local
(encapsulate
()
;;; Two previous lemmas:
(local
(defthm pair-args-success
(second (pair-args (apply-subst nil sigma l)
(apply-subst nil delta l)))))
(local
(defthm apply-nil-apply-t
(implies (and (equal (apply-subst nil sigma1 l)
(apply-subst nil sigma2 l))
(member x l))
(equal (instance x sigma1)
(instance x sigma2)))
:rule-classes nil))
;;; A technical lemma:
(local
(defthm apply-subst-from-matchers-to-lists-of-terms
(implies (and
(second (pair-args l m))
(matcher sigma (first (pair-args l m))))
(equal (equal (apply-subst nil sigma l) m) t))
:hints (("Goal" :induct (pair-args l m)))))
;;; And the intended lemma:
(defthm matching-subst-composed-sigma-coincide-with-delta-in-V
(let ((V (important-variables sigma delta)))
(implies (and
(variable-p x)
(member x V)
(subs-subst sigma delta))
(equal (instance (val x sigma) (matching-subst sigma delta))
(val x delta))))
:hints (("Goal" :in-theory (disable important-variables)
:use (:instance apply-nil-apply-t
(l (important-variables sigma delta))
(sigma1 (composition
(matching-subst sigma delta) sigma))
(sigma2 delta)))))))
;;; REMARKS:
;;; 1) If we not disable important-variables the proof is longer.
;;; 2) The condition (variable-p x) is not necessary, but the proof is
;;; shorter.
;;; The above lemma gives the fundamental property of subs-subst and
;;; matching-subst . We can forget its definition, so we disable their
;;; definitions:
(local (in-theory (disable subs-subst matching-subst)))
;;; 3.1.2.2 Another lemma for case 2:
;;; ·······························
(local
(defthm variables-co-domain-var
(implies (member x (domain-var sigma))
(subsetp (variables t (val x sigma))
(variables nil (co-domain-var sigma))))))
;;; 3.1.2.3 The main result for Case 2
;;; ································
(local
(defthm
subs-subst-main-property-variable-x-in-domain-var-sigma
(implies (and
(variable-p x)
(member x (domain-var sigma))
(subs-subst sigma delta))
(equal (apply-subst t (matching-subst-r sigma delta) (val x sigma))
(val x delta)))))
;;; ············································································
;;; 3.1.3. Case 3: x in V but not in (domain-var sigma)
;;; ············································································
;;; 3.1.3.1 A lemma for Case 3
;;; In this case, matching and matching-subst-r take the same values.
;;; ·································································
(local
(defthm
subsumption-subst-main-property-variable-in-V-not-in-domain-var-sigma-lemma
(let ((V (important-variables sigma delta)))
(implies (and
(variable-p x)
(not (member x (domain-var sigma)))
(member x V)
(subs-subst sigma delta))
(equal (apply-subst t (matching-subst-r sigma delta) (val x sigma))
(apply-subst t (matching-subst sigma delta)
(val x sigma)))))
:hints (("Goal" :in-theory (enable x-not-in-domain-remains-the-same)))))
;;; We disable important-variables and matching-subst-r since we do not
;;; need to "extract" more properties from the definitions.
(local (in-theory (disable important-variables matching-subst-r)))
;;; 3.1.3.2 The main result for this case.
;;; This result is not strictly needed, bu we include in favour of
;;; clarity.
(local
(defthm
subs-subst-main-property-variable-x-in-V-not-in-domain-var-sigma
(let ((V (important-variables sigma delta)))
(implies (and
(variable-p x)
(not (member x (domain-var sigma)))
(member x V)
(subs-subst sigma delta))
(equal (apply-subst t (matching-subst-r sigma delta) (val x sigma))
(val x delta))))))
;;; ----------------------------------------------------------------------------
;;; 3.2 Statements of the soundness theorem
;;; ----------------------------------------------------------------------------
;;; Joining the three cases together, we prove
;;; functional equality between
;;; (composition (matching-subst-r sigma delta) sigma) and delta.
(local
(defthm
equal-composition-matching-subst-with-sigma-to-delta-variable
(implies (and (variable-p x)
(subs-subst sigma delta))
(equal (val x (composition (matching-subst-r sigma delta) sigma))
(val x delta)))
:hints
(("Goal"
:cases ((not (member x (important-variables sigma delta)))
(member x (domain-var sigma)))))))
;;; DIFFERENT VERSIONS OF THE SOUNDNESS THEOREM
;;; With terms and list of terms (not only with variables)
;;; ······················································
(local
(defthm
equal-composition-subs-subst-with-sigma-to-delta
(implies (subs-subst sigma delta)
(equal (apply-subst
flg
(composition (matching-subst-r sigma delta) sigma)
term)
(apply-subst flg delta term)))
:hints (("Goal" :in-theory (disable
composition-of-substitutions-apply)))
:rule-classes nil))
;;; We prefer this formulation to be called the soundness theorem of
;;; subs-subst
(defthm
subs-subst-soundness
(implies (subs-subst sigma delta)
(equal
(instance term (composition (matching-subst-r sigma delta)
sigma))
(instance term delta)))
:rule-classes nil
:hints (("Goal" :use
(:instance
equal-composition-subs-subst-with-sigma-to-delta
(flg t)))))
;;; REMARK: we do not use the two above lemmas as a rewrite rule to avoid
;;; conflicts with composition-of-substitutions-appply. Instead, the
;;; following version will be used as a rewrite rule.
;;; With terms but without using composition
;;; ········································
(defthm
subs-subst-implies-matching-subst-r-appplied-to-sigma-term-is-delta-term
(implies (subs-subst sigma delta)
(equal (apply-subst flg (matching-subst-r sigma delta)
(apply-subst flg sigma term))
(apply-subst flg delta term)))
:hints
(("Goal" :use
(:instance equal-composition-subs-subst-with-sigma-to-delta))))
;;; With respect to subsumption between terms
;;; ·········································
;;; Trivial consequence of completeness of subsumption and the previous
;;; lemma:
(defthm
subs-subst-main-property
(implies (subs-subst sigma delta)
(subs (instance term sigma) (instance term delta)))
:hints (("Goal" :use
((:instance subs-completeness
(t1 (instance term sigma))
(t2 (instance term delta))
(sigma (matching-subst-r sigma delta)))))))
;;; ============================================================================
;;; 3. Completeness theorem
;;; ============================================================================
(local (in-theory (enable subs-subst)))
;;; We want to prove the following:
;;; If sigma <= delta, then (subs-subst sigma delta).
;;; In fact, it will be more useful to prove
;;; The theorem is very easy to prove, but the problem is how we
;;; formulate the hypothesis sigma <= delta. We will assume the
;;; existence of two substitutions, called sigma-w and delta-w and the
;;; only property we will assume about them is that sigma-w <=
;;; delta-w. That is, exists another substitution gamma-w such that
;;; delta-w = gamma-w·sigma-w.
;;; We will use encapsulate for that purpose. Let sigma-w, delta-w and
;;; gamma-w three susbtitutions such that delta-w is functionally equal
;;; to (composition gamma-w sigma-w)
;;; HYPOTHESIS:
(encapsulate
(((sigma-w) => *)
((delta-w) => *)
((gamma-w) => *))
(local (defun sigma-w () nil))
(local (defun delta-w () nil))
(local (defun gamma-w () nil))
(defthm sigma-w-delta-w-subsumption-hypothesis
(equal (instance term (composition (gamma-w) (sigma-w)))
(instance term (delta-w)))
:rule-classes nil))
;;; Now our goal is to prove (subs-subst (sigma-w) (delta-w)).
;;; The assumption as a rewrite rule:
(local
(defthm sigma-w-delta-w-subsumption-hypothesis-rewrite-rule
(equal (instance (instance term (sigma-w)) (gamma-w))
(instance term (delta-w)))
:hints (("Goal" :use sigma-w-delta-w-subsumption-hypothesis))))
;;; The main lemma
(defthm gamma-w-matcher
(matcher (gamma-w)
(first (pair-args (apply-subst nil (sigma-w) l)
(apply-subst nil (delta-w) l)))))
;;; And the completeness theorem:
(defthm subs-subst-completeness
(subs-subst (sigma-w) (delta-w))
:rule-classes nil
:hints (("Goal" :use
(:instance match-mv-completeness
(sigma (gamma-w))
(S (system-subs-subst (sigma-w) (delta-w)))))))
;;; REMARK: Note that this result can be easily used by functional
;;; instantiation (see for example unification-definition.lisp).
;;; ============================================================================
;;; 4. Closure properties of subs-subst
;;; ============================================================================
(local (in-theory (enable matching-subst matching-subst-r
important-variables)))
;;; ============================================================================
;;; 4.1 Closure properties for the soundness theorem
;;; ============================================================================
;;; We are going to prove that, provided the two substitutions are in a
;;; given signature, the witness substitution used for the soundness
;;; proof above, is also in the given signature.
(encapsulate
()
(local
(defthm substitution-s-p--apply-subst-nil-term-s-p-aux
(implies (and (substitution-s-p sigma)
(true-list-of-eqlablep l))
(term-s-p-aux nil (apply-subst nil sigma l)))))
(local
(defthm pair-args-system-p
(implies (and (term-s-p-aux nil l)
(term-s-p-aux nil m))
(system-s-p (first (pair-args l m))))))
(defthm matching-subst-substitution-s-p
(implies (and (substitution-s-p sigma)
(substitution-s-p delta))
(substitution-s-p (matching-subst sigma delta))))
(local
(defthm restriction-substitution-s-p
(implies (and (substitution-s-p sigma)
(true-list-of-eqlablep l))
(substitution-s-p (restriction sigma l)))))
(defthm matching-subst-r-substitution-s-p
(implies (and (substitution-s-p sigma)
(substitution-s-p delta))
(substitution-s-p (matching-subst-r sigma delta)))))
;;; ----------------------------------------------------------------------------
;;; 4.2 Closure property for the completeness theorem
;;; ----------------------------------------------------------------------------
;;; We can prove a slightly different version of the completeness
;;; theorem: the closure property of the completeness theorem
;;;
;;; We want to prove the following:
;;; let us suppose that sigma and gamma are two substitutions IN A GIVEN
;;; SIGNATURE. Suppose that sigma <= delta, i.e., there exists a
;;; substitution gamma IN THE SAME SIGNATURE such that sigma(term) =
;;; gamma.sigma(term), FOR ALL TERM IN THE SIGNATURE.
;;; Then (subs-subst sigma delta).
;;; Let us formulate the hypothesis using encapsulate:
(encapsulate
(((sigma-w-s) => *)
((delta-w-s) => *)
((gamma-w-s) => *))
(local (defun sigma-w-s () nil))
(local (defun delta-w-s () nil))
(local (defun gamma-w-s () nil))
(defthm sigma-w-s-substitution-s-p (substitution-s-p (sigma-w-s)))
(defthm delta-w-s-substitution-s-p (substitution-s-p (delta-w-s)))
(defthm gamma-w-s-substitution-s-p (substitution-s-p (gamma-w-s)))
(defthm sigma-w-s-delta-w-s-subsumption-hypothesis
(implies (term-s-p term)
(equal (instance term (composition (gamma-w-s) (sigma-w-s)))
(instance term (delta-w-s))))
:rule-classes nil))
;;; Now our goal is to prove (subs-subst (sigma-w-s) (delta-w-s)).
;;; The assumption as a rewrite rule:
(local
(defthm sigma-w-s-delta-w-s-subsumption-hypothesis-rewrite-rule
(implies (variable-s-p x)
(equal (instance (val x (sigma-w-s)) (gamma-w-s))
(val x (delta-w-s))))
:hints (("Goal"
:use (:instance
sigma-w-s-delta-w-s-subsumption-hypothesis
(term x))))))
;;; The main lemma
(local
(defthm gamma-w-s-matcher
(implies (true-list-of-eqlablep l)
(matcher (gamma-w-s)
(first (pair-args (apply-subst nil (sigma-w-s) l)
(apply-subst nil (delta-w-s)
l)))))))
;;; And the closure property for the completeness theorem
(defthm subs-subst-completeness-closure
(subs-subst (sigma-w-s) (delta-w-s))
:rule-classes nil
:hints (("Goal" :use
(:instance match-mv-completeness
(sigma (gamma-w-s))
(S (system-subs-subst (sigma-w-s) (delta-w-s)))))))
;;; REMARK: Note that this result can be easily used by functional
;;; instantiation.
;;; We disable the defintions of subs-subst (the subsumption relation)
;;; and matching-subst-r (the witness substitution)
(in-theory (disable subs-subst matching-subst-r))
|