1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
;;; unification.lisp
;;; Definition of a particular rule-based unification algorithm.
;;; This is an executable instance of the general pattern verified in
;;; unification-pattern.lisp
;;; Created 17-10-99. Last revision: 10-12-2000
;;; =================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "unification")
|#
(in-package "ACL2")
(include-book "subsumption-subst")
(local (include-book "unification-pattern"))
(set-well-founded-relation e0-ord-<)
;;; *************************************************
;;; A CONCRETE AND EXECUTABLE UNIFICATION ALGORITHM
;;; *************************************************
;;; Here we show how we can obtain a correct and executable unification
;;; algorithm from the "pattern" verified in unification-definition.lisp:
;;; - We define a particular selection function.
;;; - We introduce multi-values to deal with the pair of systems
;;; S-sol and with the returned values, to improve efficiency.
;;; - Some other improvements concerning efficency are done.
;;; - Guards are verified, allowing execution in Common Lisp.
;;; ============================================================================
;;; 1. The unification algorithm
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 1.1 A particular version of transform-mm-sel
;;; ----------------------------------------------------------------------------
;;; ············································································
;;; 1.1.1 A particular "selection" function. If we detect an inmediate fail,
;;; we select it.
;;; ············································································
(defun sel-unif (S)
(declare (xargs :guard (and (consp S) (system-p S))))
(if (endp (cdr S))
(car S)
(let* ((equ (car S))
(t1 (car equ))
(t2 (cdr equ)))
(cond ((or (variable-p t1) (variable-p t2))
(sel-unif (cdr S)))
((eql (car t1) (car t2))
(sel-unif (cdr S)))
(t equ)))))
;;; Main property, needed to instantiate from unification-definition.lisp:
(local
(defthm sel-unif-select-a-pair
(implies (consp S)
(member (sel-unif S) S))))
;;; ············································································
;;; 1.1.2 Some lemmas needed for guard verification:
;;; ············································································
(encapsulate
()
(local
(defthm sel-unif-consp
(implies (and (alistp S)
(consp S)
(system-p S))
(consp (sel-unif S)))
:rule-classes :type-prescription))
(defthm termp-p-sel-unif-system-p
(implies (and (consp S)
(system-p S))
(and
(term-p (car (sel-unif S)))
(term-p (cdr (sel-unif S))))))
(local
(defthm term-p-true-listp-arguments
(implies (and (term-p term) (not (variable-p term)))
(true-listp (cdr term)))))
(local
(defthm system-p-eqlable-function-symbols
(implies (and (system-p S)
(member equ S))
(eqlablep (cadr equ)))))
(defthm system-p-eqlablep-car
(implies (and (system-p S)
(consp S)
(variable-p (car (sel-unif S))))
(eqlablep (car (sel-unif S)))))
;;; ············································································
;;; 1.1.3 The function transform-mm
;;; ············································································
(defun transform-mm (S sol)
(declare (xargs :guard (and (system-p S)
(system-p sol)
(consp S))))
(let* ((ecu (sel-unif S))
(t1 (car ecu)) (t2 (cdr ecu))
(R (eliminate ecu S)))
(cond ((equal t1 t2) (mv R sol t)) ;;; *DELETE*
((variable-p t1)
(if (member t1 (variables t t2))
(mv nil nil nil) ;;; *CHECK*
(mv ;;; *ELIMINATE*
(substitute-syst t1 t2 R)
(cons ecu
(substitute-range t1 t2 sol))
t)))
((variable-p t2)
(mv (cons (cons t2 t1) R) sol t)) ;;; *ORIENT*
((not (eql (car t1) (car t2)))
(mv nil nil nil)) ;;; *CONFLICT*
(t (mv-let (pairs bool)
(pair-args (cdr t1) (cdr t2))
(if bool
(mv (append pairs R) sol t) ;;; *DESCOMPOSE*
(mv nil nil nil)))))))) ;;; *NOT-PAIR*
;;; ----------------------------------------------------------------------------
;;; 1.2 Some lemmas needed for functional instantiation (first part)
;;; ----------------------------------------------------------------------------
;;; Here we define some lemmas to show that the efficiency improvements
;;; done in transform-mm does not affect the logic:
(local
(defthm substitute-var-apply-subst
(equal (apply-subst flg (list equ) term)
(substitute-var (car equ) (cdr equ) flg term))))
(local
(defthm substitute-syst-apply-syst
(equal (apply-syst (list equ) S)
(substitute-syst (car equ) (cdr equ) S))))
(local
(defthm substitute-range-apply-range
(equal (apply-range (list equ) S)
(substitute-range (car equ) (cdr equ) S))))
;;; transform-mm-sel of unification-definition.lisp cannot be
;;; instantiated by transform-mm, since they different signatures, due
;;; to the use of multi values in transform-mm. Instead, we will
;;; instantiate transform-mm-sel for the following function:
(local
(defun transform-mm-bridge (S-sol)
(mv-let (S1 sol1 bool1)
(transform-mm (car S-sol) (cdr S-sol))
(if bool1 (cons S1 sol1) nil))))
;;; ----------------------------------------------------------------------------
;;; 1.3 Termination properties of transform-mm
;;; ----------------------------------------------------------------------------
;;; The theorem to justify the definition. This lemma is easily obtained
;;; by functional instantiation:
(local
(encapsulate
()
;;; A technical lemma, to make the proof shorter:
(local
(defthm um-technical
(equal (unification-measure '(nil))
(unification-measure nil))))
(defthm unification-measure-decreases-instance
(let ((transform-mm (transform-mm S sol)))
(implies (consp S)
(e0-ord-<
(unification-measure (cons (first transform-mm)
(second transform-mm)))
(unification-measure (cons S sol)))))
:hints (("Goal" :use (:functional-instance
(:instance unification-measure-decreases
(S-sol (cons S sol)))
(transform-mm-sel transform-mm-bridge)
(sel sel-unif)))
("Subgoal 3" :in-theory (disable unification-measure
(unification-measure)))))))
(local (in-theory (disable unification-measure)))
;;; ----------------------------------------------------------------------------
;;; 1.4 Guard verification
;;; ----------------------------------------------------------------------------
;;; Some lemmas needed for guard verification of mgu-mv
(local
(defthm system-p-substitute-var
(implies (and (term-p t1)
(term-p-aux flg term))
(term-p-aux flg (substitute-var x t1 flg term)))))
(local
(defthm system-p-substitute-syst
(implies (and (system-p S)
(term-p term))
(system-p (substitute-syst x term S)))))
(local
(defthm system-p-substitute-range
(implies (and (system-p S)
(term-p term))
(system-p (substitute-range x term S)))))
;;; ----------------------------------------------------------------------------
;;; 1.5 The unification algorithm
;;; ----------------------------------------------------------------------------
;;; Appling transform-mm until a normal form is found:
(defun solve-system (S sol bool)
(declare
(xargs
:guard (and (system-p S)
(system-p sol))
:measure (unification-measure (cons S sol))
:hints
(("Goal" :in-theory (disable transform-mm)))))
(if (or (not bool) (not (consp S)))
(mv S sol bool)
(mv-let (S1 sol1 bool1)
(transform-mm S sol)
(solve-system S1 sol1 bool1))))
;;; Most general solutions of systems of equations
(defun mgs-mv (S)
(declare (xargs :guard (system-p S)))
(mv-let (S1 sol1 bool1)
(solve-system S nil t)
(declare (ignore S1))
(mv sol1 bool1)))
;;; The unification algorithm
(defun mgu-mv (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(mgs-mv (list (cons t1 t2))))
;;; We also define as functions the property of being unifiable and the
;;; umg substitution:
(defun unifiable (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(mv-let (mgu unifiable)
(mgu-mv t1 t2)
(declare (ignore mgu))
unifiable))
(defun mgu (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(mv-let (mgu unifiable)
(mgu-mv t1 t2)
(declare (ignore unifiable))
mgu))
;;; REMARK: mgu-mv will be used to compute unifiability and most general
;;; unifier at the same time. The functions unifiable and mgu are
;;; defined to be used in the statements of theorems.
;;; ============================================================================
;;; 2. Fundamental properties of mgu-mv, unifiable and mgu
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 2.1 Some lemmas needed for the functional instantiation (second part)
;;; ----------------------------------------------------------------------------
(local
(defthm booleanp-third-solve-system
(implies (booleanp bool)
(booleanp (third (solve-system S sol bool))))
:rule-classes :type-prescription))
(local
(defthm nil-third-implies-nil-second-solve-system
(implies (not (third (solve-system S sol t)))
(not (second (solve-system S sol t))))))
;;; solve-system-sel of unification-pattern.lisp cannot be
;;; instantiated by solve-system, since they different signatures, due
;;; to the use of multi values in transform-mm. Instead, we will
;;; instantiate solve-system-sel for the following function:
(local
(defun solve-system-bridge (S-sol)
(if (not (consp S-sol))
S-sol
(mv-let (S1 sol1 bool1)
(solve-system (car S-sol) (cdr S-sol) t)
(if bool1 (cons S1 sol1) nil)))))
;;; The same happens with mgs-sel and mgu-sel
(local
(defun mgs-mv-bridge (S)
(let ((solve-system-bridge (solve-system-bridge (cons S nil))))
(if solve-system-bridge (list (cdr solve-system-bridge)) nil))))
(local
(defun unifiable-bridge (t1 t2)
(mgs-mv-bridge (list (cons t1 t2)))))
(local
(defun mgu-bridge (t1 t2)
(first (unifiable-bridge t1 t2))))
;;; ----------------------------------------------------------------------------
;;; 2.2 The properties
;;; ----------------------------------------------------------------------------
;;; Most of these properties are obtained by functional instantiation.
;;; Completeness
;;; ············
(defthm mgu-completeness
(implies (equal (instance t1 sigma)
(instance t2 sigma))
(unifiable t1 t2))
:rule-classes nil
:otf-flg t
:hints
(("Goal"
:use
((:functional-instance
unifiable-sel-completeness
(sel sel-unif)
(transform-mm-sel transform-mm-bridge)
(solve-system-sel solve-system-bridge)
(mgs-sel mgs-mv-bridge)
(unifiable-sel unifiable-bridge))))))
;;; The hint is not necessary, but makes the proof shorter.
;;; Soundness
;;; ·········
(defthm mgu-soundness
(implies (unifiable t1 t2)
(equal (instance t1 (mgu t1 t2))
(instance t2 (mgu t1 t2))))
:hints
(("Goal"
:use
((:functional-instance
unifiable-sel-soundness
(sel sel-unif)
(transform-mm-sel transform-mm-bridge)
(solve-system-sel solve-system-bridge)
(mgs-sel mgs-mv-bridge)
(unifiable-sel unifiable-bridge)
(mgu-sel mgu-bridge))))))
;;; Idempotence
;;; ···········
(defthm mgu-idempotent
(idempotent (mgu t1 t2))
:hints
(("Goal"
:use
((:functional-instance
mgu-sel-idempotent
(sel sel-unif)
(transform-mm-sel transform-mm-bridge)
(solve-system-sel solve-system-bridge)
(mgs-sel mgs-mv-bridge)
(unifiable-sel unifiable-bridge)
(mgu-sel mgu-bridge))))))
;;; Generality of the unifier
;;; ·························
(defthm mgu-most-general-unifier
(implies (equal (instance t1 sigma)
(instance t2 sigma))
(subs-subst (mgu t1 t2) sigma))
:hints
(("Goal"
:use
((:functional-instance
mgu-sel-most-general-unifier
(sel sel-unif)
(transform-mm-sel transform-mm-bridge)
(solve-system-sel solve-system-bridge)
(mgs-sel mgs-mv-bridge)
(unifiable-sel unifiable-bridge)
(mgu-sel mgu-bridge))))))
;;; Substitution-s-p (closure property of mgu)
;;; ··············································
(defthm mgu-substitution-s-p
(implies (and (term-s-p t1) (term-s-p t2))
(substitution-s-p (mgu t1 t2)))
:hints
(("Goal"
:use
((:functional-instance
mgu-sel-substitution-s-p
(sel sel-unif)
(transform-mm-sel transform-mm-bridge)
(solve-system-sel solve-system-bridge)
(mgs-sel mgs-mv-bridge)
(unifiable-sel unifiable-bridge)
(mgu-sel mgu-bridge))))))
;;; Substitution-p (needed for guard verification)
;;; ··············································
(defthm mgu-substitution-p
(implies (and (term-p t1) (term-p t2))
(substitution-p (mgu t1 t2)))
:hints (("Goal" :use (:functional-instance
mgu-substitution-s-p
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)
(substitution-s-p substitution-p)))))
;;; We disable mgu-mv, unifiable and mgu and their executable
;;; counter-parts, to be sure that ONLY the above two properties are
;;; used in the sequel. But before doind this, we state the relations
;;; between mgu-mv and unifiable and mgu.
(defthm mgu-mv-unifiable
(equal (second (mgu-mv t1 t2)) (unifiable t1 t2)))
(defthm mgu-mv-mgu
(equal (first (mgu-mv t1 t2)) (mgu t1 t2)))
(in-theory (disable mgu-mv (mgu-mv) mgu (mgu) unifiable (unifiable)))
;;; ============================================================================
;;; 3. Some examples
;;; ============================================================================
;;; ACL2 !>(mgu '(h u) '(h (b)))
;;; ((U B))
;;; ACL2 !>(mgu 1 1)
;;; NIL
;;; ACL2 !>(mgu '(f (g x y) (g y x)) '(f u u))
;;; ((X . Y) (U G Y Y))
;;; ACL2 !>(unifiable '(f (g x y) (g y x)) '(f x x))
;;; NIL
;;; ACL2 !>(mgu '(f (h z) (h (h z))) '(f u (h (h (g v v)))))
;;; ((Z G V V) (U H (G V V)))
;;; ACL2 !>(mgu '(f x (g (a) y)) '(f x (g y x)))
;;; ((X A) (Y A))
;;; ACL2 !>(mgu '(f x (g a y)) '(f x (g y x)))
;;; ((A . X) (Y . X))
;;; ACL2 !>(mgu '(f x (g (a) y)) '(f x (g y x)))
;;; ((X A) (Y A))
;;; ACL2 !>(mgu '(f x (g a y)) '(f x (g y x)))
;;; ((A . X) (Y . X))
|