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Abstract


The experimental feature MBE (for \must be equal") allows ACL2 users


to introduce two versions of the body for a function, one for reasoning


and one for execution [2]. The user must show that the two function


bodies are equal when the function arguments satisfy the function guards.


We demonstrate that MBE allows us to overcome an ACL2 logic weakness


identi�ed in an example presented at the 2nd ACL2 Workshop [4].


1 Background


J Moore demonstrates an ACL2 program in [3] that �nds paths through a graph.
The path�nding algorithm has a time complexity that is linear in the number
of edges in the graph since it marks visited nodes and does not investigate
paths that include nodes that have already been visited. Moore's implemen-
tation, however, because it uses list access and update functions to implement
graph operations, has quadratic time complexity. The stobj feature of ACL2
allows programmers to code eÆcient imperative-style datastructure operations
that have simple, functional semantics [1]. Matt Wilding reimplements Moore's
program in [4] using stobjs so that the basic graph datastructure operations
| marking a node, looking up the edges emanating from a node, etc. | are
constant-time.


An issue identi�ed in [4] is the need in ACL2 to add complexity to some pro-
grams in order to prove termination. Sometimes this additional complexity
seems unnecessary. For example, the main function that implements the search
program in [4] is listed below.
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(defun linear-find-next-step-st (c b st)


(declare (xargs :stobjs st :measure (measure-st c st)


:guard (and (graphp-st st) (bounded-natp b (maxnode))


(numberlistp c (maxnode)))


:verify-guards nil))


(if (endp c) st


(let ((cur (coerce-node (car c)))


(temp (NUMBER-UNMARKED st)))


(cond


((equal (marksi cur st) 1)


(linear-find-next-step-st (cdr c) b st))


((equal cur b)


(let ((st (setstatus 0 st)))


(setstack (myrev (cons (car c) (stack st))) st)))


(t (let ((st (setmarksi cur 1 st)))


(let ((st (setstack (cons (car c) (stack st)) st)))


(let ((st (linear-find-next-step-st (gi cur st) b st)))


(if (or (<= temp (NUMBER-UNMARKED st)) ; always nil


(equal (status st) 0))


st


(let ((st (setstack (cdr (stack st)) st)))


(linear-find-next-step-st (cdr c) b st))))))))))))


This function and its veri�cation is described in detail in [4]. However, note
instances of number-unmarked in the body of linear-find-next-step-st,
which counts the number of unmarked nodes in a graph. It can be proved
using ACL2 that linear-find-next-step-stnever increases the number of un-
marked nodes, so a test that this is so as part of the body of linear-find-next-step-st
is in a very real way extraneous. However, without this test we are unable to
prove termination of the function as required in ACL2.


Of course, for eÆciency reasons we would like to use a version of this function
without the irrelevant checks. The function linear-find-next-step-st-fast


is introduced in [4] without proving the justifying termination.


(defun linear-find-next-step-st-fast (c b st)


(declare (xargs :stobjs st


:measure (measure-st c st)


:guard (and (graphp-st st) (bounded-natp b (maxnode))


(numberlistp c (maxnode)))))


(if (endp c) st


(cond


((equal (marksi (car c) st) 1)


(linear-find-next-step-st-fast (cdr c) b st))


((equal (car c) b)


(let ((st (setstatus 0 st)))


(setstack (myrev (cons b (stack st))) st)))


(t (let ((st (setmarksi (car c) 1 st)))


(let ((st (setstack (cons (car c) (stack st)) st)))


(let ((st (linear-find-next-step-st-fast (gi (car c) st) b st)))


(if (equal (status st) 0)


st


(let ((st (setstack (cdr (stack st)) st)))


(linear-find-next-step-st-fast (cdr c) b st))))))))))
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We believe that it is not possible to justify the termination of this function
within the logic of ACL2 despite the fact that it is possible to prove that the
\extraneous" test of linear-find-next-step-st can be dispensed with when
the guards are met [4]. Of course, this additional test execution of the function.


2 Using MBE


In January 2003, Matt Kaufmann asked the authors whether an experimental
ACL2 feature called MBE (which stands for \must be equal") would overcome
the weakness encountered in [4]. MBE allows the introduction of \executable"
versions of functions whose equivalence to the \logical" versions can be justi�ed
under the assumption that the function argument types are consistent with their
speci�ed guards. This challenge led us to determine whether MBE can be used
to implement a path�nder program that is veri�ed using ACL2 and is as fast as
linear-find-next-step-st-fast with no unproved assumptions.


The term (mbe :logic logic-code :exec exec-code) is logically equivalent
to logic-code. However, when executed in raw Lisp (which ACL2 uses when a
function's guards are veri�ed) it evaluates to exec-code. This implementation
is sound because the guard proof obligations of each function that contains
this term includes the requirement that logic-code is logically equivalent to
exec-code when the function's guards are met.


We implement the guard path�nding program | again! | using MBE. We use
the bodies of the two previously-presented functions, except that the recursive
calls are renamed to refer to the new function name, linear-find-next-step-st-mbe.


(defun linear-find-next-step-st-mbe (c b st)


(declare (xargs :stobjs st


:measure (measure-st c st)


:guard (and (graphp-st st)


(bounded-natp b (maxnode))


(numberlistp c (maxnode)))


:verify-guards nil))


(mbe


:logic body of linear-�nd-next-st with recursive calls renamed


:exec body of linear-�nd-next-st-fast with recursive calls renamed


))


We are able to guard-check linear-find-next-step-st-mbe, which includes
the obligation that the :logic and :exec arguments are equal when the function
arguments satisfy the guards. This proof follows directly from the proofs in [4],
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as does the proof of correctness of the algorithm itself. This book certi�es
in experimental ACL2 2.8 in about 2 minutes, and accompanies this paper in
the workshop proceedings. Also associated with this paper is a �le containing
functions that support running the path�nding program.


3 Conclusion


We believe that we have implemented this algorithm so that it is about as fast
as it can be. A million-edge complete graph is searched exhaustively in under a
second on our Sun workstations, which is comparable to the times reported in [4]
for the most-optimized (and unjusti�ed) implementation. We have veri�ed the
correctness of this implementation wholly using the theorem-prover-supported
logic of ACL2 in a manner similar to what was done in part using an unchecked
informal argument in [4]. This is made possible by the new MBE feature.
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