1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
|
;;; ============================================================================
;;; dag-unification-rules.lisp
;;; TÃtulo: Unification rules on term dags
;;; ============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "dag-unification-rules")
|#
(in-package "ACL2")
(include-book "dags")
(include-book "prefix-unification-rules")
;;; ============================================================================
;;;
;;; 0) Introducción
;;;
;;; ============================================================================
;;; In this book, we define and verify a set of rules of transformation
;;; designed to obtain most general solutions of system of equations,
;;; when these systems of equations are represented as directed acyclicic
;;; graphs (dags).
;;; In the book {\tt dags.lisp}, we describe a representation of graphs
;;; using lists, where each element of the list describe a node of the
;;; graph. With this representation, if the graph is well--formed (this
;;; notion of well-formedness implies, for example, that the graph is
;;; acyclicic) every index (natural number) pointing to a node of the
;;; graph can be seen as a first order term. In the same way, we can
;;; define {\em indices systems} (representing systems of equations) or
;;; {\em indices substitutions} (representing substitutions), with
;;; respect to a given well--formed term dag. In this book we formally
;;; define {\em well--formed term dags} and the correspondece between
;;; well--formed term dags and first order terms.
;;; It is also possible to define the set of unification transformation
;;; rules of Martelli--Montanari, acting on this terms dag
;;; representation. We will define these transformation rules in an
;;; analogue way to the rules defined in the book {\tt
;;; prefix\--unification\--rules\--.lisp}, but taking into account that
;;; the representation of terms is based on dags.
;;; The main properties of the transformation rules acting on term dags
;;; can be proved by compositional reasoning, because similar properties
;;; were proved for the transformation rules acting on standard
;;; list/prefix representation of terms. For that purpose, we show that
;;; every transformation step given at the "dag level" corresponds to a
;;; transformation step given at the "list/prefix level". Having proved
;;; this fundamental result, it is easy to conclude that some sequences
;;; of transformation rules acting on term dags lead to find the most
;;; general solution (if it is solvable) of the system represented
;;; by the initial inidices system and term dag. This is a key result to
;;; design a unification algorithm acting on term dags.
;;; In sum, in this book:
;;; *)
;;; We define well--formedness properties for term dags and unification
;;; problems represented using term dags.
;;; *)
;;; We define the correspondence between the dag representation and the
;;; standard list/prefix notation of first--order terms.
;;; *)
;;; We define the Martelli--Montanari unification rules with respect to
;;; the term dag representation.
;;; *)
;;; We show that the well--formedness properties are preserved by the
;;; transformation rules.
;;; *)
;;; We show that for every transformation step given at the "dag level",
;;; there exists a corresponding step given at the "list/prefix level".
;;; *)
;;; We extend these properties to sequences of transformation rules.
;;; *)
;;; And finally, using compositional reasoning, we show that some
;;; sequences of dag transformations starting in a given indices system
;;; may be used to compute a most general solution (or detect
;;; unsolvability) of the system of equations represented by the
;;; initial indices system.
;;; -)
;;; The following books are used, and contain information that is
;;; relevant to understand the contents of this book:
;;; *)
;;; The book {\tt dags.lisp} contains information about how term graphs
;;; are represented, and the intended meaning of the information stored
;;; in nodes. The concept of directed acyclic graphs is defined and
;;; verified. An interesting result about updating dags is also used
;;; here. And also a well--founded measure to recurse on term dags is
;;; defined (this measure will allow us to define several functions in
;;; this book).
;;; *)
;;; The book {\tt prefix-unification-rules.lisp} contains the definition
;;; and verification of the main properties of the Martelli--Montanari
;;; unification rules, representing first--order terms in the standard
;;; list/prefix representation. Once proved the correspondence between
;;; the transformation steps given with the dag representation and with
;;; the standard representation, the results of the book are used
;;; here to prove analogue properties about the transformation rules
;;; given at the "dag level".
;;; -)
;;; ============================================================================
;;;
;;; 1) Well--formed term dags
;;;
;;; ============================================================================
;;; In this section, we define well--formedness properties for those
;;; ACL2 objects representing term dags, systems of equations,
;;; substitutions and unification problems. We also define the
;;; correspondence between these objects and the first--order terms,
;;; systems, substitutions and unification problems represented in the
;;; standard list/prefix representation.
;;; Previously, we define the following macros to access and update the
;;; contents of a term graph. These names resemble the corresponding
;;; accessor and updater functions that will be automatically defined
;;; when defining a single--threaded object storing the graph (see the
;;; book {\tt terms\--dag\--stobj\-.lisp}).
(defmacro dagi-l (i g)
`(nth ,i ,g))
(defmacro update-dagi-l (i v g)
`(update-nth ,i ,v ,g))
;;; In the following, {\em by an index we mean a natural number}.
;;; -----------------------------------
;;;
;;; 1.1) Well--formedness properties
;;;
;;; -----------------------------------
;;; REMARS: Some of the conditions required in the definition of
;;; @term-graph-p@ are required by the expected properties of the
;;; unification algorithm (for example, that the indices have to be
;;; natural numbers). Other properties are required if we want that our
;;; algorithm be Common Lisp compliant; that is, for guard
;;; verification (for example the "eqlablep" properties or the bound for
;;; the indices). Moreover, the properties about the bound of the
;;; indices are only needed for the "stobj" version of the algorithm
;;; (see the book {\tt dag-unification-st.lisp}). But we include it here
;;; because we will prove here some invariant properties about these
;;; well-formedness conditions that will be needed later for guard
;;; verification.
;;; Since only some of the above properties are required for the
;;; correctness of the unification algorithm, it will be sometimes more
;;; comfortable to define only those properties (without the properties
;;; required for guard verification). And also this weaker property
;;; sometimes are enough for the guards of this book:
(defun quasi-term-graph-p (g)
(declare (xargs :guard t))
(if (atom g)
t
(and (or (natp (car g))
(equal (car g) nil)
(and (consp (car g)) (variable-p (caar g)) (equal (cdar g) t))
(and (consp (car g)) (nat-true-listp (cdar g))))
(quasi-term-graph-p (cdr g)))))
;;; Relation between bounded-term-graph and quasi-term-graph-p:
(defthm bounded-term-graph-p-implies-quasi-term-graph-p
(implies (bounded-term-graph-p g n)
(quasi-term-graph-p g)))
;;; The list of variable symbols of a term graph:
(defun list-of-term-dag-variables (g)
(declare (xargs :guard t))
(cond ((atom g) nil)
((and (consp (car g)) (equal (cdar g) t))
(cons (caar g) (list-of-term-dag-variables (cdr g))))
(t (list-of-term-dag-variables (cdr g)))))
;;; Useful properties for guard verification (see {\tt
;;; dag-unification-st.lisp}).
(defthm list-of-term-dag-variables-eqlable-listp
(implies (bounded-term-graph-p g n)
(eqlable-listp (list-of-term-dag-variables g))))
;;; A {\em well-formed term dag} is an acyclic term graph, with shared
;;; variables. We define the "bounded" version and the "relaxed"
;;; version.
;;; NOTA: La guarda de esta función serÃa muy rara, ya que dag-p
;;; necesita term-graph-p, que es como bounded-term-graph-p pero para
;;; n=(len g). Asà que ha optado por no ponerle guarda( creo que esta no
;;; tinene ni que ejecutarse ni que usarse en una guarda) y luego
;;; definir well-formed-term-dag-p igual que esto pero con n=(len g) y
;;; esa si ponerle guarda. Además, pongo una regla de reescritura que
;;; relacione ambas cosas.
(defun bounded-well-formed-term-dag-p (g n)
(and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))))
(defun well-formed-term-dag-p (g)
(declare (xargs :guard (true-listp g)))
(and (bounded-term-graph-p g (len g))
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))))
(defthm well-formed-term-dag-p-def
(equal (well-formed-term-dag-p g)
(bounded-well-formed-term-dag-p g (len g)))
:rule-classes :definition)
(in-theory (disable well-formed-term-dag-p))
;;; The following function defines lists of pairs of indices. Given a
;;; well--formed term dag, these lists represent system of equations
;;; (see the next subsection). For that reason, we usually name them as
;;; {\em indices system}. Note that we require that those indices have
;;; to be bounded.
(defun bounded-nat-pairs-true-listp (l n)
(declare (xargs :guard (natp n)))
(if (atom l)
(equal l nil)
(and (consp (car l))
(natp (caar l)) (< (caar l) n)
(natp (cdar l)) (< (cdar l) n)
(bounded-nat-pairs-true-listp (cdr l) n))))
;;; The following function defines lists of pairs such that the second
;;; element is an index (the first element, although implicit, is
;;; intended to be a variable symbol). Given a well--formed term dag,
;;; these lists represent substitutions (see the next subsection). For
;;; that reason, we usually name them as {\em indices substitution}.
(defun bounded-nat-substitution-p (l n)
(declare (xargs :guard (natp n)))
(if (atom l)
(equal l nil)
(and (consp (car l))
(natp (cdar l)) (< (cdar l) n)
(bounded-nat-substitution-p (cdr l) n))))
;;; The following function defines what we call {\em well--formed
;;; dag unification problems}: 3--tuples containing an indices system, an
;;; indices substitution and a well--formed term dag. The unification
;;; transformation relation will be defined acting on these objects. As
;;; in the standard notation, the indices system represent the system of
;;; equations to be solved and the indices substitution represent the
;;; substitution partially computed. In this case a well--formed term
;;; dag is needed, to store the terms pointed by the indices of the
;;; system and the substitution.
;;; NOTA: aquà se aplica el mismo comentario que antes
(defun bounded-well-formed-upl (upl n)
(and (bounded-nat-pairs-true-listp (first upl) n)
(bounded-nat-substitution-p (second upl) n)
(bounded-well-formed-term-dag-p (third upl) n)))
(defun well-formed-upl (upl)
(declare (xargs :guard (and (consp upl)
(consp (cdr upl))
(consp (cddr upl))
(true-listp (third upl)))))
(and (bounded-nat-pairs-true-listp (first upl) (len (third upl)))
(bounded-nat-substitution-p (second upl) (len (third upl)))
(well-formed-term-dag-p (third upl))))
(defthm well-formed-upl-def
(equal (well-formed-upl upl)
(bounded-well-formed-upl upl (len (third upl)))))
(in-theory (disable well-formed-upl))
;;; NOW SOME LEMMAS ABOUT THE CONTENTS OF WELL-FORMED GRAPHS
;;; Term graphs have variable symbols in variable nodes:
(defthm bounded-term-graph-p-variable-p
(implies (and (term-dag-variable-p h g)
(bounded-term-graph-p g n))
(variable-p (term-dag-symbol h g)))
:rule-classes :forward-chaining)
;;; The following lemmas establish properties related with the natural
;;; number contents of term graph nodes.
(local
(defthm bounded-nat-pairs-true-listp-natp-car-and-cdr
(implies (and (natp n) (< n (len l))
(bounded-nat-pairs-true-listp l m))
(and (natp (car (nth n l)))
(natp (cdr (nth n l)))))))
(local
(defthm bounded-nat-pairs-true-listp-bounded-car-and-cdr
(implies (and (natp n) (< n (len l))
(bounded-nat-pairs-true-listp l m))
(and (< (car (nth n l)) m)
(< (cdr (nth n l)) m)))))
;; :rule-classes :linear))
(defthm bounded-term-graph-p-nth-positive
(implies (bounded-term-graph-p g n)
(>= (nth h g) 0))
:rule-classes :linear)
(defthm bounded-term-graph-p-contents
(implies (and (bounded-term-graph-p g n)
(not (term-dag-variable-p h g))
(not (term-dag-is-p h g)))
(and (bounded-nat-true-listp (term-dag-args h g) n)
(nat-true-listp (term-dag-args h g)))))
(local
(defthm bounded-nat-pairs-true-listp-l-eliminate-n
(implies (and (natp n)
(bounded-nat-pairs-true-listp l m)
(< n (len l)))
(bounded-nat-pairs-true-listp (eliminate-n n l) m))))
(local
(defthm bounded-nat-pairs-true-listp-append
(implies (and (bounded-nat-pairs-true-listp l1 n)
(bounded-nat-pairs-true-listp l2 n))
(bounded-nat-pairs-true-listp (append l1 l2) n))))
(defun bounded-nat-listp (l m)
(if (endp l)
t
(and (natp (car l)) (< (car l) m)
(bounded-nat-listp (cdr l) m))))
(defthm bounded-term-graph-p-bounded-nat-listp
(implies (bounded-term-graph-p g n)
(bounded-nat-listp (cdr (nth h g)) n)))
(local
(defthm bounded-nat-listp-pair-args
(implies (and (bounded-nat-listp l1 m) (bounded-nat-listp l2 m))
(bounded-nat-pairs-true-listp (car (pair-args l1 l2)) m))))
;;; -----------------------------------
;;;
;;; 1.2) Relations between dags and terms, substitutions and systems
;;;
;;; -----------------------------------
;;; The following function computes the term associated to an index or a
;;; list of indices:
(defun dag-as-term (flg h g)
(declare (xargs :measure (measure-rec-dag flg h g)
:guard (and (if flg
(and (natp h) (< h (len g)))
(bounded-nat-true-listp h (len g)))
(true-listp g)
(term-graph-p g))))
(if (dag-p g)
(if flg
(let ((p (dagi-l h g)))
(if (integerp p)
(dag-as-term flg p g)
(let ((args (cdr p))
(symb (car p)))
(if (equal args t)
symb
(cons symb (dag-as-term nil args g))))))
(if (endp h)
h
(cons (dag-as-term t (car h) g)
(dag-as-term nil (cdr h) g))))
'undef))
;;; There are several remarks that are worth to be pointed out here.
;;; 1)
;;; Note that the function is defined at the same time for
;;; indices and for lists of indices, using the flag @flg@ to indicate
;;; if @h@ is an index or a list of indices. This style of definitions
;;; is very similar to our definitions on the stucture of terms (see,
;;; for example, {\tt terms.lisp}).
;;; 2)
;;; Note that the admission of this function is not trivial. In
;;; fact, we need to explicitly test that the graph @g@ is acyclic. The
;;; measure function {\tt measure\--rec\--dag} and the proved properties
;;; that allow the admission of this functions are in the book {\tt
;;; dags\-.lisp}.
;;; -)
;;; Given an indices system and a term dag, the following function computes the
;;; corresponding system of equations in list/prefix noation:
(defun tbs-as-system (S g)
(if (endp S)
S
(cons (cons (dag-as-term t (caar S) g)
(dag-as-term t (cdar S) g))
(tbs-as-system (cdr S) g))))
;;; Given an indices substitution and a term dag, the following function
;;; computes the corresponding substitution in list/prefix notation:
(defun solved-as-system (sol g)
(if (endp sol)
sol
(cons (cons (caar sol)
(dag-as-term t (cdar sol) g))
(solved-as-system (cdr sol) g))))
;;; Given a well--formed dag unification problem, the following function computes
;;; the corresponding unification problem in list/prefix representation:
(defun upl-as-pair-of-systems (upl)
(if (not upl)
nil
(let ((S (first upl))
(sol (second upl))
(g (third upl)))
(list (tbs-as-system S g)
(solved-as-system sol g)))))
;;; ============================================================================
;;;
;;; 2) Unification transformation rules acting on term dags
;;;
;;; ============================================================================
;;; In this section, we define the unification rules of
;;; Martelli--Montanari acting on well-formed dag unification
;;; problems. As in the case of the standard representation (see {\tt
;;; prefix\--unification\--rules\-.lisp}), we will define it by means of
;;; operators, the applicability test, and the one--step of reduction
;;; function of the transformation.
;;; Previously, we define two important auxiliary functions that recurse
;;; on the term dag structure.
;;; The following function checks if a given index @x@ (corresponding to
;;; a variable node) is in the subgraph pointed by another index
;;; @h@. Note again the measure used in the admission of the function
;;; and the explicit @dag-p@ check:
(defun occur-check-d (flg x h g)
(declare (xargs :measure (measure-rec-dag flg h g)))
(if (dag-p g)
(if flg
(let ((p (dagi-l h g)))
(if (integerp p)
(occur-check-d flg x p g)
(let ((args (cdr p)))
(if (equal args t)
(= x h)
(occur-check-d nil x args g)))))
(if (endp h)
nil
(or (occur-check-d t x (car h) g)
(occur-check-d nil x (cdr h) g))))
'undef))
;;; The following function finds the end of an instantiation chain,
;;; following the "IS" nodes starting in the node @h@. Note
;;; again the measure used in the admission of the function and the
;;; explicit @dag-p@ check:
(defun dag-deref (h g)
(declare (xargs :measure (measure-rec-dag t h g)
:guard (and (natp h)
(< h (len g))
(true-listp g)
(term-graph-p g))))
(if (dag-p g)
(let ((p (dagi-l h g)))
(if (integerp p) (dag-deref p g) h))
'undef))
;;; -----------------------------------
;;;
;;; 2.1) Applicability test on term dags
;;;
;;; -----------------------------------
;;; To define the unification transformation rules of
;;; Martelli--Montanari acting on term dags, we will use the same
;;; operators than in the standard representation (see {\tt
;;; prefix\--unification\--rules\-.lisp}). Here these operators are
;;; applied to well--formed dag unification problems: that is, 3--tuples
;;; containing an indices substitution, and indices system and a
;;; well--formed term dag. Operators are the following:
;;; 1)
;;; {\tt (delete $N$)}: delete equation $N$ of the indices system.
;;; 2)
;;; {\tt (decompose $N$)}: decompose equation $N$.
;;; 3)
;;; {\tt (orient $N$)}: orient equation $N$.
;;; 4)
;;; {\tt (eliminate $N$)}: eliminate equation N.
;;; 5)
;;; {\tt (clash1 $N$)}: clash for different top function symbol
;;; (equation $N$).
;;; 6)
;;; {\tt (clash2 $N$)}: clash for different number of arguments
;;; (equation $N$).
;;; 7)
;;; {\tt (occur-check $N$)}: detect occur-check (equation $N$).
;;; -)
;;; The function @unif-legal-d@ defines the applicability test of the
;;; operators. Recall that the number $N$ in the operator indicates the
;;; (indices) equation of the indices system of equation. Note also the
;;; use of @dag-deref@ in the definition of @unif-legal-d@; thus the
;;; first two arguments of the following auxiliary functions are the
;;; indices of the $N$-th equation of the system, after applying
;;; @dag-deref@ (this ensures that they are not "IS" nodes). We now
;;; describe the auxiliary functions used for each of the rules. \\
;;; {\tt DELETE} can be applied if both indices are the same:
(defun unif-legal-d-delete (t1 t2 g)
(declare (ignore g))
(equal t1 t2))
;;; {\tt DECOMPOSE} can be applied if both indices point to
;;; non--variable nodes with the same function symbol and the list of
;;; indices corresponding to their arguments can be paired:
(defun unif-legal-d-decompose (t1 t2 g)
(and (not (term-dag-variable-p t1 g))
(not (term-dag-variable-p t2 g))
(equal (term-dag-symbol t1 g) (term-dag-symbol t2 g))
(mv-let (pair-args bool)
(pair-args (term-dag-args t1 g) (term-dag-args t2 g))
(declare (ignore pair-args))
bool)))
;;; {\tt CLASH1} can be applied if both indices point to non--variable
;;; nodes with different function symbols:
(defun unif-legal-d-clash1 (t1 t2 g)
(and (not (term-dag-variable-p t1 g))
(not (term-dag-variable-p t2 g))
(not (eql (term-dag-symbol t1 g)
(term-dag-symbol t2 g)))))
;;; {\tt CLASH2} can be applied if both indices point to non--variable
;;; nodes with lists of arguments that cannot be paired:
(defun unif-legal-d-clash2 (t1 t2 g)
(and (not (term-dag-variable-p t1 g))
(not (term-dag-variable-p t2 g))
(mv-let (pair-args bool)
(pair-args (term-dag-args t1 g) (term-dag-args t2 g))
(declare (ignore pair-args))
(not bool))))
;;; {\tt ORIENT} can be applied if the first index points to a non--variable
;;; node and the second points to a variable:
(defun unif-legal-d-orient (t1 t2 g)
(and (not (term-dag-variable-p t1 g))
(term-dag-variable-p t2 g)))
;;; {\tt ELIMINATE} can be applied if the first index is a variable node
;;; not occurring in the subgraph pointed by the second:
(defun unif-legal-d-eliminate (t1 t2 g)
(and (term-dag-variable-p t1 g)
(not (occur-check-d t t1 t2 g))))
;;; {\tt OCCUR-CHECK} can be applied if the first index is a variable node
;;; occurring in the subgraph pointed by the second (that must be
;;; different):
(defun unif-legal-d-occur-check (t1 t2 g)
(and (term-dag-variable-p t1 g)
(not (equal t1 t2))
(occur-check-d t t1 t2 g)))
;;; All these auxiliary functions allow us to define @unif-legal-d@:
(defun unif-legal-d (upl op)
(let ((name (first op))
(equ-n (second op))
(tbs (first upl))
(g (third upl)))
(and (natp equ-n)
(< equ-n (len tbs))
(let* ((equ (nth equ-n tbs))
(t1 (dag-deref (car equ) g))
(t2 (dag-deref (cdr equ) g)))
(case name
(delete (unif-legal-d-delete t1 t2 g))
(decompose (unif-legal-d-decompose t1 t2 g))
(orient (unif-legal-d-orient t1 t2 g))
(eliminate (unif-legal-d-eliminate t1 t2 g))
(clash1 (unif-legal-d-clash1 t1 t2 g))
(clash2 (unif-legal-d-clash2 t1 t2 g))
(occur-check (unif-legal-d-occur-check t1 t2 g))
(t nil))))))
;;; -----------------------------------
;;;
;;; 2.2) One step of reduction on term dags
;;;
;;; -----------------------------------
;;; The function @unif-reduce-one-step-d@ defines the applicability test
;;; of the transformation rules. Note the auxiliary functions used for
;;; each of the rules. The same remarks as in the applicability test
;;; described in the previous subsection apply here, but the auxiliary
;;; functions also take here as arguments the rest of (indices)
;;; equations to be solved and the (indices) substitution partially
;;; computed. \\
;;; The application of {\tt DELETE} simply remove the selected equation:
(defun unif-reduce-one-step-d-delete (t1 t2 R sol g)
(declare (ignore t1 t2))
(list R sol g))
;;; The application of {\tt DECOMPOSE} replaces the selected equation by
;;; the equations obtained pairing the corresponding list of
;;; (indices) arguments:
(defun unif-reduce-one-step-d-decompose (t1 t2 R sol g)
(let ((args1 (term-dag-args t1 g))
(args2 (term-dag-args t2 g)))
(mv-let (pair-args bool)
(pair-args args1 args2)
(declare (ignore bool))
(list (append pair-args R) sol g))))
;;; The application of {\tt CLASH1} obtains failure (represented as
;;; @nil@).
(defun unif-reduce-one-step-d-clash1 (t1 t2 R sol g)
(declare (ignore t1 t2 R sol g))
nil)
;;; The application of {\tt CLASH2} obtains failure (represented as
;;; @nil@).
(defun unif-reduce-one-step-d-clash2 (t1 t2 R sol g)
(declare (ignore t1 t2 R sol g))
nil)
;;; The application of {\tt ORIENT} reorients the selected equation:
(defun unif-reduce-one-step-d-orient (t1 t2 R sol g)
(list (cons (cons t2 t1) R) sol g))
;;; The application of {\tt ELIMINATE} uses the selected equation to
;;; store a new binding in the indices substitution and updates the
;;; position corresponding to the first index with the second
;;; index. That is replace the variable node with an "IS" node. This is
;;; a key operation in the unification proccess:
(defun unif-reduce-one-step-d-eliminate (t1 t2 R sol g)
(list R
(cons (cons (term-dag-symbol t1 g) t2) sol)
(update-dagi-l t1 t2 g)))
;;; The application of {\tt OCCUR-CHECK} obtains failure:
(defun unif-reduce-one-step-d-occur-check (t1 t2 R sol g)
(declare (ignore t1 t2 R sol g))
nil)
;;; All these auxiliary functions allow us to define @unif-reduce-one-step-d@:
(defun unif-reduce-one-step-d (upl op)
(let* ((name (first op))
(equ-n (second op))
(S (first upl))
(sol (second upl))
(g (third upl))
(equ (nth equ-n S))
(R (eliminate-n equ-n S))
(t1 (dag-deref (car equ) g))
(t2 (dag-deref (cdr equ) g)))
(case name
(delete (unif-reduce-one-step-d-delete t1 t2 R sol g))
(decompose (unif-reduce-one-step-d-decompose t1 t2 R sol g))
(orient (unif-reduce-one-step-d-orient t1 t2 R sol g))
(eliminate (unif-reduce-one-step-d-eliminate t1 t2 R sol g))
(clash1 (unif-reduce-one-step-d-clash1 t1 t2 R sol g))
(clash2 (unif-reduce-one-step-d-clash2 t1 t2 R sol g))
(occur-check (unif-reduce-one-step-d-occur-check t1 t2 R sol g))
(t nil))))
;;; ============================================================================
;;;
;;; 3) Relation between the transformations acting on both representations
;;;
;;; ============================================================================
;;; In this section, we are going to prove the following theorems,
;;; formalizing the relation between the transformation rules acting on
;;; term dags and the transformation rules acting on the standard
;;; list/prefix reesentation. These properties will be fundamental in
;;; order to prove, by compositional reasoning, that the rules can be
;;; used to compute most geneal solutions of systems. \\
;;; First goal: the well--formedness condition is preserved by the
;;; transformation rules:
; (defthm unif-reduce-one-step-d-preserves-well-formed-upl
; (implies (and (well-formed-upl upl)
; (unif-legal-d upl op))
; (well-formed-upl (unif-reduce-one-step-d upl op) n)))
;;; Second goal: if an operator is legal with respect to a well--formed
;;; dag unification problem, then the same operator is legal with
;;; respect to the corresponding unification problem represented in
;;; list/prefix notation.
; (defthm unif-legal-d-implies-unif-legal-p
; (implies (and (well-formed-upl upl)
; (unif-legal-d upl op))
; (unif-legal-p (upl-as-pair-of-systems upl) op)))
;;; Third goal: if an operator is legal with respect to a well--formed
;;; dag unification problem, the dag unification problem obtained
;;; applying the operator represents the same unification problem in
;;; list/prefix notation than the unification problem obtained applying
;;; the same operator to the list/prefix representation of the original
;;; unification problem:
; (defthm unif-reduce-one-step-d-equal-unif-reduce-one-step-p
; (implies (and (well-formed-upl upl)
; (unif-legal-d upl op))
; (equal (upl-as-pair-of-systems (unif-reduce-one-step-d upl op))
; (unif-reduce-one-step-p (upl-as-pair-of-systems upl)
; op))))
;;; With these three properties, every sequence of transformation rules
;;; ``at the dag level'' can be transformed in a sequence of
;;; transformation ``at the list/prefix level''.
;;; Let us prove the above three properties.
;;; -----------------------------------
;;;
;;; 3.1) Some preliminary lemmas
;;;
;;; -----------------------------------
;;; Below, three fundamental properties of @dag-deref@:
;;; 1)
;;; It returns an index.
;;; 2)
;;; The node pointed by this index is not an "IS" node.
;;; 3)
;;; The term corresponding to that index is the same than the term
;;; corresponding to that node (note the @syntaxp@ condition of this
;;; rule, used to prevent loops).
;;; -)
(defthm natp-dag-deref-bounded-term-graph-p
(implies (and (natp h)
(bounded-term-graph-p g n)
(dag-p g))
(natp (dag-deref h g))))
(defthm bounded-dag-deref-bounded-term-graph-p
(implies (and (natp h)
(< h n)
(bounded-term-graph-p g n)
(dag-p g))
(< (dag-deref h g) n)))
;; :rule-classes :linear))
(defthm dag-deref-not-term-dag-is-p
(implies (dag-p g)
(not (term-dag-is-p (dag-deref h g) g))))
(defthm dag-as-term-dag-deref
(implies (syntaxp (not (and (consp h) (eq (car h) 'dag-deref))))
(equal (dag-as-term t h g)
(dag-as-term t (dag-deref h g) g))))
(in-theory (disable dag-as-term-dag-deref))
;;; The following group of lemmas show the main property of a term dag
;;; related with "shared variables". The lemma {\tt
;;; term-graph-variables-uniquely-determined} below prove that there are
;;; not two different variable nodes with the same variable symbol. As a
;;; corollary the lemma {\tt not\--equal\--pointers\--not\--equal\--terms} prove
;;; that the terms pointed by two different non-"IS" nodes, one of them
;;; a variable, are not equal (this property will be useful when
;;; reasoning about the {\tt ELIMINATE} rule).
(local
(encapsulate
()
(local
(defthm injective-lemma-1-lemma
(implies (and (not (member a (list-of-term-dag-variables l)))
(member x l)
(equal (cdr x) t))
(not (equal a (car x))))
:rule-classes nil))
(local
(defthm injective-lemma-1
(implies (and (consp g)
(no-duplicatesp (list-of-term-dag-variables g))
(equal (cdr (car g)) t)
(member x (cdr g))
(equal (cdr x) t))
(not (equal (caar g) (car x))))
:hints (("Goal" :use (:instance injective-lemma-1-lemma
(l (cdr g))
(a (caar g)))))))
(local
(defthm injective-lemma-2
(implies (and (consp g)
(natp i)
(not (equal i 0))
(term-dag-variable-p i g))
(member (dagi-l i g) (cdr g)))))
(local
(defun induction-hint (x1 x2 l)
(cond ((endp l) 1)
((zp x1) 2)
((zp x2) 3)
(t (induction-hint (1- x1) (1- x2) (cdr l))))))
(defthm term-graph-variables-uniquely-determined
(implies (and (no-duplicatesp (list-of-term-dag-variables g))
(natp x1) (natp x2)
(term-dag-variable-p x1 g)
(term-dag-variable-p x2 g)
(not (equal x1 x2)))
(not (equal (term-dag-symbol x1 g)
(term-dag-symbol x2 g))))
:hints (("Goal" :induct (induction-hint x1 x2 g))))
(defthm not-equal-pointers-not-equal-terms
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))
(natp h1) (natp h2)
(term-dag-variable-p h1 g)
(not (term-dag-is-p h2 g))
(not (equal h1 h2)))
(not (equal (term-dag-symbol h1 g)
(dag-as-term t h2 g))))
:hints (("Goal" :expand (dag-as-term t h2 g))))))
;;;(local (in-theory (disable bounded-well-formed-term-dag-p)))
;;; The following three events help us to reason about occur
;;; checks. Note that the "occur check" test used in the list/prefix
;;; representation simply checks if a variable is in the set of
;;; variables of a term. At the dag level, we traverse the graph
;;; seraching the variable node. To relate both approaches, we first
;;; define a function @occur-check-p@ acting on the list/prefix
;;; representation that traverses the list representing a term in a
;;; similar way that @occur-chek-l@ traverses the dag representing a
;;; term. The theorem {\tt occur-check-p-occur-check-d} relates both
;;; functions. Finally, the theorem {\tt occur\--check-p\--member\--variables}
;;; relates @occur-check-p@ with the condition used by {\tt OCCUR-CHECK}
;;; rule for the list/prefix representation.
(defun occur-check-p (flg x term)
(if flg
(if (variable-p term)
(equal x term)
(occur-check-p nil x (cdr term)))
(if (endp term)
nil
(or (occur-check-p t x (car term))
(occur-check-p nil x (cdr term))))))
(defthm occur-check-p-occur-check-d
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))
(natp x)
(if flg (natp h) (nat-true-listp h))
(term-dag-variable-p x g))
(iff (occur-check-d flg x h g)
(occur-check-p flg
(term-dag-symbol x g)
(dag-as-term flg h g)))))
(defthm occur-check-p-member-variables
(implies (variable-p x)
(iff (occur-check-p flg x term)
(member x (variables flg term)))))
;;; -----------------------------------
;;;
;;; 3.2) Well--formed term dags preserved by the transformations
;;;
;;; -----------------------------------
;;; We prove in this subsection that the property of being a
;;; well--formed unification problem is preserved by the transformation
;;; rules. Not very surprisingly, the only rule that needs auxiliary
;;; lemmas to prove this, is the {\tt ELIMINATE} rule. It turns out to
;;; be difficult to show that the @dag-p@ property is preserved by the
;;; {\tt ELIMINATE} rule. \\
;;; First, we show that @term-graph-p@ is preserved by the {\tt
;;; ELIMINATE} rule:
(defthm bounded-term-graph-p-preserved-by-eliminate
(implies (and (bounded-term-graph-p g n)
(natp x)
(natp h0)
(< h0 n))
(bounded-term-graph-p (update-dagi-l x h0 g) n)))
;;; Second, the following events prove that the {\tt ELIMINATE} rule
;;; preserves shared variables:
(encapsulate
()
(local
(defun submultisetp (l m)
(if (endp l)
t
(and (member (car l) m)
(submultisetp (cdr l) (delete-one (car l) m))))))
(local
(defthm delete-one-no-duplicatesp
(implies (no-duplicatesp m)
(no-duplicatesp (delete-one l1 m)))))
(local
(defthm member-no-duplicatesp-1
(implies (and (member l1 m)
(no-duplicatesp m))
(not (member l1 (delete-one l1 m))))))
(local
(defthm not-submultisetp-witness
(implies (and (member l1 l2)
(not (member l1 d)))
(not (submultisetp l2 d)))))
(local
(defthm submultisetp-no-duplicatesp
(implies (and (submultisetp l m)
(no-duplicatesp m))
(no-duplicatesp l))
:rule-classes nil))
(local
(defthm submultisetp-list-of-term-dag-variables-update-nth-1
(implies (and (natp x) (natp h0) (< x (len g)))
(submultisetp (list-of-term-dag-variables
(update-nth x h0 g))
(list-of-term-dag-variables g)))))
(local
(defthm list-of-term-dag-variables-update-nth-nil
(implies (integerp h)
(not (consp (list-of-term-dag-variables (update-nth x h nil)))))))
(local
(defthm submultisetp-list-of-term-dag-variables-update-nth-2
(implies (and (natp x) (natp h0) (>= x (len g)))
(submultisetp (list-of-term-dag-variables
(update-nth x h0 g))
(list-of-term-dag-variables g)))))
(local
(defthm submultisetp-list-of-term-dag-variables-update-nth
(implies (and (natp x) (natp h0))
(submultisetp (list-of-term-dag-variables
(update-nth x h0 g))
(list-of-term-dag-variables g)))
:hints (("Goal" :cases ((< x (len g)))))))
(defthm no-duplicatesp-variables-preserved-by-eliminate
(implies (and (natp x)
(natp h0)
(no-duplicatesp (list-of-term-dag-variables g)))
(no-duplicatesp (list-of-term-dag-variables (update-nth x h0
g))))
:hints (("Goal" :use (:instance
submultisetp-no-duplicatesp
(l (list-of-term-dag-variables (update-nth x h0
g)))
(m (list-of-term-dag-variables g)))))))
;;; And finally, we show that the @dag-p@ property is preserved by the
;;; {\tt ELIMINATE} rule.
;;; To prove it, we need the following property (proved in {\tt
;;; dags.lisp}). This theorem establishes that if we update a dag in the
;;; form that {\tt ELIMINATE} does it, an we obtain a cyclic graph,
;;; then there exists a path from the index used to update to the
;;; updated index, in the original graph.
; (defthm obtain-path-from-h-to-x-from-an-updated-dag-main-property
; (let ((p* (obtain-path-from-h-to-x-from-an-updated-dag x h g)))
; (implies (and (natp x) (natp h) (dag-p g)
; (not (dag-p (update-nth x h g))))
; (and (path-p p* g)
; (equal (first p*) h) (equal (car (last p*)) x)))))
;;; Therefore, it is not possible to obtain a cyclic graph if we apply
;;; {\tt ELIMINATE} only when the operator is legal, because the ``occur
;;; check'' ensures that there is no such path. That is what the
;;; following sequence of events establishes:
;;; Estaba como local
(encapsulate
()
(local
(defun induct-occur-check-d-path (flg h g path)
(declare (xargs :measure (measure-rec-dag flg h g)))
(if (dag-p g)
(if flg
(let ((p (dagi-l h g)))
(if (integerp p)
(induct-occur-check-d-path flg p g (cdr path))
(let ((args (cdr p)))
(if (equal args t)
t
(induct-occur-check-d-path nil args g (cdr path))))))
(if (endp h)
t
(cons (induct-occur-check-d-path t (car h) g path)
(induct-occur-check-d-path nil (cdr h) g path))))
path))) ;;; to make this formal relevant
(local
(defthm map-nfix-true-listp
(implies (nat-true-listp l)
(equal (map-nfix l) l))))
(local
(defthm occur-check-d-path-from-to-main-lemma
(implies (and (dag-p g) (bounded-term-graph-p g n)
(if flg (natp h) (nat-true-listp h))
(natp x) (term-dag-variable-p x g)
(path-p p g)
(equal (car (last p)) x)
(if flg
(equal (first p) h)
(member (first p) h)))
(occur-check-d flg x h g))
:hints (("Goal" :induct (induct-occur-check-d-path flg h g p)))))
(local
(defthm occur-check-d-path-from-to
(implies (and (dag-p g)
(bounded-term-graph-p g n)
(natp x) (natp h)
(term-dag-variable-p x g)
(path-p p g)
(equal (car (last p)) x)
(equal (first p) h)
(member (first p) h))
(occur-check-d t x h g))
:rule-classes nil))
(defthm well-formed-term-dag-p-preserved-by-eliminate
(implies (and (dag-p g)
(bounded-term-graph-p g n)
(not (occur-check-d t x h g))
(natp x) (natp h)
(term-dag-variable-p x g))
(dag-p (update-dagi-l x h g)))
:hints (("Goal" :use
(obtain-path-from-h-to-x-from-an-updated-dag-main-property
(:instance occur-check-d-path-from-to
(p (obtain-path-from-h-to-x-from-an-updated-dag x h g))))))))
;;; Finally, we have the intended theorem:
(defthm unif-reduce-one-step-d-preserves-bounded-well-formed-upl
(implies (and (bounded-well-formed-upl upl n)
(unif-legal-d upl op))
(bounded-well-formed-upl (unif-reduce-one-step-d upl op) n))
:hints (("Goal" :in-theory (disable natp))))
;;; Later, we will need that the @n@ of the above theorem be (len (third
;;; upl)). That is, we need a similar theorem for well-formed-upl. Le us
;;; prove it.
(defthm len-update-nth-bis
(implies (and (natp n) (< n (len l)))
(equal (len (update-nth n x l)) (len l))))
(defthm unif-reduce-one-step-d-preserves-length
(implies (and (well-formed-upl upl)
(unif-legal-d upl op)
(unif-reduce-one-step-d upl op))
(equal (len (third (unif-reduce-one-step-d upl op)))
(len (third upl)))))
(defthm unif-reduce-one-step-d-preserves-well-formed-upl
(implies (and (well-formed-upl upl)
(unif-legal-d upl op))
(well-formed-upl (unif-reduce-one-step-d upl op)))
:hints (("Goal"
:in-theory (disable bounded-well-formed-upl
unif-legal-d
unif-reduce-one-step-d)
:cases ((unif-reduce-one-step-d upl op)))))
;;; -----------------------------------
;;;
;;; 3.3) Applicability with both representations
;;;
;;; -----------------------------------
;;; In this subsection, we show that if an operator is applicable to a
;;; well-formed dag unification problem then is applicable to the
;;; corresponding unification problem in the standard representation. \\
;;; First, some previous lemmas about the function @tbs-as-system@
(local
(defthm len-tbs-as-system
(equal (len (tbs-as-system l g)) (len l))))
(local
(defthm nth-tbs-as-system
(implies (and (natp n) (< n (len l)))
(equal (nth n (tbs-as-system l g))
(cons (dag-as-term t (car (nth n l)) g)
(dag-as-term t (cdr (nth n l)) g))))))
(local
(defthm eliminate-n-tbs-as-system
(implies (and (natp n) (< n (len l)))
(equal (eliminate-n n (tbs-as-system l g))
(tbs-as-system (eliminate-n n l) g)))))
(local
(defthm tbs-as-system-append
(equal (tbs-as-system (append S1 S2) g)
(append (tbs-as-system S1 g) (tbs-as-system S2 g)))))
;;; The following events show that the function @pair-args@ behaves in
;;; the same way with both representations:
(local
(encapsulate
()
(local
(defthm consp-dag-as-term
(implies (and (dag-p g)
(consp l))
(consp (dag-as-term nil l g)))
:hints (("Goal" :expand (dag-as-term nil l g)))))
(local
(defthm pair-args-dag-as-term-lemma
(implies (and (dag-p g)
(not (consp l))
(not (equal l m)))
(not (equal l (dag-as-term nil m g))))
:hints (("Goal" :cases ((consp m))))))
(defthm pair-args-dag-as-term
(implies (dag-p g)
(iff (second (pair-args (dag-as-term nil l g)
(dag-as-term nil m g)))
(second (pair-args l m)))))))
;;; Two special cases for our result:
(local
(defthm unif-legal-d-implies-upl-not-nil
(implies (not upl)
(not (unif-legal-d upl op)))
:rule-classes nil))
(local
(defthm unif-legal-upl-consp-op
(implies (unif-legal-d upl op)
(and (consp op) (consp (cdr op))))
:rule-classes nil))
;;; Finally, the intended result in this subsection:
(encapsulate
()
(local
(defthm unif-legal-d-implies-unif-legal-p-almost
(implies (and (bounded-well-formed-term-dag-p (third upl) n)
(consp op) (consp (cdr op))
upl
(bounded-nat-pairs-true-listp (first upl) n)
(unif-legal-d upl op))
(unif-legal-p (upl-as-pair-of-systems upl) op))
:hints (("Goal" :in-theory (enable dag-as-term-dag-deref)))
:rule-classes nil))
(defthm unif-legal-d-implies-unif-legal-p
(implies (and (well-formed-upl upl)
(unif-legal-d upl op))
(unif-legal-p (upl-as-pair-of-systems upl) op))
:hints (("Goal"
:in-theory (disable unif-legal-d unif-legal-p)
:use (
(:instance unif-legal-d-implies-unif-legal-p-almost
(n (len (caddr upl))))
unif-legal-d-implies-upl-not-nil
unif-legal-upl-consp-op)))))
;;; -----------------------------------
;;;
;;; 3.4) One step of reduction with both representations
;;;
;;; -----------------------------------
;;; We prove now our third goal in this section: the relation between
;;; the application of a legal operator in both representations. \\
;;; First, a technical lemma:
(local
(encapsulate
()
(local
(defthm ugly-lemma-1
(implies flg (and (equal (dag-as-term flg h g)
(dag-as-term t h g))
(equal (variables flg term)
(variables t term))))
:rule-classes nil))
(defthm substitution-does-not-change-term-particular-case
(implies (and (not (member x (variables t (dag-as-term t h0 g))))
flg)
(equal (apply-subst
flg
(list (cons x t1))
(dag-as-term flg h0 g))
(dag-as-term t h0 g)))
:hints (("Goal" :use
((:instance substitution-does-not-change-term
(sigma (list (cons x t1)))
(term (dag-as-term flg h0 g)))
(:instance ugly-lemma-1 (h h0) (term (DAG-AS-TERM FLG H0 G)))))))))
;;; This lemma describes how the updates done by the {\tt ELIMINATE}
;;; rule affect to the term stored in a term graph. Note that simply
;;; updating a node with an index, one obtains an instantiation of the
;;; terms stored by the term dag. This a key property for the efficiency
;;; of the algorithms based on term dags:
(defthm eliminate-on-term-dags
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))
(not (occur-check-d t x h0 g))
(natp x) (natp h0)
(if flg (natp h) (nat-true-listp h))
(term-dag-variable-p x g))
(equal
(dag-as-term flg h (update-dagi-l x h0 g))
(apply-subst
flg
(list (cons (term-dag-symbol x g)
(dag-as-term t h0 g)))
(dag-as-term flg h g)))))
;;; Easy consequences of this property are the following results,
;;; extending the above property to the functions @apply-syst@ and
;;; @apply-range@ and describing how the eliminate rule affect to these
;;; functions:
(local
(defthm tbs-as-system-apply-syst-eliminate
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))
(not (occur-check-d t x h0 g))
(natp x) (natp h0)
(bounded-nat-pairs-true-listp l n)
(term-dag-variable-p x g))
(equal (tbs-as-system l (update-nth x h0 g))
(apply-syst
(list (cons (term-dag-symbol x g)
(dag-as-term t h0 g)))
(tbs-as-system l g))))))
(local
(defthm solved-as-system-apply-range-eliminate
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(no-duplicatesp (list-of-term-dag-variables g))
(not (occur-check-d t x h0 g))
(natp x) (natp h0)
(bounded-nat-substitution-p l n)
(term-dag-variable-p x g))
(equal (solved-as-system l (update-nth x h0 g))
(apply-range
(list (cons (term-dag-symbol x g)
(dag-as-term t h0 g)))
(solved-as-system l g))))))
;;; This lemma relates the value of @pair-args@ in both representations
;;; (it is needed for the {\tt DECOMPOSE} rule):
(local
(defthm tbs-as-system-pair-args
(implies (and (dag-p g) (second (pair-args l1 l2)))
(equal (tbs-as-system (car (pair-args l1 l2)) g)
(car (pair-args (dag-as-term nil l1 g)
(dag-as-term nil l2 g)))))))
;;; Finally, this is the intended result in this subsection:
(encapsulate
()
(local
(defthm unif-reduce-one-step-d-equal-unif-reduce-one-step-p-almost
(implies (and (bounded-term-graph-p (third upl) n)
(dag-p (third upl))
(no-duplicatesp (list-of-term-dag-variables (third upl)))
upl
(consp op) (consp (cdr op))
(bounded-nat-pairs-true-listp (first upl) n)
(bounded-nat-substitution-p (second upl) n)
(unif-legal-d upl op))
(equal (upl-as-pair-of-systems (unif-reduce-one-step-d upl op))
(unif-reduce-one-step-p (upl-as-pair-of-systems upl)
op)))
:hints (("Goal" :in-theory (enable dag-as-term-dag-deref)))
:rule-classes nil))
(defthm unif-reduce-one-step-d-equal-unif-reduce-one-step-p
(implies (and (well-formed-upl upl)
(unif-legal-d upl op))
(equal (upl-as-pair-of-systems (unif-reduce-one-step-d upl op))
(unif-reduce-one-step-p (upl-as-pair-of-systems upl)
op)))
:hints (("Goal"
:in-theory (disable unif-legal-d unif-reduce-one-step-d
unif-reduce-one-step-p)
:use ((:instance
unif-reduce-one-step-d-equal-unif-reduce-one-step-p-almost
(n (len (third upl))))
unif-legal-d-implies-upl-not-nil
unif-legal-upl-consp-op)))))
(in-theory (disable occur-check-p-occur-check-d))
(in-theory (disable well-formed-upl-def))
(in-theory (disable
upl-as-pair-of-systems
unif-legal-d unif-legal-p
unif-reduce-one-step-d unif-reduce-one-step-p))
;;; ============================================================================
;;;
;;; 4) Sequences of transformation rules
;;;
;;; ============================================================================
;;; We now define sequences of transfromations acting on well--formed
;;; dag unification problems. As with the list/prefix notation (see
;;; functions @unif-seq-p-p@ and @unif-seq-p-last@ in {\tt
;;; list\--unification\--rules\-.lisp}), a sequence of transformations can be
;;; represented as the sequence of operators applied. The following
;;; function check that every of these operators is legal:
(defun unif-seq-d-p (upl unif-seq)
(declare (xargs :measure (acl2-count unif-seq)))
(if (endp unif-seq)
t
(let ((op (car unif-seq)))
(and (unif-legal-d upl op)
(unif-seq-d-p
(unif-reduce-one-step-d upl op)
(cdr unif-seq))))))
;;; The following function obtains the last well--formed dag unification
;;; problem obtained by a sequence of transformations (given by a
;;; sequence of operators):
(defun unif-seq-d-last (upl unif-seq)
(if (endp unif-seq)
upl
(unif-seq-d-last (unif-reduce-one-step-d upl (car unif-seq))
(cdr unif-seq))))
;;; Now, the properties shown in subsection 3.3 and 3.4 can be extended
;;; to sequences of transformations, establishing the relationship
;;; between @unif-seq-d-p@, @unif-seq-d-last@ and @unif-seq-p-p@,
;;; @unif-seq-p-last@ (taht is, showing how sequences of transformations
;;; acting on both representations are related):
(defthm unif-seq-d-p-unif-seq-p-p
(implies (and (well-formed-upl upl)
(unif-seq-d-p upl unif-seq))
(unif-seq-p-p (upl-as-pair-of-systems upl) unif-seq))
:rule-classes nil)
(defthm unif-seq-p-last-unif-seq-d-last
(implies (and (well-formed-upl upl)
(unif-seq-d-p upl unif-seq))
(and
(well-formed-upl (unif-seq-d-last upl unif-seq))
(equal
(upl-as-pair-of-systems (unif-seq-d-last upl unif-seq))
(unif-seq-p-last (upl-as-pair-of-systems upl) unif-seq))))
:rule-classes nil)
;;; Given an indices system and a well--formed term dag, we can define
;;; also a particular case of sequences of transformation. Those
;;; sequences of tranformation startin with a unification problem with
;;; that system and the empty substitution and ending in @nil@ (failure)
;;; or with an empty indices system and an indices substitution (recall
;;; the functions @mgs-seq-p@ and @mgs-seq@ in the book {\tt
;;; prefix-unification-rules.lisp}). We call these type of sequences of
;;; transformations {\em complete legal sequences} with respect to a
;;; given indices system and a term graph.
(defun mgs-seq-d-p (S g seq)
(and (unif-seq-d-p (list S nil g) seq)
(normal-form-syst (unif-seq-d-last (list S nil g) seq))))
(defun mgs-seq-d (S g seq)
(unif-seq-d-last (list S nil g) seq))
;;; This function checks that a given initial indices system and graph
;;; form a well--formed dag unification problem:
(defmacro well-formed-dag-system (S g)
`(well-formed-upl (list ,S nil ,g)))
(local
(in-theory
(enable mgs-seq-p mgs-seq bounded-well-formed-upl upl-as-pair-of-systems)))
;;; As a particular case of the above properties, the following three
;;; theorems show the relation between @mgs-seq-d-p@, @mgs-seq-d@ and
;;; @mgs-seq-p@, @mgs-seq@. That is:
;;; 1)
;;; A complete legal sequence w.r.t. the dag representation is also
;;; legal w.r.t. the list/prefix representation.
;;; 2)
;;; A complete legal sequence succeeds w.r.t. the dag representation
;;; if and only if it succeeds w.r.t. the list/prefix representation.
;;; 3)
;;; The indices substitution finally obtained by a complet succesful
;;; legal sequence
;;; w.r.t. the dag representation represents the substitution finally
;;; obtained by the same sequence w.r.t. the list/prefix
;;; representation.
;;; -)
(defthm mgs-seq-d-p-mgs-seq-p
(implies (and (well-formed-dag-system S g)
(mgs-seq-d-p S g unif-seq))
(mgs-seq-p (tbs-as-system S g) unif-seq))
:hints (("Goal" :use ((:instance unif-seq-d-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-d-last
(upl (list S nil g)))))))
(defthm mgs-seq-d-mgs-seq-failure-success
(implies (and (well-formed-dag-system S g)
(mgs-seq-d-p S g unif-seq))
(iff (mgs-seq (tbs-as-system S g) unif-seq)
(mgs-seq-d S g unif-seq)))
:hints (("Goal" :use ((:instance unif-seq-d-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-d-last
(upl (list S nil g)))))))
(defthm mgs-seq-d-mgs-seq-computed-substitution
(let ((last-upl (mgs-seq-d S g unif-seq)))
(implies (and (well-formed-dag-system S g)
(mgs-seq-d-p S g unif-seq))
(equal
(solved-as-system (second last-upl)
(third last-upl))
(second (mgs-seq (tbs-as-system S g) unif-seq)))))
:hints (("Goal" :use ((:instance unif-seq-d-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-d-last
(upl (list S nil g)))))))
;;; This theorem is also interesting. The graph obtained by a complete
;;; legal sequence of transformations is acyclic:
(defthm mgs-seq-d-dag-p
(implies (and (well-formed-dag-system S g)
(mgs-seq-d-p S g unif-seq))
(dag-p (third (mgs-seq-d S g unif-seq))))
:hints (("Goal"
:in-theory (enable well-formed-upl-def)
:use ((:instance unif-seq-d-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-d-last
(upl (list S nil g)))))))
(local (in-theory (disable mgs-seq-p mgs-seq)))
(in-theory (disable mgs-seq-d-p mgs-seq-d))
;;; ============================================================================
;;;
;;; 5) Using the rules to obtain most general solutions
;;;
;;; ============================================================================
;;; In the book {\tt li-unification-rules.lisp} we proved the main
;;; properties of sequences of transformation rules (functions
;;; @mgs-seq-p@ and @mgs-seq@) obtaining most general solutions of
;;; systems of equations (or failure). The above properties allows us
;;; (using compositional reasoning) to prove analogue properties of
;;; complete sequences of transformations on term dags. These properties
;;; are the final product of this book.
;;; If the system represented by an indices system has a solution, then
;;; every complete legal sequence of operators starting in that system
;;; succeeds:
(defthm mgs-seq-d-completeness
(let ((S (tbs-as-system S-dag g)))
(implies (and (well-formed-dag-system S-dag g)
(solution sigma S)
(mgs-seq-d-p S-dag g unif-seq))
(mgs-seq-d S-dag g unif-seq)))
:hints (("Goal" :use (:instance mgs-seq-completeness
(S (tbs-as-system S-dag g))))))
;;; If a complete legal sequence of transformations on term dags
;;; succeeds, then the indices substitution finally obtained represents
;;; a solution of the system represented by the initial indices system:
(defthm mgs-seq-d-soundness
(let* ((S (tbs-as-system S-dag g))
(last-upl (mgs-seq-d S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(mgs-seq-d-p S-dag g unif-seq)
last-upl)
(solution sol S)))
:hints (("Goal" :use (:instance mgs-seq-soundness
(S (tbs-as-system S-dag g))))))
;;; If a complete legal sequence of transformations on term dags
;;; succeeds, then the indices substitution finally obtained represents
;;; an idempotent substitution:
(defthm mgs-seq-d-idempotent
(let* ((last-upl (mgs-seq-d S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(mgs-seq-d-p S-dag g unif-seq))
(idempotent sol)))
:hints (("Goal" :in-theory (disable idempotent))))
;;; If the system represented by an indices system has a solution, then
;;; it is subsumed by the substitution represented by the indices
;;; substitution obtaned by a complet legal sequence of transformations:
(defthm mgs-seq-d-most-general-solution
(let* ((S (tbs-as-system S-dag g))
(last-upl (mgs-seq-d S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(solution sigma S)
(mgs-seq-d-p S-dag g unif-seq))
(subs-subst sol sigma))))
;;; ===============================================================
|