1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
;;; ============================================================================
;;; q-dag-unification-rules.lisp
;;; TÃtulo: Unification rules on term dags for the quadratic algorithm
;;; 12-03-03
;;; ============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "q-dag-unification-rules")
|#
(in-package "ACL2")
(include-book "dag-unification-rules")
;;; ============================================================================
;;;
;;; 0) Introducción
;;;
;;; ============================================================================
;;; In this book, we define and verify a set of rules of transformation
;;; designed to reflect the behaviour of a quadratic unification
;;; algorithmm to obtain most general solutions of systems of equations,
;;; when these systems of equations are represented as directed acyclicic
;;; graphs (dags). The transformation relation is an extension of the
;;; transformation relation defined in the book {\tt
;;; dag-unification-rules.lisp}: we include a new operator, called
;;; IDENTIFICATION, that identifies two nodes whenever the subtrees
;;; associated to them are equal. We proved in the book {\tt
;;; dag-unification-rules.lisp} that every transformation
;;; done at the dag level corresponds with a transformation done at the
;;; "prefix" level (and that the well-formedness conditions are
;;; preserved). We now prove that the new operator also preserves the
;;; well-formedness conditions and that application of that operator
;;; does not change the "prefix terms" represented. All these
;;; properties imply that some sequences of operators build most general
;;; unifiers (or detect failure of unification).
;;; ============================================================================
;;;
;;; 1) Extending the transformation rules
;;;
;;; ============================================================================
;;; A new operator of the form (IDENTIFY i j):
;;; * Applicability test: whenever i and j are distinct indices in the
;;; dag and the terms whose root nodes are, respectively, i and j, are
;;; equal.
;;; * Step of reduction: modify the dag, making i point to j.
;;; -----------------------------------
;;;
;;; 1.1) Applicability test on term dags
;;;
;;; -----------------------------------
(defun unif-legal-q-identify (i j g)
(and
(natp i) (< i (len g))
(natp j) (< j (len g))
(not (equal i j))
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(equal (dag-as-term t i g)
(dag-as-term t j g))))
(defun unif-legal-q (upl op)
(if (equal (first op) 'identify)
(unif-legal-q-identify (second op) (third op) (third upl))
(unif-legal-d upl op)))
;;; -----------------------------------
;;;
;;; 1.2) One step of reduction on term dags
;;;
;;; -----------------------------------
(defun unif-reduce-one-step-q-identify (i j S sol g)
(list S sol (update-dagi-l i j g)))
(defun unif-reduce-one-step-q (upl op)
(if (equal (first op) 'identify)
(unif-reduce-one-step-q-identify (second op) (third op) (first upl)
(second upl) (third upl))
(unif-reduce-one-step-d upl op)))
;;; ============================================================================
;;;
;;; 2) Relation between the transformations acting on both representations
;;;
;;; ============================================================================
;;; -----------------------------------
;;;
;;; 2,1) Well--formed term dags preserved by the transformations
;;;
;;; -----------------------------------
;;; REPEATED (tye same as induct-occur-check-l-path de dag-unification-rules-bis)
(encapsulate
()
(local
(defun induct-path-subterm (flg h g path)
(declare (xargs :measure (measure-rec-dag flg h g)))
(if (dag-p g)
(if flg
(let ((p (dagi-l h g)))
(if (integerp p)
(induct-path-subterm flg p g (cdr path))
(let ((args (cdr p)))
(if (equal args t)
t
(induct-path-subterm nil args g (cdr path))))))
(if (endp h)
t
(cons (induct-path-subterm t (car h) g path)
(induct-path-subterm nil (cdr h) g path))))
path))) ;;; to make this formal relevant
(local
(defthm map-nfix-nat-true-listp
(implies (nat-true-listp l)
(equal (map-nfix l) l))))
;;; Repeated
(local
(defthm ugly-lemma-1
(implies flg
(equal (dag-as-term flg h g)
(dag-as-term t h g)))
:rule-classes nil))
(local
(defthm path-subterm
(implies (and (dag-p g)
(bounded-term-graph-p g n)
(if flg (natp h) (nat-true-listp h))
(consp p)
(path-p p g)
(equal (car (last p)) x)
(if flg
(equal (first p) h)
(member (first p) h)))
(subterm flg
(dag-as-term t x g)
(dag-as-term flg h g)))
:hints (("Goal" :induct
(induct-path-subterm flg h g p))
("Subgoal *1/1" :use (:instance ugly-lemma-1
(h (nth h g)))))))
;;; Repeated
(local
(defthm size-subterm
(implies (subterm flg t1 t2)
(>= (size flg t2) (size t t1)))
:rule-classes nil))
(defthm identify-preserves-dag-p-main-lemma
(implies (and
(dag-p g)
(bounded-term-graph-p g n)
(natp i) (natp j)
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(not (equal i j))
(path-p p g)
(equal (first p) j)
(equal (car (last p)) i))
(not (equal (size t (dag-as-term t j g))
(size t (dag-as-term t i g)))))
:hints (("Subgoal 1'" :expand (dag-as-term t p1 g))
("Subgoal 1''" :use
(:instance size-subterm
(flg nil)
(t1 (dag-as-term t (car (last p2)) g))
(t2 (dag-as-term nil (cdr (nth p1 g)) g))))
("Subgoal 1'''"
:use (:instance path-subterm
(flg nil)
(h (cdr (nth p1 g)))
(x (car (last p2)))
(p p2)))))
;;; It would be better to disable obtain-path-from-h-to-x-from-an-updated-dag
;;; in dags.lisp
(defthm identify-preserves-dag-p
(implies (and (dag-p g)
(bounded-term-graph-p g n)
(natp i) (natp j)
(not (equal i j))
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(not (dag-p (update-nth i j g))))
(not (equal (dag-as-term t i g)
(dag-as-term t j g))))
:hints (("Goal" :use
(:instance identify-preserves-dag-p-main-lemma
(p (obtain-path-from-h-to-x-from-an-updated-dag i
j g)))
:in-theory (disable
obtain-path-from-h-to-x-from-an-updated-dag)))))
(local
(defthm unif-reduce-one-step-q-preserves-bounded-well-formed-upl
(implies (and (bounded-well-formed-upl upl n)
(<= (len (third upl)) n)
(unif-legal-q upl op))
(bounded-well-formed-upl (unif-reduce-one-step-q upl op)
n))))
;;; Later, we will need that the @n@ of the above theorem be (len (third
;;; upl)). That is, we need a similar theorem for well-formed-upl. Le us
;;; prove it.
(encapsulate
()
(local
(defthm unif-reduce-one-step-q-preserves-length
(implies (and (well-formed-upl upl)
(unif-legal-q upl op)
(unif-reduce-one-step-q upl op))
(equal (len (third (unif-reduce-one-step-q upl op)))
(len (third upl))))))
(local (in-theory (enable well-formed-upl-def)))
(defthm unif-reduce-one-step-q-preserves-well-formed-upl
(implies (and (well-formed-upl upl)
(unif-legal-q upl op))
(well-formed-upl (unif-reduce-one-step-q upl op)))
:hints (("Goal"
:in-theory (disable bounded-well-formed-upl
unif-legal-q
unif-reduce-one-step-q)
:cases ((unif-reduce-one-step-q upl op))))))
;;; -----------------------------------
;;;
;;; 2,2) Applicability
;;;
;;; -----------------------------------
(defthm unif-legal-q-implies-unif-legal-p-for-non-identifications
(implies (and (well-formed-upl upl)
(unif-legal-q upl op)
(not (equal (first op) 'identify)))
(unif-legal-p (upl-as-pair-of-systems upl) op)))
;;; -----------------------------------
;;;
;;; 2,3) One step of reduction
;;;
;;; -----------------------------------
;;; When the operator is not an identification:
(defthm unif-reduce-one-step-q-unif-reduce-one-step-s-for-non-identifications
(implies (and (well-formed-upl upl)
(unif-legal-q upl op)
(not (equal (first op) 'identify)))
(equal (upl-as-pair-of-systems (unif-reduce-one-step-q upl op))
(unif-reduce-one-step-p (upl-as-pair-of-systems upl)
op))))
;;; When the operator is an identification:
(defthm identify-on-term-dags
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(natp i) (natp j)
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(not (equal i j))
(equal (dag-as-term t i g)
(dag-as-term t j g))
(if flg (natp h) (nat-true-listp h)))
(equal
(dag-as-term flg h (update-nth i j g))
(dag-as-term flg h g))))
(encapsulate
()
(local
(defthm identify-on-term-dags-tbs-as-system
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(natp i) (natp j)
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(not (equal i j))
(equal (dag-as-term t i g)
(dag-as-term t j g))
(bounded-nat-pairs-true-listp S n))
(equal
(tbs-as-system S (update-nth i j g))
(tbs-as-system S g)))))
(local
(defthm identify-on-term-dags-solved-as-system
(implies (and (bounded-term-graph-p g n)
(dag-p g)
(natp i) (natp j)
(term-dag-non-variable-p i g)
(term-dag-non-variable-p j g)
(not (equal i j))
(equal (dag-as-term t i g)
(dag-as-term t j g))
(bounded-nat-substitution-p sol n))
(equal
(solved-as-system sol (update-nth i j g))
(solved-as-system sol g)))))
;;; Este se tiene cuando se tenga el anterior
(defthm unif-reduce-one-step-q-for-identifications
(implies (and (well-formed-upl upl)
(unif-legal-q upl op)
(equal (first op) 'identify))
(equal (upl-as-pair-of-systems (unif-reduce-one-step-q upl op))
(upl-as-pair-of-systems upl)))
:hints (("Goal" :in-theory (enable well-formed-upl-def
upl-as-pair-of-systems
unif-legal-q
unif-reduce-one-step-q)))))
;;; ============================================================================
;;;
;;; 4) Sequences of transformation rules
;;;
;;; ============================================================================
(in-theory (disable unif-reduce-one-step-q
unif-legal-q))
(defun unif-seq-q-p (upl unif-seq)
(declare (xargs :measure (acl2-count unif-seq)))
(if (endp unif-seq)
t
(let ((op (car unif-seq)))
(and (unif-legal-q upl op)
(unif-seq-q-p
(unif-reduce-one-step-q upl op)
(cdr unif-seq))))))
(defun unif-seq-q-last (upl unif-seq)
(if (endp unif-seq)
upl
(unif-seq-q-last (unif-reduce-one-step-q upl (car unif-seq))
(cdr unif-seq))))
(local
(defun remove-identifications (unif-seq)
(cond ((endp unif-seq) unif-seq)
((equal (first (car unif-seq))
'identify)
(remove-identifications (cdr unif-seq)))
(t (cons (car unif-seq)
(remove-identifications (cdr unif-seq)))))))
(local
(defthm unif-seq-q-p-unif-seq-p-p
(implies (and (well-formed-upl upl)
(unif-seq-q-p upl unif-seq))
(unif-seq-p-p (upl-as-pair-of-systems upl)
(remove-identifications unif-seq)))
:rule-classes nil))
(local
(defthm unif-seq-p-last-unif-seq-q-last
(implies (and (well-formed-upl upl)
(unif-seq-q-p upl unif-seq))
(and
(well-formed-upl (unif-seq-q-last upl unif-seq))
(equal
(upl-as-pair-of-systems (unif-seq-q-last upl unif-seq))
(unif-seq-p-last (upl-as-pair-of-systems upl)
(remove-identifications unif-seq)))))
:rule-classes nil))
;;; For upl with empty initial substitutions
(defun mgs-seq-q-p (S g seq)
(and (unif-seq-q-p (list S nil g) seq)
(normal-form-syst (unif-seq-q-last (list S nil g) seq))))
(defun mgs-seq-q (S g seq)
(unif-seq-q-last (list S nil g) seq))
(local
(in-theory
(enable mgs-seq-p mgs-seq bounded-well-formed-upl upl-as-pair-of-systems)))
(local
(defthm mgs-seq-q-p-mgs-seq-p
(implies (and (well-formed-dag-system S g)
(mgs-seq-q-p S g unif-seq))
(mgs-seq-p (tbs-as-system S g) (remove-identifications unif-seq)))
:hints (("Goal" :use ((:instance unif-seq-q-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-q-last
(upl (list S nil g))))))))
(local
(defthm mgs-seq-q-mgs-seq-failure-success
(implies (and (well-formed-dag-system S g)
(mgs-seq-q-p S g unif-seq))
(iff (mgs-seq (tbs-as-system S g) (remove-identifications unif-seq))
(mgs-seq-q S g unif-seq)))
:hints (("Goal" :use ((:instance unif-seq-q-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-q-last
(upl (list S nil g))))))))
(local
(defthm mgs-seq-q-mgs-seq-computed-substitution
(let ((last-upl (mgs-seq-q S g unif-seq)))
(implies (and (well-formed-dag-system S g)
(mgs-seq-q-p S g unif-seq))
(equal
(solved-as-system (second last-upl)
(third last-upl))
(second (mgs-seq (tbs-as-system S g)
(remove-identifications unif-seq))))))
:hints (("Goal" :use ((:instance unif-seq-q-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-q-last
(upl (list S nil g))))))))
;;; This theorem is also interesting. The graph obtained by a complete
;;; legal sequence of transformations is acyclic:
(defthm mgs-seq-q-dag-p
(implies (and (well-formed-dag-system S g)
(mgs-seq-q-p S g unif-seq))
(dag-p (third (mgs-seq-q S g unif-seq))))
:hints (("Goal"
:in-theory (enable well-formed-upl-def)
:use ((:instance unif-seq-q-p-unif-seq-p-p
(upl (list S nil g)))
(:instance unif-seq-p-last-unif-seq-q-last
(upl (list S nil g)))))))
(local (in-theory (disable mgs-seq-p mgs-seq)))
(in-theory (disable mgs-seq-q-p mgs-seq-q))
;;; ============================================================================
;;;
;;; 5) Using the rules to obtain most general solutions
;;;
;;; ============================================================================
(defthm mgs-seq-q-completeness
(let ((S (tbs-as-system S-dag g)))
(implies (and (well-formed-dag-system S-dag g)
(solution sigma S)
(mgs-seq-q-p S-dag g unif-seq))
(mgs-seq-q S-dag g unif-seq)))
:hints (("Goal" :use (:instance mgs-seq-completeness
(unif-seq (remove-identifications unif-seq))
(S (tbs-as-system S-dag g))))))
;;; If a complete legal sequence of transformations on term dags
;;; succeeds, then the indices substitution finally obtained represents
;;; a solution of the system represented by the initial indices system:
(defthm mgs-seq-q-soundness
(let* ((S (tbs-as-system S-dag g))
(last-upl (mgs-seq-q S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(mgs-seq-q-p S-dag g unif-seq)
last-upl)
(solution sol S)))
:hints (("Goal" :use (:instance mgs-seq-soundness
(unif-seq (remove-identifications unif-seq))
(S (tbs-as-system S-dag g))))))
;;; If a complete legal sequence of transformations on term dags
;;; succeeds, then the indices substitution finally obtained represents
;;; an idempotent substitution:
(defthm mgs-seq-q-idempotent
(let* ((last-upl (mgs-seq-q S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(mgs-seq-q-p S-dag g unif-seq))
(idempotent sol)))
:hints (("Goal" :in-theory (disable idempotent))))
;;; If the system represented by an indices system has a solution, then
;;; it is subsumed by the substitution represented by the indices
;;; substitution obtaned by a complet legal sequence of transformations:
(defthm mgs-seq-q-most-general-solution
(let* ((S (tbs-as-system S-dag g))
(last-upl (mgs-seq-q S-dag g unif-seq))
(sol (solved-as-system (second last-upl) (third last-upl))))
(implies (and (well-formed-dag-system S-dag g)
(solution sigma S)
(mgs-seq-q-p S-dag g unif-seq))
(subs-subst sol sigma))))
;;; ===============================================================
|