1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
|
;;; terms.lisp
;;; Properties about terms, substitutions, and systems of equations.
;;; Created: 7-10-99 Last revison: 15-02-2001
;;; =============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "terms")
|#
(in-package "ACL2")
(include-book "basic")
;;; *******************************************************************
;;; BASIC PROPERTIES ABOUT FIRST-ORDER TERMS, SUBSTITUTIONS AND SYSTEM
;;; OF EQUATIONS.
;;; *******************************************************************
;;; ============================================================================
;;; 1. Terms
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 1.1 Representation of terms
;;; ----------------------------------------------------------------------------
;;; We will represent first-order terms in prefix notation, using
;;; lists. For example, the term f(x h(a) g(x y b)), where x, y are
;;; variables and a, b are constants is represented as
;;; (f x (h (a) (g x y (b)).
;;; Note that constants are considered as 0-ary functions.
;;; The following functions define the set of well-formed terms (and
;;; list of terms) in a given signature We will prove later that our
;;; main functions acting on terms are closed in the set of terms of a
;;; given signature (the closure theorems).
;;; A signature is defined to be a function of two arguments. The
;;; intended meaning is that receiving as input a symbol function and a
;;; natural number, we return t if the arity of the symbol is n, and nil
;;; otherwise. This will allows to represent infinite signatures and
;;; variadic symbol functions.
;;; A general signature:
(defstub signat (* *) => *)
;;; EXAMPLE:
;;; This is for example, the signature of group theory
; (defun signat (symb n)
; (let* ((sig '((* 2) (i 1) (e 0)))
; (found (assoc symb sig))
; (arity (cdr found)))
; (and found (member n arity))))
;;; The variables of terms in a given signature, will be restricted to
;;; eqlablep ACL2 objects. This is due to two reasons:
;;; - First we restrict the kind objects that can be considered as
;;; variables in a given language, to discard "strange" cases.
;;; - Second, in this way well-formed terms (as defined by term-p below)
;;; can be seen as terms in a particular signature. This will allow to
;;; export the closure theorems to guard theorems, as we will see.
;;; Thus we define variable-s-p as eqlablep, a predicate for recognizing
;;; variables of terms in a given signature.
(defmacro variable-s-p (x) `(eqlablep ,x))
;;; ====== TERM-S-P, TERM-S-P-AUX
;;; term-s-p-aux define terms and lists of terms in a given
;;; signature. We define at the same time terms and lists of terms,
;;; using a standard trick for mutual recursion. (term-s-p-aux flg x) is
;;; t if flg=nil and x is a list of terms in a signature or flg /= nil
;;; and x is a term in a signature. Nil otherwise.
(defun term-s-p-aux (flg x)
(if flg
(if (atom x)
(variable-s-p x)
(if (signat (car x) (len (cdr x)))
(term-s-p-aux nil (cdr x))
nil))
(if (atom x)
(equal x nil)
(and (term-s-p-aux t (car x))
(term-s-p-aux nil (cdr x))))))
(defmacro term-s-p (x)
`(term-s-p-aux t ,x))
;;; ====== TERM-P, TERM-P-AUX
;;; For guard verification purposes, we will define a function term-p
;;; defining "proper" representation of first-order terms, i.e., the
;;; kind of Common Lisp objects that our functions are expected to
;;; receive as input when executed. As for terms in a signature, this is
;;; done for terms and for lists of terms. Note that we require that
;;; variables and function symbols have to be eqlablep objects. This
;;; will allow us to use eql instead of equal in executable functions,
;;; making them more efficient.
(defun term-p-aux (flg x)
(declare (xargs :guard t))
(if flg
(if (atom x)
(eqlablep x)
(and (eqlablep (car x))
(term-p-aux nil (cdr x))))
(if (atom x)
(equal x nil)
(and (term-p-aux t (car x))
(term-p-aux nil (cdr x))))))
(defmacro term-p (x)
(declare (xargs :guard t))
`(term-p-aux t ,x))
;;; VERY IMPORTANT REMARK: NON-PROPER TERMS
;;; ***************************************
;;; Having defined the above functions, nevertheless, since ACL2 is a
;;; logic of total functions, our functions acting on terms are defined
;;; for every object, even for those not representing "proper" terms, as
;;; defined by term-s-p and term-p. Our definitions will deal
;;; with the "non-proper" case in such a way that our theorems do not
;;; need hypothesis of the form "(term-p term)" or "(term-s-p term)"
;;; (except those concerning guard verification or closure properties,
;;; as we will see later).
;;; Thus, we can see any ACL2 object as a representation of a term, in
;;; the following way:
;;; - Variables are atomic objects.
;;; - Every consp object can be seen as the term with the top function
;;; symbol in its car. The cdr is the list of its arguments.
;;; ====== VARIABLE-P
;;; x is a variable (in a wide sense)
;;; Similar to variable-s-p, we define variable-p, recognizing those
;;; ACL2 objects that can be considered as variables with this wide
;;; point of view.
(defun variable-p (x)
(declare (xargs :guard t))
(atom x))
;;; REMARKS:
;;; --------
;;; - Note that this function variable-p is not strictly needed (we
;;; could use atom), but it improves readability of the proofs
;;; developed by the prover.
;;; - This could be optimized if we used a macro definition instead of
;;; defun. But we prefer to disable variable-p after proving its main
;;; properties, for the sake of readability of theorems and proofs
;;; (maybe we will modify it later).
;;; - Note that variable-s-p implies variable-p. The reverse implication
;;; is not true.
;;; Before disabling variable-p, we prove its main property:
(defthm non-variables-are-consp
(equal (variable-p x)
(not (consp x)))
:rule-classes :compound-recognizer)
(in-theory (disable variable-p))
;;; IMPORTANT REMARK: from the discussions above, note that we are
;;; guided by the following principle:
;;; - To reason, it is better not to restrict the kind of objects we are
;;; deling with, since the theorems are more general, and often easier
;;; to prove (in addition, we will prove the corresponding closure
;;; theorems).
;;; - For execution (i.e., for guard verification), it is better to restrict
;;; if we can improve eficiency. For example, restricting variables and
;;; function symbols to be eqlablep objects allows us to replace eql by
;;; equal (when comparing variables or function symbols).
;;; ----------------------------------------------------------------------------
;;; 1.2 Some functions on terms.
;;; ----------------------------------------------------------------------------
;;; REMARK: Note that the following functions are defined for terms and
;;; for list of terms, using mutual recursion. If the flag flg is not nil,
;;; then we refer to terms and if flg is nil, we refer to lists of terms.
;;; ====== VARIABLES
;;; The list of variables of a term
(defun variables (flg term)
(declare (xargs :guard (term-p-aux flg term)
:verify-guards nil))
(if flg
(if (variable-p term)
(list term)
(variables nil (cdr term)))
(if (endp term)
nil
(append (variables t (car term))
(variables nil (cdr term))))))
;;; Needed for guard verification:
(defthm variables-true-listp
(true-listp (variables flg term)))
(verify-guards variables)
;;; ======= LIST-OF-VARIABLES-P
(defun list-of-variables-p (l)
(if (endp l)
t
(and (variable-p (car l))
(list-of-variables-p (cdr l)))))
(defthm variables-is-a-list-of-variables
(list-of-variables-p (variables flg term)))
(encapsulate
()
(local
(defthm list-of-variables-p-subsetp
(implies (and (list-of-variables-p l)
(subsetp m l))
(list-of-variables-p m))))
(defcong equal-set iff (list-of-variables-p l) 1))
;;; ======= MAKE-VAR and related macros
(defmacro make-var (t1 t2) `(list 'var ,t1 ,t2))
(defmacro compound-var (x) `(equal (car ,x) 'var))
(defmacro first-of-var (x) `(second ,x))
(defmacro second-of-var (x) `(third ,x))
;;; ======= VARIABLES-SET
;;; The set of variables of a term.
(defmacro variables-set (flg term)
`(make-set (variables ,flg ,term)))
;;; ======= N-VARIABLES
;;; Number of distinct variables
(defmacro n-variables (flg term)
`(len (variables-set ,flg ,term)))
;;; ======= SIZE
;;; Number of function symbols of a term
(defun size (flg term)
(if flg
(if (variable-p term)
0
(+ 1 (size nil (cdr term))))
(if (endp term)
0
(+ (size t (car term))
(size nil (cdr term))))))
;;; ======= LENGTH
;;; Number of symbols of a term (including variables)
(defun length-term (flg term)
(declare (xargs :guard (term-p-aux flg term)))
(if flg
(if (variable-p term)
1
(1+ (length-term nil (cdr term))))
(if (endp term)
0
(+ (length-term t (car term))
(length-term nil (cdr term))))))
(defthm length-term-positive
(< 0 (length-term t term))
:rule-classes :linear)
;;; ========== SUBTERM
(defun subterm (flg t1 t2)
(if flg
(if (equal t1 t2)
t
(if (variable-p t2)
nil
(subterm nil t1 (cdr t2))))
(if (endp t2)
nil
(or (subterm t t1 (car t2))
(subterm nil t1 (cdr t2))))))
;;; ============================================================================
;;; 2. Substitutions.
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 2.1 Representation of substitutions.
;;; ----------------------------------------------------------------------------
;;; We represent substitutions as lists of pairs of the form
;;; (variable . term). As with terms, we can view every object as a
;;; substitution. See section 4 of basic.lisp.
;;; Anyway, we define substitution-p for guard verification purposes,
;;; and substitution-s-p to define substitutions in a given signature.
;;; ====== SUBSTITUTION-P
(defun substitution-p (l)
(declare (xargs :guard t))
(if (atom l)
(equal l nil)
(and (consp (car l))
(eqlablep (caar l))
(term-p (cdar l))
(substitution-p (cdr l)))))
;;; ====== SUBSTITUTION-S-P
(defun substitution-s-p (l)
(if (atom l)
(equal l nil)
(and (consp (car l))
(variable-s-p (caar l))
(term-s-p (cdar l))
(substitution-s-p (cdr l)))))
;;; ----------------------------------------------------------------------------
;;; 2.2 Applying substitutions to terms (and lists of terms)
;;; ----------------------------------------------------------------------------
;;; ==== APPLY-SUBST
(defun apply-subst (flg sigma term)
(declare (xargs :guard (and (alistp sigma)
(term-p-aux flg term))))
(if flg
(if (variable-p term)
(val term sigma)
(cons (car term)
(apply-subst nil sigma (cdr term))))
(if (endp term)
term
(cons (apply-subst t sigma (car term))
(apply-subst nil sigma (cdr term))))))
;;; REMARK: the substitution does not change the final tail of the lists
;;; (this is essential for having the same properties for proper and
;;; non-proper terms)
(defmacro instance (term sigma)
`(apply-subst t ,sigma ,term))
;;; Some useful lemmas:
(defthm apply-consp-is-consp-list-of-terms
(equal (consp (apply-subst nil sigma l))
(consp l)))
(defthm apply-returns-variable-implies-variable
(implies (and flg (not (variable-p term)))
(not (variable-p (apply-subst flg sigma term)))))
(defthm equal-len-apply-subst-nil
(equal (len (apply-subst nil sigma term))
(len term)))
(defthm apply-atom
(implies (atom sigma)
(equal (apply-subst flg sigma term) term)))
(defthm one-identity-substitution
(equal (apply-subst flg nil term) term))
(in-theory (disable apply-atom))
;;; The following lemmas proves closure properties w.r.t a given
;;; signature and they are needed for guard verification.
(defthm val-substitution-s-p-term-s-p
(implies (and (substitution-s-p sigma)
(variable-s-p x))
(term-s-p (val x sigma))))
(defthm apply-subst-term-s-p-aux
(implies (and (term-s-p-aux flg term)
(substitution-s-p sigma))
(term-s-p-aux flg (apply-subst flg sigma term))))
(defthm apply-subst-term-p-aux
(implies (and (term-p-aux flg term)
(substitution-p sigma))
(term-p-aux flg (apply-subst flg sigma term)))
:hints (("Goal" :use (:functional-instance
apply-subst-term-s-p-aux
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)
(substitution-s-p substitution-p)))))
;;; IMPORTANT REMARK: It can be proved without the hint. But this a good
;;; example of how the concept of well-formed term is a particular case
;;; of the general concept of term in a given signature. We will use
;;; this technique very often.
;;; ==== SUBSTITUTE-VAR
;;; Replace every occurrence of a given variable x by a given term t1.
(defun substitute-var (x t1 flg term)
(declare (xargs :guard (term-p-aux flg term)))
(if flg
(if (variable-p term)
(if (eql x term)
t1
term)
(cons (car term)
(substitute-var x t1 nil (cdr term))))
(if (endp term)
term
(cons (substitute-var x t1 t (car term))
(substitute-var x t1 nil (cdr term))))))
;;; ----------------------------------------------------------------------------
;;; 2.3 Functional aspects of substitutions.
;;; ----------------------------------------------------------------------------
;;; ====== COMPOSITION
;;; Composition of two substitutions
(defun composition (sigma1 sigma2)
(declare (xargs :guard (and (alistp sigma1)
(substitution-p sigma2))))
(if (endp sigma2)
sigma1
(cons (cons (caar sigma2) (apply-subst t sigma1 (cdar sigma2)))
(composition sigma1 (cdr sigma2)))))
;;; Lemmas:
(defthm value-composition
(implies (variable-p x)
(equal (val x (composition sigma1 sigma2))
(apply-subst t sigma1 (val x sigma2)))))
(defthm composition-of-substitutions-apply
(equal (apply-subst flg (composition sigma1 sigma2) term)
(apply-subst flg sigma1 (apply-subst flg sigma2 term))))
;;; Closure property
(defthm composition-substitution-s-p
(implies (and (substitution-s-p sigma1)
(substitution-s-p sigma2))
(substitution-s-p (composition sigma1 sigma2))))
;;; ========= RESTRICTION (see basic.lisp)
(defthm subsetp-restriction
(implies (subsetp (variables flg term) l)
(equal (apply-subst flg (restriction sigma l) term)
(apply-subst flg sigma term))))
;;; ========= DOMAIN (see basic.lisp)
(defthm x-not-in-domain-remains-the-same
(implies (not (member x (domain sigma)))
(equal (val x sigma) x)))
(in-theory (disable x-not-in-domain-remains-the-same))
(defthm substitution-does-not-change-term
(implies (disjointp (domain sigma) (variables flg term))
(equal (apply-subst flg sigma term) term))
:hints (("Goal"
:in-theory (enable x-not-in-domain-remains-the-same))))
(in-theory (disable substitution-does-not-change-term))
;;; ========= UNION OF SUBSTITUTIONS
;;; Lemmas about union of substitutions of disjoint domains
;;; They will be used in mg-instance.lisp and in
;;; critical-pairs.lisp
(defthm only-the-first-bind-is-important-append
(implies (subsetp (variables flg term) (domain sigma1))
(equal (apply-subst flg (append sigma1 sigma2) term)
(apply-subst flg sigma1 term))))
(local
(defthm domains-disjointp-do-not-interfere-lemma
(implies (and (disjointp (domain sigma1)
(domain sigma2))
(member term (domain sigma2)))
(equal (val term (append sigma1 sigma2))
(val term sigma2)))))
(defthm domains-disjointp-do-not-interfere
(implies (and (disjointp (domain sigma1) (domain sigma2))
(subsetp (variables flg term) (domain sigma2)))
(equal (apply-subst flg (append sigma1 sigma2) term)
(apply-subst flg sigma2 term))))
;;; ====== COINCIDE
;;; This will be our predicate for testing the equality
;;; of substitutions. sigma1 and sigma2 coincide in l if their
;;; restriction to l are equal.
(defun coincide (sigma1 sigma2 l)
(if (atom l)
T
(and (equal (val (car l) sigma1)
(val (car l) sigma2))
(coincide sigma1 sigma2 (cdr l)))))
;;; Properties of coincide
(encapsulate
()
(local
(defthm coincide-main-property
(implies (and (coincide sigma1 sigma2 l)
(member x l))
(equal (equal (val x sigma1) (val x sigma2)) t))))
;;; Note: this form of the rule avoids cycles.
(defthm coincide-in-term
(implies (and
(subsetp (variables flg term) l)
(coincide sigma1 sigma2 l))
(equal (apply-subst flg sigma1 term)
(apply-subst flg sigma2 term)))
:rule-classes nil))
(defthm coincide-reflexive
(coincide sigma sigma l))
(defthm coincide-append
(equal (coincide sigma sigma1 (append l m))
(and (coincide sigma sigma1 l)
(coincide sigma sigma1 m))))
;;; ======== EXTENSION
;;; sigma1 "extends" sigma
(defmacro extension (sigma1 sigma)
`(coincide ,sigma ,sigma1 (domain ,sigma)))
;;; ======== NORMAL-FORM-SUBST
;;; Given a term (or a list of terms), there are an infinite number of
;;; substitutions acting in the same way on the term. Sometimes, it will
;;; be useful to take a representative of all those functions.
(defmacro normal-form-subst (flg sigma term)
`(restriction ,sigma (make-set (variables ,flg ,term))))
(defthm equal-normal-form-subst-wrt-term
(equal (apply-subst flg (normal-form-subst flg sigma term) term)
(apply-subst flg sigma term))
:rule-classes nil)
;;; ============================================================================
;;; 3. Systems of equations.
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 3.1 Representation
;;; ----------------------------------------------------------------------------
;;; Every object ecu can be seen as an equation,
;;; being its left side (car ecu) and its right side (cdr ecu).
;;; ========== LHS and RHS
;;; The left-hand side and right-hand side of
;;; an equation or rule:
(defmacro lhs (equ)
`(car ,equ))
(defmacro rhs (equ)
`(cdr ,equ))
;;; Note that atomic objects are equivalent to '(nil . nil). Every
;;; object can be interpreted as a system of equations: a list of
;;; equations. Note that atomic objects are empty systems. It is
;;; interesting to note that we use the same representation for systems
;;; and for substitutions.
;;; Nevertheless, we define system-p for guard verification:
;;; ========= SYSTEM-P
(defun system-p (S)
(declare (xargs :guard t))
(if (atom S)
(equal S nil)
(and (consp (car S))
(term-p (caar S)) (term-p (cdar S))
(system-p (cdr S)))))
;;; And we define the concept of system of terms in a given signature
;;; ========= SYSTEM-P
(defun system-s-p (S)
(if (atom S)
(equal S nil)
(and (consp (car S))
(term-s-p (caar S)) (term-s-p (cdar S))
(system-s-p (cdr S)))))
;;; The following lemmas are needed for guard verification:
;;; REMARK: Note that the following lemmas state a result for terms and
;;; substitutions in given signature and there are also the same results
;;; for well-formed terms and substitutitions. Since well-formed terms
;;; are a particular case of terms of a signature (the signature that
;;; returns t for every eqlablep object and natural number), we could
;;; have proved the results for well-formed terms by functional
;;; instantiation of the corresponding results for signatures. But the
;;; results are so simple that they are proved anyway in a very easily
;;; without functional instantiation.
(defthm system-p-implies-alistp
(implies (system-p S) (alistp S))
:rule-classes :forward-chaining)
(defthm system-p-append
(implies (and (system-p S1) (system-p S2))
(system-p (append S1 S2))))
(defthm system-s-p-append
(implies (and (system-s-p S1) (system-s-p S2))
(system-s-p (append S1 S2))))
(defthm system-p-eliminate
(implies (system-p S)
(system-p (eliminate equ S))))
(defthm system-s-p-eliminate
(implies (system-s-p S)
(system-s-p (eliminate equ S))))
(defthm system-p-pair-args
(implies
(and (term-p-aux nil t1)
(term-p-aux nil t2))
(system-p (first (pair-args t1 t2)))))
(defthm system-s-p-pair-args
(implies
(and (term-s-p-aux nil t1)
(term-s-p-aux nil t2))
(system-s-p (first (pair-args t1 t2)))))
(defthm system-p-term-p-aux-arguments
(implies (and (system-p S)
(member ecu S)
(not (variable-p (car ecu)))
(not (variable-p (cdr ecu))))
(and (term-p-aux nil (cdar ecu))
(term-p-aux nil (cddr ecu)))))
(defthm system-s-p-term-p-aux-arguments
(implies (and (system-s-p S)
(member ecu S)
(not (variable-p (car ecu)))
(not (variable-p (cdr ecu))))
(and (term-s-p-aux nil (cdar ecu))
(term-s-p-aux nil (cddr ecu)))))
;;; ----------------------------------------------------------------------------
;;; 3.2 Some related function definitions.
;;; ----------------------------------------------------------------------------
;;; ===== DOMAIN and CO-DOMAIN
;;; already defined (see basic.lisp, section 4)
;;; ===== SYSTEM-VAR
;;; Variables of the system:
(defun system-var (S)
(if (endp S)
nil
(append (variables t (caar S))
(append (variables t (cdar S))
(system-var (cdr S))))))
;;; ===== APPLY-SIST:
;;; Apply sigma to every term in system S.
(defun apply-syst (sigma S)
(if (endp S)
nil
(cons (cons (apply-subst t sigma (caar S))
(apply-subst t sigma (cdar S)))
(apply-syst sigma (cdr S)))))
;;; REMARK: After applying apply-syst, every element of the system is
;;; listp.
;;; ====== APPLY-RANGE:
;;; Apply sigma only to the right-hand sides of equations in system S.
(defun apply-range (sigma S)
(if (endp S)
nil
(cons (cons (caar S) (apply-subst t sigma (cdar S)))
(apply-range sigma (cdr S)))))
;;; ===== SUBSTITUTE-SYST:
;;; Apply sigma= '((x . t1)) to every term in system S.
(defun substitute-syst (x t1 S)
(declare (xargs :guard (system-p S)))
(if (endp S)
nil
(cons (cons (substitute-var x t1 t (caar S))
(substitute-var x t1 t (cdar S)))
(substitute-syst x t1 (cdr S)))))
;;; ===== SUBSTITUTE-RANGE:
;;; Apply sigma = '((x . t1)) to every term in system S.
(defun substitute-range (x t1 S)
(declare (xargs :guard (system-p S)))
(if (endp S)
nil
(cons (cons (caar S)
(substitute-var x t1 t (cdar S)))
(substitute-range x t1 (cdr S)))))
;;; ======= UNION-SYSTEMS
(defun union-systems (S-T) (append (car S-T) (cdr S-T)))
;;; ======= NORMAL-FORM-SYST
;;; Pair of system in normal form
(defun normal-form-syst (S-sol)
(declare (xargs :guard t))
(not (and (consp S-sol) (consp (car S-sol)))))
;;; ======= LENGTH-SYSTEM
(defun length-system (S)
(if (endp S)
0
(+ (length-term t (caar S)) (length-term t (cdar S))
(length-system (cdr S)))))
;;; ======= MATCHER
;;; Matcher of a system of equations
(defun matcher (sigma S)
(if (endp S)
t
(and (equal (apply-subst t sigma (caar S))
(cdar S))
(matcher sigma (cdr S)))))
;;; ====== SYSTEM-SUBSTITUTION
;;; The kind of substitutions that are matchers of themselves.
(defun system-substitution (S)
(if (endp S)
t
(and
(consp (car S))
(variable-p (caar S))
(not (member (caar S) (domain (cdr S))))
(system-substitution (cdr S)))))
;;; ===== N-SYSTEM-VAR
(defun n-system-var (S)
(len (make-set (system-var S))))
;;; ====== SIZE-SYSTEM
(defun size-system (S)
(if (endp S)
0
(+ (size t (caar s))
(size t (cdar s))
(size-system (cdr s)))))
;;; ====== N-VARIABLES-RIGHT-HAND-SIDE
(defun n-variables-right-hand-side (S)
(cond ((endp S) 0)
((variable-p (cdar S)) (1+ (n-variables-right-hand-side (cdr S))))
(t (n-variables-right-hand-side (cdr S)))))
;;; ======= UNIFICATION-MEASURE
;;; The following measure was defined prior to ACL2 v2.8
;; (defun unification-measure (S-sol)
;; (cons (cons (1+ (n-system-var (first S-sol)))
;; (size-system (first S-sol)))
;; (n-variables-right-hand-side (first S-sol))))
;; Since ACL2 v2.8, ordinals in ACL2 are represented in a different
;; way. So we
;; redefine the measure:
(defun unification-measure (S-sol)
(list* (cons 2 (1+ (n-system-var (first S-sol))))
(cons 1 (1+ (size-system (first S-sol))))
(n-variables-right-hand-side (first S-sol))))
;;; ----------------------------------------------------------------------------
;;; 3.3 Solutions of systems. Idempotent substitutions.
;;; ----------------------------------------------------------------------------
;;; ==== SOLUTION
;;; Solution of system of equations.
;;; A substitution is a solution of a system if its a solution of every
;;; member of the system. A substitution sigma is a solution of an
;;; equation ecu if sigma(car(ecu)) = sigma (cdr (ecu)). Two systems are
;;; equivalent if they have the same set of solutions.
(defun solution (sigma S)
(if (endp S)
t
(and (equal (apply-subst t sigma (caar S))
(apply-subst t sigma (cdar S)))
(solution sigma (cdr S)))))
;;; ===== IDEMPOTENT SYSTEMS/SUBSTITUTIONS
;;; Some substitutions are solution
;;; of themselves. We then call that substitution idempotent.
;;; Its domain is a set of variables and the variables of its
;;; co-domain are disjoint with its domain.
(defun idempotent (S)
(and (system-substitution S)
(disjointp (variables nil (co-domain S)) (domain S))))
;;; REMARK: In the literature, idempotent substitutions are defined as
;;; substitutions sigma such that sigma·sigma = sigma. But this
;;; definition involves functional equality. We will see that the above
;;; definition implies this property (see main-property-mgs in the book
;;; unification-definition.lisp) Nevertheless, the definition does not
;;; characterize the property. For example, the substitution represented
;;; by ((x . y) (x . z)) verify that property but is not idempotent in
;;; our sense. Fortunately, it can be proved that there exists a
;;; functionally equivalent idempotent (in our sense) substitution, ((x
;;; . y)) in this case.
;;; ············································································
;;; 3.3.1 The main property of idempotent substitutions.
;;; ············································································
;;; .... PROOF PLAN:
; We want to prove idempotence-main-lemma (see below)
; idempotence-main-lemma fails in:
; (IMPLIES (AND (SOLUTION S X)
; (SYSTEM-SUBSTITUTION S)
; (DISJOINT (VARIABLES F (CO-DOMAIN S)) (DOMAIN S))
; (SETP (DOMAIN S))
; (MEMBER (CONS V W) S)
; (SUBSETP X S))
; (EQUAL (APPLY T S V)
; (APPLY T S W))).
; Strategy to prove this:
; 1) (apply-subst t sigma v) is (val v sigma) if sigma is
; system-substitution and (v . w) is in sigma
; 2) (val v sigma) is w si (v . w) is in s and (domain s) is setp
; 3) (apply-subst t sigma w) is w if (domain s) is disjoint with
; variables of w (this has been proved before, in terms.lisp)
; 4) if (disjointp (variables nil (co-domain s)) l), and (v . w) is a
; member of s, the variables of w is disjoint with l.
;;; We compile these properties in the following encapsulate:
(local
(encapsulate
()
(local
(defthm system-substitution-properties
(implies (and (system-substitution sigma)
(member (cons v w) sigma))
(and (variable-p v) (equal (val v sigma) w)))))
(local
(defthm co-domain-disjoint-lemma
(implies (and (disjointp (variables nil (co-domain s)) l)
(member (cons v w) s))
(disjointp (variables t w) l))
:rule-classes nil
:hints (("Goal" :induct (len s)))))
(local
(defthm co-domain-disjoint
(implies (and (disjointp (variables nil (co-domain s)) (domain s))
(member (cons v w) s))
(equal (apply-subst t s w) w))
:hints (("Goal" :use
(:instance co-domain-disjoint-lemma
(l (domain s)))
:in-theory (enable substitution-does-not-change-term )))))
(defthm idempotence-main-lemma
(implies (and (idempotent S)
(subsetp sol S))
(solution S sol)))))
;;; And the main property of idempotent substitutions.
(defthm idempotence
(implies (idempotent S)
(solution S S)))
;;; ============================================================================
;;; 4. The tree structure of a term
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 4.1 Positions, occurrences and replacements.
;;; ----------------------------------------------------------------------------
;;; ============ POSITIONS OF A TERM
(defun position-p (pos term)
(declare (xargs :guard (term-p term)
:verify-guards nil))
(cond ((atom pos) (equal pos nil))
((variable-p term) nil)
(t
(and (integerp (car pos)) (< 0 (car pos))
(<= (car pos) (len (cdr term)))
(position-p (cdr pos)
(nth (- (car pos) 1) (cdr term)))))))
;;; ====== OCURRENCE IN A TERM AT A POSITION
(defun occurrence (term pos)
(declare (xargs :guard
(and (term-p term)
(position-p pos term))
:verify-guards nil))
(if (endp pos)
term
(occurrence (nth (- (car pos) 1) (cdr term))
(cdr pos))))
;;; ====== REPLACING A OCCURRENCE IN A TERM FOR OTHER TERM
(defun replace-term (term1 pos term2)
(declare (xargs :guard
(and (term-p term1)
(position-p pos term1))
:verify-guards nil))
(if (endp pos)
term2
(cons (car term1)
(replace-list (cdr term1)
(- (car pos) 1)
(replace-term (nth (- (car pos) 1) (cdr term1))
(cdr pos)
term2)))))
;;; Guard verification
(encapsulate
()
(local
(defthm term-p-aux-true-listp
(implies (and (term-p-aux flg term)
(implies flg (not (variable-p term))))
(true-listp term))))
(local
(defthm term-p-aux-true-listp
(implies (and (term-p-aux flg term)
(implies flg (not (variable-p term))))
(true-listp term))))
(local
(defthm term-p-aux-nth
(implies (term-p-aux nil term)
(term-p-aux t (nth i term)))))
(verify-guards position-p)
(verify-guards occurrence)
(verify-guards replace-term))
;;; ----------------------------------------------------------------------------
;;; 4.2 Some results concerning the tree structure of a term
;;; ----------------------------------------------------------------------------
;;; ············································································
;;; 4.2.1 Concatenation of positions
;;; ············································································
(defthm position-p-append
(implies (position-p p1 term)
(iff (position-p (append p1 p2) term)
(position-p p2 (occurrence term p1)))))
(defthm occurrence-append
(implies (and (position-p p1 term)
(position-p p2 (occurrence term p1)))
(equal (occurrence term (append p1 p2))
(occurrence (occurrence term p1) p2))))
(defthm replace-term-append
(implies (position-p (append pos1 q) term)
(equal (replace-term term (append pos1 q) x)
(replace-term term pos1
(replace-term (occurrence term pos1)
q x)))))
;;; ············································································
;;; 4.2.2 Substitutions and positions
;;; ············································································
(defthm nth-apply-subst
(implies (and (integerp i)
(<= 0 i)
(< i (len l)))
(equal (nth i (apply-subst nil sigma l))
(apply-subst t sigma (nth i l)))))
(defthm position-p-instance
(implies (position-p pos term)
(position-p pos (instance term sigma))))
(defthm occurrence-instance
(implies (position-p pos term)
(equal
(occurrence (instance term sigma) pos)
(instance (occurrence term pos) sigma))))
(local
(defthm replace-list-instance
(equal
(apply-subst nil sigma (replace-list l i x))
(replace-list (apply-subst nil sigma l) i (apply-subst t sigma x)))))
(defthm replace-term-instance
(implies (position-p pos term)
(equal
(replace-term (instance term sigma) pos
(instance t1 sigma))
(instance (replace-term term pos t1) sigma))))
;;; ············································································
;;; 4.2.3 Prefix positions
;;; ············································································
(local
(defthm equal-len-replace-list
(equal (len (replace-list l i x))
(len l))))
(defthm position-p-prefix
(implies (position-p pos1 term1)
(iff (position-p (append pos1 pos2)
(replace-term term1 pos1 term2))
(position-p pos2 term2))))
(defthm occurrence-prefix
(implies (and (position-p pos1 term1)
(position-p pos2 term2))
(equal (occurrence
(replace-term term1 pos1 term2)
(append pos1 pos2))
(occurrence term2 pos2))))
(defthm replace-term-prefix
(implies (and (position-p pos1 term1)
(position-p pos2 term2))
(equal (replace-term
(replace-term
term1 pos1 term2)
(append pos1 pos2)
term3)
(replace-term
term1 pos1
(replace-term term2 pos2 term3)))))
;;; ············································································
;;; 4.2.4 Disjoint positions
;;; ············································································
(local
(defun induct-position-p-disjoint (pos1 pos2 term)
(cond ((variable-p term) t)
((and (consp pos1) (consp pos2))
(if (equal (car pos1) (car pos2))
(induct-position-p-disjoint
(cdr pos1)
(cdr pos2)
(nth (- (car pos1) 1) (cdr term)))
t))
(t t))))
(local
(defthm equality-of-predecesor
(implies (and (integerp i) (integerp j))
(iff (equal (+ -1 i) (+ -1 j))
(equal i j))))) ;;; I don't like this rule.
(defthm position-p-disjoint-positions
(implies (and (position-p pos1 term)
(position-p pos2 term)
(disjoint-positions pos1 pos2))
(position-p pos1 (replace-term term pos2 x)))
:hints (("Goal"
:induct (induct-position-p-disjoint pos1 pos2 term)
:expand ((:free (term i pos x)
(replace-term term (cons i pos) x))
(:free (i pos fn args)
(position-p (cons i pos)
(cons fn args)))))))
(defthm occurrence-disjoint-positions
(implies (and (position-p pos1 term)
(position-p pos2 term)
(disjoint-positions pos1 pos2))
(equal (occurrence (replace-term term pos1 x) pos2)
(occurrence term pos2)))
:hints (("Goal"
:induct (induct-position-p-disjoint
pos1 pos2 term)
:expand ((:free (term i pos x)
(replace-term term (cons i pos) x))
(:free (i pos fn args)
(occurrence (cons fn args)
(cons i pos)))))))
(defthm replace-term-disjoint-positions
(implies (and
(position-p pos1 term)
(position-p pos2 term)
(disjoint-positions pos1 pos2))
(equal (replace-term (replace-term term pos1 x) pos2 y)
(replace-term (replace-term term pos2 y) pos1 x)))
:hints (("Goal" :induct (induct-position-p-disjoint pos1 pos2 term)
:expand ((:free (term i pos x)
(replace-term term (cons i pos) x))
(:free (i pos fn args)
(position-p (cons i pos) (cons fn args)))))))
;;; ············································································
;;; 4.2.5 Disabling the theory
;;; ············································································
(defconst *tree-structure-of-terms*
'(position-p-append occurrence-append replace-term-append
position-p-instance occurrence-instance replace-term-instance
position-p-prefix occurrence-prefix replace-term-prefix
position-p-disjoint-positions occurrence-disjoint-positions
replace-term-disjoint-positions))
(in-theory
(set-difference-theories (current-theory :here) *tree-structure-of-terms*))
;;; ----------------------------------------------------------------------------
;;; 4.3 Recursive versions of position-p, occurrence and replace-term
;;; ----------------------------------------------------------------------------
;;; The definition of position-p, occurrence and replace-term is done
;;; following the classical definition in the literature. Sometimes,
;;; this kind of definition does not provide a good induction scheme
;;; when proving properties relating this functions with other functions
;;; defined in a mutually recursive way, for terms and for lists of
;;; terms. For that reason we will give and alternative definition of
;;; position-p, occurrence and replace-term, in a mutually recursive
;;; style, and we prove that both definitions are equivalente for
;;; terms.
;;; POSITION-P-REC
(defun position-p-rec (flg pos term)
(declare (xargs :guard t))
(if flg
(cond ((atom pos) (equal pos nil))
((variable-p term) nil)
(t (position-p-rec nil pos (cdr term))))
(cond ((or (atom term) (atom pos)) nil)
((eql 1 (car pos))
(position-p-rec t (cdr pos) (car term)))
((and (integerp (car pos)) (<= 2 (car pos)))
(position-p-rec nil (cons (- (car pos ) 1) (cdr pos)) (cdr
term)))
(t nil))))
;;; The two definitions are the same, as stated in the following
;;; rewrite rule
(encapsulate
()
(defthm equal-position-p-position-p-rec-lemma
(if flg
(equal (position-p-rec flg pos term)
(position-p pos term))
(equal (position-p-rec flg pos term)
(and (consp pos) (consp term)
(integerp (car pos)) (<= 1 (car pos))
(<= (car pos) (len term))
(position-p (cdr pos) (nth (- (car pos) 1) term)))))
:rule-classes nil)
(defthm equal-position-p-position-p-rec
(equal (position-p pos term)
(position-p-rec t pos term))
:hints (("Goal" :use (:instance
equal-position-p-position-p-rec-lemma
(flg t))))))
;;; OCCURRENCE-REC
(defun occurrence-rec (flg term pos)
(if flg
(cond ((endp pos) term)
((variable-p term) nil)
(t (occurrence-rec nil (cdr term) pos)))
(cond ((or (endp term) (endp pos)) nil)
((equal (car pos) 1)
(occurrence-rec t (car term) (cdr pos)))
((and (integerp (car pos)) (<= 2 (car pos)))
(occurrence-rec nil (cdr term) (cons (- (car pos ) 1) (cdr pos))))
(t nil))))
;;; The two definitions are the same, as stated in the following
;;; rewrite rule
(encapsulate
()
(local
(defthm equal-occurrence-occurrence-rec-lemma
(implies (position-p-rec flg pos term)
(if flg
(equal (occurrence-rec flg term pos)
(occurrence term pos))
(equal (occurrence-rec flg term pos)
(occurrence (nth (- (car pos) 1) term) (cdr pos)))))
:rule-classes nil))
(defthm equal-occurrence-occurrence-rec
(implies (position-p-rec t pos term)
(equal (occurrence term pos)
(occurrence-rec t term pos)))
:hints (("Goal" :use (:instance
equal-occurrence-occurrence-rec-lemma (flg t))))))
;;; REPLACE-TERM-REC
(defun replace-term-rec (flg term1 pos term2)
(if flg
(cond ((endp pos) term2)
((variable-p term1) nil)
(t (cons (car term1)
(replace-term-rec nil (cdr term1) pos term2))))
(cond ((or (endp term1) (endp pos)) nil)
((equal (car pos) 1)
(cons (replace-term-rec t (car term1) (cdr pos) term2)
(cdr term1)))
((and (integerp (car pos)) (<= 2 (car pos)))
(cons (car term1)
(replace-term-rec nil (cdr term1)
(cons (- (car pos ) 1) (cdr pos)) term2)))
(t nil))))
(encapsulate
()
(local
(defthm equal-replace-term-replace-term-rec-lemma
(implies (position-p-rec flg pos term1)
(if flg
(equal (replace-term-rec flg term1 pos term2)
(replace-term term1 pos term2))
(equal (replace-term-rec flg term1 pos term2)
(replace-list
term1
(- (car pos) 1)
(replace-term (nth (- (car pos) 1) term1)
(cdr pos) term2)))))
:rule-classes nil))
(defthm equal-replace-term-replace-term-rec
(implies (position-p-rec t pos term1)
(equal (replace-term term1 pos term2)
(replace-term-rec t term1 pos term2)))
:hints (("Goal" :use (:instance
equal-replace-term-replace-term-rec-lemma
(flg t))))))
;;; ----------------------------------------------------------------------------
;;; 4.2 Related closure theorems
;;; ----------------------------------------------------------------------------
;;; The following is a good example of how these "-aux" versions can
;;; help to prove properties. Recall that term-s-p and term-p are
;;; defined by mutual recursion (functions term-s-p-aux and
;;; term-p-aux). If we want to prove that occurrence and replace-term
;;; are closed in the set of terms of a given signature, then it is much
;;; easier to prove first the analogous theorems for occurrence-rec, and
;;; replace-term-rec (i.e. the theorem for terms and for lists of terms
;;; at the same time), and then to export those properties to the
;;; original definitions of position-p, occurrence and replace-term.
;;; The "-aux" versions
(defthm occurrence-term-s-p-aux
(implies (and (term-s-p-aux flg term)
(position-p-rec flg pos term))
(term-s-p (occurrence-rec flg term pos))))
(encapsulate
()
(local
(defthm replace-term-rec-equal-len
(implies (position-p-rec nil pos term)
(equal (len (replace-term-rec nil term pos t1))
(len term)))))
(defthm replace-term-rec-term-s-p-aux
(implies (and (term-s-p-aux flg term)
(position-p-rec flg pos term)
(term-s-p t1))
(term-s-p-aux flg (replace-term-rec flg term pos t1)))))
;;; The intended theorems are now an easy consequence of the
;;; equivalence lemmas between the original definitions and its "-aux"
;;; versions
(defthm occurrence-term-s-p
(implies (and (term-s-p term)
(position-p pos term))
(term-s-p (occurrence term pos))))
(defthm replace-term-term-s-p
(implies (and (term-s-p term)
(position-p pos term)
(term-s-p t1))
(term-s-p (replace-term term pos t1))))
;;; Theorems needed for guard verification:
(defthm occurrence-term-p
(implies (and (term-p term)
(position-p pos term))
(term-p (occurrence term pos)))
:hints (("Goal" :use (:functional-instance
occurrence-term-s-p
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)))))
(defthm replace-term-term-p
(implies (and (term-p term)
(position-p pos term)
(term-p t1))
(term-p (replace-term term pos t1)))
:hints (("Goal" :use (:functional-instance
replace-term-term-s-p
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)))))
;;; ----------------------------------------------------------------------------
;;; 4.3 Another useful rules
;;; ----------------------------------------------------------------------------
;;; Here we list some additional rules which more easily proved using
;;; the "-aux" versions of position-p, occurrence and replace-term.
(local
(defthm occurrence-position-p-rec-relation
(implies (position-p-rec flg pos term)
(iff (equal t1 (occurrence-rec flg term pos))
(equal (replace-term-rec flg term pos t1)
term)))))
(defthm occurrence-position-relation
(implies (position-p pos term)
(iff (equal t1 (occurrence term pos))
(equal (replace-term term pos t1)
term))))
;;; REMARK: very useful rule!!! (take care with it)
(in-theory (disable occurrence-position-relation))
;;; Now we disable the theorems of equivalence between the "-aux"
;;; versions and the original functions. We will enable locally when
;;; needed:
(defconst *position-rec-versions*
'(equal-position-p-position-p-rec
equal-occurrence-occurrence-rec
equal-replace-term-replace-term-rec))
(in-theory
(set-difference-theories (current-theory :here) *position-rec-versions*))
|