1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#|-*-Lisp-*-=================================================================|#
#| |#
#| Copyright © 2005-7 Rockwell Collins, Inc. All Rights Reserved. |#
#| |#
#|===========================================================================|#
(in-package "ACL2")
(include-book "defminterm")
;;(xxclude-book "basic" :dir :lists)
(defun natural-listp (list)
(declare (type t list))
(if (consp list)
(and (natp (car list))
(natural-listp (cdr list)))
(null list)))
(defthm true-listp-from-natural-listp
(implies (natural-listp x)
(true-listp x))
:rule-classes (:forward-chaining))
(defminterm ack (x y xargs)
(declare (xargs :verify-guards nil)
(type (integer 0 *) x y)
(type (satisfies natural-listp) xargs))
(if (and (not (consp xargs)) (zp x)) (+ y 1)
(if (zp x) (ack (car xargs) (+ y 1) (cdr xargs))
(if (zp y) (ack (1- x) 1 xargs)
(ack x (1- y) (cons (1- x) xargs))))))
(defun ack_induction (x y r s)
(declare (xargs :measure (ack_measure x y r)))
(if (ack_terminates x y r)
(if (and (not (consp r)) (zp x)) (+ y 1)
(if (zp x) (ack_induction (car r) (+ y 1) (cdr r) (cdr s))
(if (zp y) (ack_induction (1- x) 1 r s)
(ack_induction x (1- y) (cons (1- x) r) (cons (1- x) s)))))
(cons s (+ y 1))))
;;
;;
;;
(defun head-equal (s r)
(if (consp s)
(and (consp r)
(equal (car s) (car r))
(head-equal (cdr s) (cdr r)))
t))
;; jcd - Removing list-equal -- use list::equiv instead, it is provably
;; equal and already has lots of nice rules.
(defun list-equal (x y)
(if (consp x)
(and (consp y)
(equal (car x) (car y))
(list-equal (cdr x) (cdr y)))
(not (consp y))))
(DEFTHM OPEN-list-equal
(IMPLIES (AND (CONSP X) (CONSP Y))
(EQUAL (LIST-EQUAL X Y)
(AND (EQUAL (CAR X) (CAR Y))
(LIST-EQUAL (CDR X) (CDR Y)))))
:HINTS (("Goal" :IN-THEORY (ENABLE LIST-EQUAL))))
(defequiv list-equal)
(defcong list-equal equal (consp x) 1)
(defcong list-equal list-equal (cons a b) 2)
(defcong list-equal equal (car x) 1)
(defcong list-equal list-equal (cdr x) 1)
(in-theory (disable list-equal))
;;
(DEFTHM CDR-APPEND-CONSP
(IMPLIES (CONSP X)
(EQUAL (CDR (APPEND X Y))
(APPEND (CDR X) Y)))
:HINTS (("goal" :IN-THEORY (ENABLE APPEND))))
(DEFTHM CAR-APPEND-CONSP
(IMPLIES (CONSP X)
(EQUAL (CAR (APPEND X Y)) (CAR X)))
:HINTS (("goal" :IN-THEORY (ENABLE APPEND))))
(DEFTHM LEN-APPEND
(EQUAL (LEN (APPEND X Y))
(+ (LEN X) (LEN Y)))
:HINTS (("Goal" :IN-THEORY (ENABLE APPEND))))
(DEFTHM LEN-CONS
(EQUAL (LEN (CONS A X)) (+ 1 (LEN X)))
:HINTS (("Goal" :IN-THEORY (ENABLE LEN))))
(DEFTHM APPEND-CONSP-TYPE-TWO
(IMPLIES (CONSP Y) (CONSP (APPEND X Y)))
:RULE-CLASSES ((:TYPE-PRESCRIPTION)))
(DEFTHM APPEND-OF-CONS
(EQUAL (APPEND (CONS A X) Y)
(CONS A (APPEND X Y))))
(DEFTHM APPEND-OF-NON-CONSP-ONE
(IMPLIES (NOT (CONSP X))
(EQUAL (APPEND X Y) Y))
:HINTS (("Goal" :IN-THEORY (ENABLE APPEND))))
;;
(defthm list-equal-implication
(implies (list-equal r s)
(and (head-equal r s)
(<= (len r) (len s))))
:rule-classes (:forward-chaining))
(defthm not-consp-implication
(implies (not (consp r))
(and (head-equal r s)
(<= (len r) (len s)))))
(defthm head-equal-append
(head-equal x (append x y)))
(in-theory (disable append))
;; we get this from lists
;; (defthm len-append
;; (<= (len x) (len (append x y))))
(defthm ack_terminates_from_ack_terminates
(implies (and (ack_terminates x y s)
(head-equal r s)
(<= (len r) (len s)))
(ack_terminates x y r))
:hints (("goal" :do-not '(generalize eliminate-destructors)
:induct (ack_induction x y s r))))
(encapsulate
()
(local
(encapsulate
()
;; jcd - note, if you can prove that ack_terminates returns a
;; boolean, then you can instead immediately prove
(defthm ack_terminates_list_equal
(implies (and (ack_terminates x y s)
(list-equal r s))
(ack_terminates x y r)))
(defthm not_ack_terminates_list_equal
(implies (and (not (ack_terminates x y r))
(list-equal r s))
(not (ack_terminates x y s))))
))
(defcong list-equal iff (ack_terminates x y r) 3)
)
(defthm ack_terminates_nil
(implies (and (ack_terminates x y s)
(syntaxp (not (quotep s))))
(ack_terminates x y nil))
:rule-classes (:forward-chaining))
(defcong list-equal equal (ack x y r) 3
:hints (("goal" :induct (ack_induction x y r r-equiv))))
;; jcd - removing this, it seems redundant with the congruence rule
;; above.
;; (defthm ack_reduction_free
;; (implies (and (ack_terminates x y r)
;; (syntaxp (not (acl2::term-order r s)))
;; (list-equal s r))
;; (equal (ack x y s)
;; (ack x y r))))
(defthmd open_ack_terminates-1
(implies
(syntaxp (and (or (symbolp x) (quotep x))
(or (symbolp y) (quotep y))))
(and
(implies
(not (acktest_body x y xargs))
(iff
(ack_terminates x y xargs)
(let
((x (car (ackstep_body_1 (list x y xargs))))
(y (car (cdr (ackstep_body_1 (list x y xargs)))))
(xargs
(car (cdr (cdr (ackstep_body_1 (list x y xargs)))))))
(ack_terminates x y xargs))))
(implies (acktest_body x y xargs)
(ack_terminates x y xargs)))))
(defthm ack_termiantes_on_ack
(implies
(and
(consp r)
(ack_terminates x y (append s r)))
(ack_terminates (car r) (ack x y s) (cdr r)))
:hints (("goal" :in-theory (enable open_ack_terminates-1)
:induct (ack x y s))))
(defthm ack_measure_on_ack
(implies
(and
(consp r)
(ack_terminates x y (append s r)))
(equal (ack_measure x y (append s r))
(+ (ack_measure x y s)
(ack_measure (car r) (ack x y s) (cdr r)))))
:rule-classes nil
:hints (("goal" :in-theory (enable open_ack_terminates-1)
:induct (ack x y s))))
(defthm ack_measure_reduction
(implies
(ack_terminates x y (cons a r))
(equal (ack_measure x y (cons a r))
(+ (ack_measure x y nil)
(ack_measure a (ack x y nil) r))))
:hints (("goal" :in-theory (disable OPEN_ACK_MEASURE)
:use (:instance ack_measure_on_ack
(s nil)
(r (cons a r))))))
(defthm ack_on_ack
(implies
(and
(consp r)
(ack_terminates x y (append s r)))
(equal (ack x y (append s r))
(ack (car r) (ack x y s) (cdr r))))
:rule-classes nil
:hints (("goal" :in-theory (enable open_ack_terminates-1)
:induct (ack x y s))))
(defthm ack_reduction
(implies
(ack_terminates x y (cons a r))
(equal (ack x y (cons a r))
(ack a (ack x y nil) r)))
:hints (("goal" :use (:instance ack_on_ack
(s nil)
(r (cons a r))))))
(defun ak (x y)
(ack x y nil))
(defun ak_terminates (x y)
(ack_terminates x y nil))
(defun ak_measure (x y)
(ack_measure x y nil))
(defthm ak_spec
(equal (ak x y)
(if (ak_terminates x y)
(if (zp x) (+ y 1)
(if (zp y) (ak (1- x) 1)
(ak (1- x) (ak x (1- y)))))
(+ y 1)))
:rule-classes nil)
(defthm ak_measure_spec
(implies
(ak_terminates x y)
(equal (ak_measure x y)
(if (zp x) (o)
(if (zp y) (1+ (ak_measure (1- x) 1))
(+ 1 (ak_measure x (1- y))
(ak_measure (1- x) (ak x (1- y))))))))
:hints (("goal" :in-theory (disable OPEN_ACK_TERMINATES-1))))
(in-theory
(disable
ak
ak_measure
ak_terminates
))
|