File: file-system-lemmas.lisp

package info (click to toggle)
acl2 8.3dfsg-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 309,408 kB
  • sloc: lisp: 3,311,842; javascript: 22,569; cpp: 9,029; ansic: 7,872; perl: 6,501; xml: 3,838; java: 3,738; makefile: 3,383; ruby: 2,633; sh: 2,489; ml: 763; python: 741; yacc: 721; awk: 260; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (474 lines) | stat: -rw-r--r-- 15,647 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
; Copyright (C) 2017, Regents of the University of Texas
; Written by Mihir Mehta
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

(defthm make-character-list-makes-character-list
  (character-listp (make-character-list x)))

(defthm len-of-binary-append
  (equal (len (binary-append x y)) (+ (len x) (len y))))

(defthm len-of-make-character-list
  (equal (len (make-character-list x)) (len x)))

(defthm len-of-revappend
  (equal (len (revappend x y)) (+ (len x) (len y))))

(defthm len-of-first-n-ac
  (implies (natp i) (equal (len (first-n-ac i l ac)) (+ i (len ac)))))

(defthm len-of-take (equal (len (take n xs)) (nfix n)))

(defthm nthcdr-of-binary-append-1
  (implies (and (integerp n) (>= n (len x)))
           (equal (nthcdr n (binary-append x y))
                  (nthcdr (- n (len x)) y)))
  :hints (("Goal" :induct (nthcdr n x)) ))

(defthm first-n-ac-of-binary-append-1
  (implies (and (natp i) (<= i (len x)))
           (equal (first-n-ac i (binary-append x y) ac)
                  (first-n-ac i x ac))))

(defthm take-of-binary-append-1
  (implies (and (natp i) (<= i (len x)))
           (equal (take i (binary-append x y))
                  (take i x))))

(defthm by-slice-you-mean-the-whole-cake-1
  (implies (true-listp l)
           (equal (first-n-ac (len l) l ac)
                  (revappend ac l)))
  :hints (("Goal" :induct (revappend l ac)) )
  :rule-classes ((:rewrite :corollary
                           (implies (and (equal i (len l)) (true-listp l))
                                    (equal (first-n-ac i l ac) (revappend ac
                                                                          l))))))

(defthm by-slice-you-mean-the-whole-cake-2
  (implies (and (equal i (len l)) (true-listp l))
           (equal (take i l) l)))

(defthm assoc-after-remove1-assoc
  (implies (not (equal name1 name2))
           (equal (assoc-equal name1 (remove1-assoc name2 alist))
                  (assoc-equal name1 alist))))

(defthm character-listp-of-first-n-ac
  (implies (and (character-listp l) (character-listp acc) (<= n (len l)))
           (character-listp (first-n-ac n l acc))))

(defthm character-listp-of-take
  (implies (character-listp l)
           (equal (character-listp (take n l))
                  (<= (nfix n) (len l)))))

(defthm character-listp-of-nthcdr
  (implies (and (character-listp l))
           (character-listp (nthcdr n l))))

(defthmd already-a-character-list
  (implies (character-listp x) (equal (make-character-list x) x)))

(defthm make-character-list-of-binary-append
  (equal (make-character-list (binary-append x y))
         (binary-append (make-character-list x) (make-character-list y))))

;; The following is redundant with the definition in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks to Jared
;; Davis.
(defthm len-of-nthcdr
  (equal (len (nthcdr n l))
         (nfix (- (len l) (nfix n))))
  :hints (("Goal" :induct (nthcdr n l))))

(defthmd revappend-is-append-of-rev
  (equal (revappend x (binary-append y z))
         (binary-append (revappend x y) z)))

(defthm
  binary-append-first-n-ac-nthcdr
  (implies (<= i (len l))
           (equal (binary-append (first-n-ac i l ac)
                                 (nthcdr i l))
                  (revappend ac l)))
  :hints (("goal" :induct (first-n-ac i l ac))
          ("subgoal *1/1''"
           :use (:instance revappend-is-append-of-rev (x ac)
                           (y nil)
                           (z l)))))

;; The following is redundant with the definition in std/lists/nth.lisp, from
;; where it was taken with thanks.
(defthm nth-of-append
  (equal (nth n (append x y))
         (if (< (nfix n) (len x))
             (nth n x)
           (nth (- n (len x)) y))))

(defthm binary-append-is-associative
  (equal (binary-append (binary-append a b) c)
         (binary-append a (binary-append b c))))

(defthm member-of-a-nat-list
  (implies (and (nat-listp lst)
                (member-equal x lst))
           (and (integerp x) (<= 0 x)))
  :rule-classes ((:rewrite :corollary (implies (and (nat-listp lst)
                                                    (member-equal x lst))
                                               (<= 0 x)))
                 (:forward-chaining :corollary (implies (and (member-equal x lst)
                                                             (nat-listp lst))
                                                        (integerp x)))))

(defthm non-nil-nth
  (implies (and (natp n) (nth n l))
           (< n (len l)))
  :rule-classes (:rewrite :linear))

(defthm update-nth-of-boolean-list
  (implies (and (boolean-listp l) (booleanp val))
           (boolean-listp (update-nth key val l))))

(defthm nat-listp-of-binary-append
  (implies (true-listp x)
           (equal (nat-listp (binary-append x y))
                  (and (nat-listp x) (nat-listp y)))))

(defthm eqlable-listp-if-nat-listp (implies (nat-listp l) (eqlable-listp l)))

(defthm member-of-binary-append
  (iff (member-equal x (binary-append lst1 lst2))
       (or (member-equal x lst1)
           (member-equal x lst2))))

(defthm no-duplicatesp-of-append
  (equal (no-duplicatesp-equal (binary-append x y))
         (and (no-duplicatesp x)
              (no-duplicatesp y)
              (not (intersectp-equal x y)))))

(defthm intersectp-of-append-1
  (equal (intersectp-equal z (binary-append x y))
         (or (intersectp-equal z x)
             (intersectp-equal z y))))

(defthm intersectp-of-append-2
  (equal (intersectp-equal (binary-append x y) z)
         (or (intersectp-equal x z)
             (intersectp-equal y z))))

(defthm intersectp-is-commutative
  (equal (intersectp-equal x y)
         (intersectp-equal y x)))

(defthm subsetp-of-binary-append-1
  (subsetp-equal y (binary-append x y)))

(defthm subsetp-of-binary-append-2
  (subsetp-equal x (binary-append x y)))

(defthm subsetp-of-binary-append-3
  (equal (subsetp-equal (binary-append x y) z)
         (and (subsetp-equal x z) (subsetp-equal y z))))

(defthm subsetp-is-transitive
  (implies (and (subsetp-equal x y) (subsetp-equal y z))
           (subsetp-equal x z)))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/sets.lisp, from where it was taken with thanks.
(defthm
  subsetp-member
  (implies (and (member a x) (subsetp x y))
           (member a y))
  :rule-classes
  ((:rewrite)
   (:rewrite :corollary (implies (and (subsetp x y) (member a x))
                                 (member a y)))
   (:rewrite
    :corollary (implies (and (not (member a y)) (subsetp x y))
                        (not (member a x))))
   (:rewrite
    :corollary (implies (and (subsetp x y) (not (member a y)))
                        (not (member a x))))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-revappend
  (equal (nth n (revappend x y))
         (if (< (nfix n) (len x))
             (nth (- (len x) (+ 1 (nfix n))) x)
           (nth (- n (len x)) y))))

;; The following is redundant with the eponymous theorem in
;; books/misc/gentle.lisp, from where it was taken with thanks to
;; Messrs. Boyer, Hunt and Davis.
(defthm true-listp-of-make-list-ac
  (equal (true-listp (make-list-ac n val ac))
         (true-listp ac))
  :rule-classes ((:rewrite)
                 (:type-prescription
                  :corollary
                  (implies (true-listp ac)
                           (true-listp (make-list-ac n val ac))))))

;; The following is redundant with the eponymous theorem in
;; books/centaur/ubdds/param.lisp, from where it was taken with thanks to
;; Messrs. Boyer and Hunt.
(defthm len-of-make-list-ac
  (equal (len (make-list-ac n val acc))
         (+ (nfix n) (len acc))))

(defthm boolean-listp-of-make-list-ac
  (implies (booleanp val)
           (equal (boolean-listp (make-list-ac n val ac))
                  (boolean-listp ac))))

(defthm booleanp-of-car-make-list
  (implies (and (booleanp val)
                (boolean-listp ac)
                (> (+ n (len ac)) 0))
           (booleanp (car (make-list-ac n val ac)))))

(defthm car-of-make-list
  (equal (car (make-list-ac n val ac))
         (if (zp n) (car ac) val)))

(defthm cdr-of-make-list
  (equal (cdr (make-list-ac n val ac))
         (if (zp n)
             (cdr ac)
           (make-list-ac (- n 1) val ac))))

;; The following is redundant with the eponymous theorem in
;; books/data-structures/list-defthms.lisp, from where it was taken with thanks.
(defthm member-equal-nth
  (implies (< (nfix n) (len l))
           (member-equal (nth n l) l))
  :hints (("Goal" :in-theory (enable nth))))

(encapsulate
  ()

  (local (include-book "ihs/logops-lemmas" :dir :system))

  (local (include-book "arithmetic-5/top" :dir :system))

  (defthm
    logand-ash-lemma-1
    (implies (and (natp c))
             (unsigned-byte-p c (logand i (- (ash 1 c) 1)))))
  )

(defthm make-character-list-of-revappend
  (equal (make-character-list (revappend x y))
         (revappend (make-character-list x)
                    (make-character-list y))))

(defthm
  first-n-ac-of-make-character-list
  (implies (and (<= i (len l)))
           (equal (first-n-ac i (make-character-list l)
                              (make-character-list ac))
                  (make-character-list (first-n-ac i l ac)))))

(defthm
  take-of-make-character-list
  (implies (and (<= i (len l)))
           (equal (take i (make-character-list l))
                  (make-character-list (take i l)))))

(defthm
  take-more
  (implies
   (and (true-listp l)
        (natp i)
        (>= i (len l)))
   (equal (binary-append (first-n-ac i l ac1) ac2)
          (revappend ac1
                     (binary-append l
                                    (make-list-ac (- i (len l)) nil ac2)))))
  :hints
  (("goal'" :induct (first-n-ac i l ac1))
   ("subgoal *1/6'''" :expand (make-list-ac i nil ac2))
   ("subgoal *1/1''" :use (:instance revappend-is-append-of-rev (x ac1)
                                     (y l)
                                     (z ac2)))))

(defthm boolean-listp-of-revappend
  (implies (boolean-listp x)
           (equal (boolean-listp (revappend x y))
                  (boolean-listp y))))

(defthm boolean-listp-of-first-n-ac
  (implies (and (boolean-listp l)
                (boolean-listp ac))
           (boolean-listp (first-n-ac i l ac))))

(defthm consp-of-first-n-ac
  (iff (consp (first-n-ac i l ac))
       (or (consp ac) (not (zp i)))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/take.lisp, from where it was taken with thanks.
(defthm consp-of-take
    (equal (consp (take n xs))
           (not (zp n))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-make-list-ac
  (equal (nth n (make-list-ac m val acc))
         (if (< (nfix n) (nfix m))
             val
           (nth (- n (nfix m)) acc))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-nthcdr
  (equal (nth n (nthcdr m x))
         (nth (+ (nfix n) (nfix m)) x)))

(defthmd intersect-with-subset
  (implies (and (subsetp-equal x y)
                (intersectp-equal x z))
           (intersectp-equal y z)))

(defthm update-nth-of-make-list
  (implies (and (integerp key) (>= key n) (natp n))
           (equal (update-nth key val (make-list-ac n l ac))
                  (make-list-ac n l (update-nth (- key n) val ac)))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/update-nth.lisp, from where it was taken with thanks.
(defthm nthcdr-of-update-nth
  (equal (nthcdr n1 (update-nth n2 val x))
         (if (< (nfix n2) (nfix n1))
             (nthcdr n1 x)
           (update-nth (- (nfix n2) (nfix n1)) val (nthcdr n1 x)))))

(defthmd car-of-assoc-equal
  (let ((sd (assoc-equal x alist)))
    (implies (consp sd) (equal (car sd) x))))

(defthm update-nth-of-update-nth-1
  (implies (not (equal (nfix key1) (nfix key2)))
           (equal (update-nth key1 val1 (update-nth key2 val2 l))
                  (update-nth key2 val2 (update-nth key1 val1 l)))))

(defthm update-nth-of-update-nth-2
  (equal (update-nth key val2 (update-nth key val1 l))
         (update-nth key val2 l)))

(encapsulate
  ()

  (local
   (include-book "ihs/logops-definitions" :dir :system))

  (local
   (include-book "ihs/logops-lemmas" :dir :system))

  (local
   (include-book "arithmetic/top-with-meta" :dir :system))

  (local
   (defun induction-scheme (bits x)
     (if (zp bits)
         x
       (induction-scheme (- bits 1)
                         (logcdr x)))))

  (defthmd
    unsigned-byte-p-alt
    (implies (natp bits)
             (equal (unsigned-byte-p bits x)
                    (and (unsigned-byte-p (+ bits 1) x)
                         (zp (logand (ash 1 bits) x)))))
    :hints
    (("goal" :in-theory (e/d nil (logand ash logcar logcdr)
                             (logand* ash*))
      :induct (induction-scheme bits x)))))

;; This can probably be replaced by a functional instantiation.
(defthm nat-listp-of-remove
  (implies (nat-listp l)
           (nat-listp (remove-equal x l))))

;; This should be moved into the community books.
(defthm subsetp-of-remove
  (subsetp-equal (remove-equal x l) l))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/sets.lisp, from where it was taken with thanks.
(defthm member-of-remove
  (iff (member a (remove b x))
       (and (member a x)
            (not (equal a b))))
  :hints(("goal" :induct (len x))))

(defthm
  assoc-after-put-assoc
  (equal (assoc-equal name1 (put-assoc-equal name2 val alist))
         (if (equal name1 name2)
             (cons name1 val)
           (assoc-equal name1 alist))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks.
(defthm nthcdr-of-cdr
  (equal (nthcdr i (cdr x))
         (cdr (nthcdr i x))))

;; The following is redundant with the eponymous theorem in
;; books/std/lists/update-nth.lisp, from where it was taken with thanks.
(defthm update-nth-of-nth
  (implies (< (nfix n) (len x))
           (equal (update-nth n (nth n x) x) x)))

(defthm character-listp-of-make-list-ac
  (equal (character-listp (make-list-ac n val ac))
         (and (character-listp ac)
              (or (zp n) (characterp val)))))

(defthm string-listp-of-append
  (implies (true-listp x)
           (equal (string-listp (append x y))
                  (and (string-listp x)
                       (string-listp y)))))

(defthm true-listp-when-string-list
  (implies (string-listp x)
           (true-listp x)))

;; The following definitions are taken from
;; books/std/lists/nthcdr.lisp with thanks to Jared
;; Davis.
(encapsulate
  ()

  (local (defthmd l0
           (implies (< (nfix n) (len x))
                    (consp (nthcdr n x)))
           :hints(("Goal" :induct (nthcdr n x)))))

  (local (defthmd l1
           (implies (not (< (nfix n) (len x)))
                    (not (consp (nthcdr n x))))
           :hints(("goal" :induct (nthcdr n x)))))

  (defthm consp-of-nthcdr
    (equal (consp (nthcdr n x))
           (< (nfix n) (len x)))
    :hints(("Goal" :use ((:instance l0)
                         (:instance l1))))))

(defthm
  binary-append-take-nthcdr
  (implies (<= i (len l))
           (equal (binary-append (take i l)
                                 (nthcdr i l))
                  l)))