1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  
     | 
    
      ; Copyright (C) 2017, Regents of the University of Texas
; Written by Mihir Mehta
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.
(in-package "ACL2")
(local (include-book "file-system-lemmas"))
(include-book "std/lists/flatten" :dir :system)
(defthm no-duplicatesp-of-member
  (implies (and (member-equal x lst)
                (no-duplicatesp (flatten lst)))
           (no-duplicatesp x)))
(defun not-intersectp-list (x l)
  (or (atom l)
      (and (not (intersectp x (car l)))
           (not-intersectp-list x (cdr l)))))
(defcong list-equiv equal (not-intersectp-list x l) 1)
(defthm not-intersectp-list-correctness-1
  (equal (intersectp-equal x (flatten l))
         (not (not-intersectp-list x l))))
(defthm not-intersectp-list-correctness-2
  (implies (and (not-intersectp-list x l)
                (member-equal y l))
           (not (intersectp-equal x y))))
(defthm not-intersectp-list-of-append-1
  (equal (not-intersectp-list x (binary-append l1 l2))
         (and (not-intersectp-list x l1)
              (not-intersectp-list x l2))))
(defthm not-intersectp-equal-if-subset
  (implies (and (not-intersectp-list x l2)
                (subsetp-equal l1 l2))
           (not-intersectp-list x l1)))
(defthm flatten-subset-no-duplicatesp-lemma-1
  (implies (and (consp z)
                (no-duplicatesp (flatten z))
                (member-equal y z)
                (not (equal y (car z))))
           (not (intersectp-equal (car z) y))))
(defthm
  flatten-subset-no-duplicatesp-lemma-2
  (implies (and (no-duplicatesp (flatten z))
                (consp z)
                (member-equal x z)
                (member-equal y z)
                (not (equal y x)))
           (not (intersectp-equal x y))))
(defthm flatten-subset-no-duplicatesp-lemma-3
  (implies (and (member-equal z y)
                (not (member-equal z x))
                (subsetp-equal x y)
                (no-duplicatesp-equal (flatten y)))
           (not-intersectp-list z x)))
;; This is sort of the main lemma
(defthm flatten-subset-no-duplicatesp
  (implies (and (subsetp-equal x y)
                (no-duplicatesp-equal (flatten y))
                (no-duplicatesp-equal x))
           (no-duplicatesp-equal (flatten x))))
(defun disjoint-list-listp (x)
  (if (atom x)
      (equal x nil)
    (and (not-intersectp-list (car x) (cdr x))
         (disjoint-list-listp (cdr x)))))
(defun no-duplicates-listp (x)
  (if (atom x)
      (equal x nil)
    (and (no-duplicatesp (car x)) (no-duplicates-listp (cdr x)))))
(defthm flatten-disjoint-lists
  (implies (true-listp l)
           (equal (no-duplicatesp-equal (flatten l))
                  (and (disjoint-list-listp l) (no-duplicates-listp l)))))
;; This theorem won't go through because both
;; (disjoint-list-listp '((1 2) (3 4))) and
;; (subsetp-equal '((1 2) (1 2)) '((1 2) (3 4))) are t.
;; (verify (implies (and (subsetp-equal x y) (disjoint-list-listp y)) (disjoint-list-listp x)))
(defun member-intersectp-equal (x y)
  (and (consp x)
       (or (not (not-intersectp-list (car x) y))
           (member-intersectp-equal (cdr x) y))))
(encapsulate ()
  (local (include-book "std/basic/inductions" :dir :system))
  (defcong list-equiv equal (member-intersectp-equal x y) 1
    :hints
    (("goal"
      :induct (cdr-cdr-induct x x-equiv)))))
(defthm when-append-is-disjoint-list-listp
  (implies (true-listp x)
           (equal (disjoint-list-listp (binary-append x y))
                  (and (disjoint-list-listp x)
                       (disjoint-list-listp y) (not (member-intersectp-equal x y))))))
(defthm member-intersectp-with-subset
  (implies (and (member-intersectp-equal z x)
                (subsetp-equal x y))
           (member-intersectp-equal z y)))
(defthm intersectp-member-when-not-member-intersectp
  (implies (and (member-equal x lst2)
                (not (member-intersectp-equal lst1 lst2)))
           (not-intersectp-list x lst1))
  :hints (("Subgoal *1/4''" :use (:instance intersectp-is-commutative (y (car lst1)))) ))
(defthm member-intersectp-binary-append
  (equal (member-intersectp-equal e (binary-append x y))
         (or (member-intersectp-equal e x)
             (member-intersectp-equal e y))))
(defthm member-intersectp-is-commutative-lemma-1
  (implies (not (consp x))
           (not (member-intersectp-equal y x))))
(defthm
  member-intersectp-is-commutative-lemma-2
  (implies (and (consp x)
                (not (not-intersectp-list (car x) y)))
           (member-intersectp-equal y x))
  :hints
  (("Subgoal *1/2''" :use (:instance intersectp-is-commutative (x (car x))
                                     (y (car y))))))
(defthm
  member-intersectp-is-commutative-lemma-3
  (implies (and (consp x)
                (not-intersectp-list (car x) y))
           (equal (member-intersectp-equal y (cdr x))
                  (member-intersectp-equal y x)))
  :hints
  (("Subgoal *1/1''" :use (:instance intersectp-is-commutative (x (car x))
                                     (y (car y))))))
(defthm member-intersectp-is-commutative
  (equal (member-intersectp-equal x y)
         (member-intersectp-equal y x)))
(defthm
  another-lemma-about-member-intersectp
  (implies (or (member-intersectp-equal x z)
               (member-intersectp-equal y z))
           (member-intersectp-equal z (binary-append x y))))
(defthm not-intersectp-list-of-append-2
  (equal (not-intersectp-list (binary-append x y) l)
         (and (not-intersectp-list x l)
              (not-intersectp-list y l))))
(defthm no-duplicates-listp-of-append
  (implies (true-listp x)
           (equal (no-duplicates-listp (binary-append x y))
                  (and (no-duplicates-listp x) (no-duplicates-listp y)))))
 
     |