File: flatten-lemmas.lisp

package info (click to toggle)
acl2 8.3dfsg-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 309,408 kB
  • sloc: lisp: 3,311,842; javascript: 22,569; cpp: 9,029; ansic: 7,872; perl: 6,501; xml: 3,838; java: 3,738; makefile: 3,383; ruby: 2,633; sh: 2,489; ml: 763; python: 741; yacc: 721; awk: 260; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (168 lines) | stat: -rw-r--r-- 5,746 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
; Copyright (C) 2017, Regents of the University of Texas
; Written by Mihir Mehta
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

(in-package "ACL2")

(local (include-book "file-system-lemmas"))
(include-book "std/lists/flatten" :dir :system)

(defthm no-duplicatesp-of-member
  (implies (and (member-equal x lst)
                (no-duplicatesp (flatten lst)))
           (no-duplicatesp x)))

(defun not-intersectp-list (x l)
  (or (atom l)
      (and (not (intersectp x (car l)))
           (not-intersectp-list x (cdr l)))))

(defcong list-equiv equal (not-intersectp-list x l) 1)

(defthm not-intersectp-list-correctness-1
  (equal (intersectp-equal x (flatten l))
         (not (not-intersectp-list x l))))

(defthm not-intersectp-list-correctness-2
  (implies (and (not-intersectp-list x l)
                (member-equal y l))
           (not (intersectp-equal x y))))

(defthm not-intersectp-list-of-append-1
  (equal (not-intersectp-list x (binary-append l1 l2))
         (and (not-intersectp-list x l1)
              (not-intersectp-list x l2))))

(defthm not-intersectp-equal-if-subset
  (implies (and (not-intersectp-list x l2)
                (subsetp-equal l1 l2))
           (not-intersectp-list x l1)))

(defthm flatten-subset-no-duplicatesp-lemma-1
  (implies (and (consp z)
                (no-duplicatesp (flatten z))
                (member-equal y z)
                (not (equal y (car z))))
           (not (intersectp-equal (car z) y))))

(defthm
  flatten-subset-no-duplicatesp-lemma-2
  (implies (and (no-duplicatesp (flatten z))
                (consp z)
                (member-equal x z)
                (member-equal y z)
                (not (equal y x)))
           (not (intersectp-equal x y))))

(defthm flatten-subset-no-duplicatesp-lemma-3
  (implies (and (member-equal z y)
                (not (member-equal z x))
                (subsetp-equal x y)
                (no-duplicatesp-equal (flatten y)))
           (not-intersectp-list z x)))

;; This is sort of the main lemma
(defthm flatten-subset-no-duplicatesp
  (implies (and (subsetp-equal x y)
                (no-duplicatesp-equal (flatten y))
                (no-duplicatesp-equal x))
           (no-duplicatesp-equal (flatten x))))

(defun disjoint-list-listp (x)
  (if (atom x)
      (equal x nil)
    (and (not-intersectp-list (car x) (cdr x))
         (disjoint-list-listp (cdr x)))))

(defun no-duplicates-listp (x)
  (if (atom x)
      (equal x nil)
    (and (no-duplicatesp (car x)) (no-duplicates-listp (cdr x)))))

(defthm flatten-disjoint-lists
  (implies (true-listp l)
           (equal (no-duplicatesp-equal (flatten l))
                  (and (disjoint-list-listp l) (no-duplicates-listp l)))))

;; This theorem won't go through because both
;; (disjoint-list-listp '((1 2) (3 4))) and
;; (subsetp-equal '((1 2) (1 2)) '((1 2) (3 4))) are t.
;; (verify (implies (and (subsetp-equal x y) (disjoint-list-listp y)) (disjoint-list-listp x)))

(defun member-intersectp-equal (x y)
  (and (consp x)
       (or (not (not-intersectp-list (car x) y))
           (member-intersectp-equal (cdr x) y))))

(encapsulate ()
  (local (include-book "std/basic/inductions" :dir :system))

  (defcong list-equiv equal (member-intersectp-equal x y) 1
    :hints
    (("goal"
      :induct (cdr-cdr-induct x x-equiv)))))

(defthm when-append-is-disjoint-list-listp
  (implies (true-listp x)
           (equal (disjoint-list-listp (binary-append x y))
                  (and (disjoint-list-listp x)
                       (disjoint-list-listp y) (not (member-intersectp-equal x y))))))

(defthm member-intersectp-with-subset
  (implies (and (member-intersectp-equal z x)
                (subsetp-equal x y))
           (member-intersectp-equal z y)))

(defthm intersectp-member-when-not-member-intersectp
  (implies (and (member-equal x lst2)
                (not (member-intersectp-equal lst1 lst2)))
           (not-intersectp-list x lst1))
  :hints (("Subgoal *1/4''" :use (:instance intersectp-is-commutative (y (car lst1)))) ))

(defthm member-intersectp-binary-append
  (equal (member-intersectp-equal e (binary-append x y))
         (or (member-intersectp-equal e x)
             (member-intersectp-equal e y))))

(defthm member-intersectp-is-commutative-lemma-1
  (implies (not (consp x))
           (not (member-intersectp-equal y x))))

(defthm
  member-intersectp-is-commutative-lemma-2
  (implies (and (consp x)
                (not (not-intersectp-list (car x) y)))
           (member-intersectp-equal y x))
  :hints
  (("Subgoal *1/2''" :use (:instance intersectp-is-commutative (x (car x))
                                     (y (car y))))))

(defthm
  member-intersectp-is-commutative-lemma-3
  (implies (and (consp x)
                (not-intersectp-list (car x) y))
           (equal (member-intersectp-equal y (cdr x))
                  (member-intersectp-equal y x)))
  :hints
  (("Subgoal *1/1''" :use (:instance intersectp-is-commutative (x (car x))
                                     (y (car y))))))

(defthm member-intersectp-is-commutative
  (equal (member-intersectp-equal x y)
         (member-intersectp-equal y x)))

(defthm
  another-lemma-about-member-intersectp
  (implies (or (member-intersectp-equal x z)
               (member-intersectp-equal y z))
           (member-intersectp-equal z (binary-append x y))))

(defthm not-intersectp-list-of-append-2
  (equal (not-intersectp-list (binary-append x y) l)
         (and (not-intersectp-list x l)
              (not-intersectp-list y l))))

(defthm no-duplicates-listp-of-append
  (implies (true-listp x)
           (equal (no-duplicates-listp (binary-append x y))
                  (and (no-duplicates-listp x) (no-duplicates-listp y)))))