1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
; See the top-level arithmetic-3 LICENSE file for authorship,
; copyright, and license information.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; integerp-meta.lisp
;;;
;;;
;;; This book contains a meta rule about when a sum or
;;; product is or is not an integer.
;;;
;;; Pseudo-Example: (See code for an explanation)
;;; (integerp (+ a (+ b (+ c d))))
;;; ===>
;;; (integerp (intp-+ (+ a c) (+ b d)))
;;;
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
(local
(include-book "../pass1/top"))
(include-book "default-hint")
(set-default-hints '((nonlinearp-default-hint stable-under-simplificationp
hist pspv)))
(table acl2-defaults-table :state-ok t)
(table acl2-defaults-table :verify-guards-eagerness 0)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun intp-+ (x y)
(declare (xargs :guard (and (acl2-numberp x)
(acl2-numberp y))))
(+ x y))
(defun intp-* (x y)
(declare (xargs :guard (and (acl2-numberp x)
(acl2-numberp y))))
(* x y))
(defevaluator intp-eva intp-eva-lst ((intp-+ x y)
(intp-* x y)
(binary-+ x y)
(binary-* x y)
(integerp x)
(hide x)
(if x y z)
(equal x y)
(fix x)))
; Our meta rule will, hopefully, massage the terms into a form such that
; these rules can do their work.
(defthm intp-1
(implies (and (integerp x)
(integerp y))
(integerp (intp-* x y))))
(defthm intp-2
(implies (and (integerp x)
(integerp y))
(integerp (intp-+ x y))))
(defthm nintp-1
(implies (and (acl2-numberp x)
(not (integerp x))
(integerp y))
(not (integerp (intp-+ x y)))))
(defthm nintp-2
(implies (and (integerp x)
(acl2-numberp y)
(not (integerp y)))
(not (integerp (intp-+ x y)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun leaves (term bin-op)
(declare (xargs :guard (and (pseudo-termp term)
(symbolp bin-op))))
(cond ((atom term)
(if (eq bin-op 'BINARY-+)
(list ''0)
(list ''1)))
((eq (fn-symb term) bin-op)
(if (eq (fn-symb (fargn term 2)) bin-op)
(cons (fargn term 1)
(leaves (fargn term 2) bin-op))
(list (fargn term 1)
(fargn term 2))))
(t
(list term))))
(defun tree (leaves bin-op)
(declare (xargs :guard (and (pseudo-term-listp leaves)
(symbolp bin-op))))
(cond ((endp leaves)
(if (eq bin-op 'BINARY-+)
''0
''1))
((endp (cdr leaves))
(list 'fix (car leaves)))
((endp (cddr leaves))
(list bin-op (car leaves) (cadr leaves)))
(t
(list bin-op (car leaves) (tree (cdr leaves) bin-op)))))
(defun big-tree (bags big-bin-op bin-op)
(declare (xargs :guard (and (pseudo-term-list-listp bags)
(symbolp big-bin-op)
(symbolp bin-op))))
; We form a big-bin-op tree whose 'leaves' are bin-op trees of the
; bagged leaves.
; Pseudo-example:
; (big-tree '((a b) (c d e) (f)) 'big-bin-op 'bin-op)
; ==> (big-bin-op (bin-op a b)
; (big-bin-op (bin-op c (bin-op d e))
; (fix f)))
(cond ((endp bags)
(if (eq bin-op 'BINARY-+)
''0
''1))
((endp (cdr bags))
(tree (car bags) bin-op))
((endp (cddr bags))
(list big-bin-op
(tree (car bags) bin-op)
(tree (cadr bags) bin-op)))
(t
(list big-bin-op
(tree (car bags) bin-op)
(big-tree (cdr bags) big-bin-op bin-op)))))
;;; I leave the following two defuns here in case we ever want to go
;;; back to them. At present, we use mfc-rw to determine whether an
;;; addend is an integer or not. The following code would allow us to
;;; use mfc-ts instead.
#|
(defun ts-fix (x)
(declare (xargs :guard t))
(let ((int-x (ifix x)))
(if (and (<= *min-type-set* int-x)
(<= int-x *max-type-set*))
int-x
0)))
(defun bag-leaves (leaves mfc state
intp-bags non-intp-bags)
(declare (xargs :guard (and (pseudo-term-listp leaves)
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags))))
; Leaves is a list of leaves from a sum or product; intp-bags and
; non-intp-bags are initially nil. We scan through the leaves,
; getting their type from mfc-ts, and accumulate the known integers
; (non-integers) into intp-bags (non-intp-bags). Note that we "bag"
; each leaf individually, and so return two lists of lists of leaves.
(if (endp leaves)
(mv intp-bags non-intp-bags)
(let ((leaf-type (ts-fix (mfc-ts (car leaves) mfc state))))
(cond ((ts-subsetp leaf-type *ts-integer*)
(bag-leaves (cdr leaves) mfc state
(cons (list (car leaves)) intp-bags)
non-intp-bags))
((and (ts-subsetp leaf-type *ts-rational-acl2-number*)
(ts-subsetp leaf-type
(ts-complement *ts-integer*)))
(bag-leaves (cdr leaves) mfc state
intp-bags
(cons (list (car leaves)) non-intp-bags)))
(t
(bag-leaves (cdr leaves) mfc state
intp-bags non-intp-bags))))))
|#
(defun bag-leaves (leaves mfc state
intp-bags non-intp-bags)
(declare (xargs :guard (and (pseudo-term-listp leaves)
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags))))
; Leaves is a list of leaves from a sum or product; intp-bags and
; non-intp-bags are initially nil. We scan through the leaves,
; getting their type from mfc-ts, and accumulate the known integers
; (non-integers) into intp-bags (non-intp-bags). Note that we "bag"
; each leaf individually, and so return two lists of lists of leaves.
(if (endp leaves)
(mv intp-bags non-intp-bags)
(let ((rewriting-result (mfc-rw `(INTEGERP ,(car leaves)) t t mfc state)))
(cond ((equal rewriting-result *t*)
(bag-leaves (cdr leaves) mfc state
(cons (list (car leaves)) intp-bags)
non-intp-bags))
((equal rewriting-result *nil*)
(bag-leaves (cdr leaves) mfc state
intp-bags
(cons (list (car leaves)) non-intp-bags)))
(t
(bag-leaves (cdr leaves) mfc state
intp-bags non-intp-bags))))))
(defun bag-terms (type-alist bin-op intp-bags non-intp-bags)
(declare (xargs :guard (and (type-alistp type-alist)
(or (equal bin-op 'BINARY-+)
(equal bin-op 'BINARY-*))
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags))))
; We scan through the type-alist and "bag" those terms known to be an
; integer or a non-integer, accumulating the result into intp-bags
; and non-intp-bags.
(cond ((endp type-alist)
(mv intp-bags non-intp-bags))
((variablep (caar type-alist))
(bag-terms (cdr type-alist) bin-op
intp-bags non-intp-bags))
((ts-subsetp (cadr (car type-alist))
*ts-integer*)
(bag-terms (cdr type-alist) bin-op
(cons (leaves (caar type-alist) bin-op)
intp-bags)
non-intp-bags))
((and (ts-subsetp (cadr (car type-alist))
*ts-rational-acl2-number*)
(ts-subsetp (cadr (car type-alist))
(ts-complement *ts-integer*)))
(bag-terms (cdr type-alist) bin-op
intp-bags
(cons (leaves (caar type-alist) bin-op)
non-intp-bags)))
(t
(bag-terms (cdr type-alist) bin-op
intp-bags non-intp-bags))))
(defun subtract-leaf (leaf leaves)
(declare (xargs :guard (true-listp leaves)))
(cond ((endp leaves)
(mv nil nil))
((equal leaf (car leaves))
(mv t (cdr leaves)))
(t
(mv-let (flag new-leaves)
(subtract-leaf leaf (cdr leaves))
(if flag
(mv t (cons (car leaves)
new-leaves))
(mv nil leaves))))))
(defun subtract-bag (bag leaves)
(declare (xargs :guard (and (true-listp bag)
(true-listp leaves))))
(cond ((endp bag)
(mv t leaves))
((endp (cdr bag))
(subtract-leaf (car bag) leaves))
(t
(mv-let (flag new-leaves)
(subtract-bag (cdr bag) leaves)
(if flag
(subtract-leaf (car bag) new-leaves)
(mv nil nil))))))
(defun collect-bags-intp (leaves intp-bags)
(declare (xargs :guard (and (true-listp leaves)
(true-list-listp intp-bags))))
; We try to partition leaves such that each part is an intp-bag.
(cond ((endp leaves)
(mv t nil))
((endp intp-bags)
(mv nil nil))
(t
(mv-let (flag new-leaves)
(subtract-bag (car intp-bags) leaves)
(if flag
(mv-let (flag new-bags)
(collect-bags-intp new-leaves (cdr intp-bags))
(if flag
(mv t (cons (car intp-bags)
new-bags))
(collect-bags-intp leaves (cdr intp-bags))))
(collect-bags-intp leaves (cdr intp-bags)))))))
(defun collect-bags-non-intp (leaves intp-bags non-intp-bags)
(declare (xargs :guard (and (true-listp leaves)
(true-list-listp intp-bags)
(true-list-listp non-intp-bags))))
; We try to partition leaves such that exactly one part is a non-intp-bag
; and all the rest are each an intp-bag.
(cond ((endp non-intp-bags)
(mv nil nil))
(t
(mv-let (flag new-leaves)
(subtract-bag (car non-intp-bags) leaves)
(if (and flag
(consp new-leaves))
(mv-let (flag bag-list)
(collect-bags-intp new-leaves intp-bags)
(if flag
(mv t
(cons (car non-intp-bags)
bag-list))
(collect-bags-non-intp leaves
intp-bags
(cdr non-intp-bags))))
(collect-bags-non-intp leaves
intp-bags
(cdr non-intp-bags)))))))
(defun collect-bags (leaves intp-bags non-intp-bags bin-op)
(declare (xargs :guard (and (true-listp leaves)
(true-list-listp intp-bags)
(true-list-listp non-intp-bags))))
; We try to partition leaves in a way that lets us determine that the
; original term is or is not an integerp.
(mv-let (flag bag-list)
(if (eq bin-op 'BINARY-+)
(collect-bags-non-intp leaves intp-bags non-intp-bags)
(mv nil nil))
(if flag
(mv flag bag-list) ;; non-intp
(collect-bags-intp leaves intp-bags))))
(defun meta-integerp (term mfc state)
(declare (xargs :guard (pseudo-termp term)))
; Assumptions: 1. Term is right-associated. 2. Not all leaves
; are known to be integers by type-set.
;
; Pseudo-Example:
; (integerp (+ a (+ b (+ c d))))
; ==> (integerp (intp-+ (+ a c) (+ b d)))
(if (eq (fn-symb term) 'INTEGERP)
(let ((bin-op (fn-symb (fargn term 1))))
(if (and (member-eq bin-op '(BINARY-+ BINARY-*))
(eq (fn-symb (fargn (fargn term 1) 2)) bin-op))
;; We have a term of the form:
;; (integerp (bin-op x (bin-op y z))).
(let ((leaves (leaves (fargn term 1) bin-op)))
(mv-let (intp-leaves non-intp-leaves)
(bag-leaves leaves mfc state nil nil)
(mv-let (intp-bags non-intp-bags)
(bag-terms (mfc-type-alist mfc) bin-op
intp-leaves non-intp-leaves)
(mv-let (flag bag-list)
(collect-bags leaves intp-bags non-intp-bags bin-op)
(if flag
`(INTEGERP ,(big-tree bag-list
(if (eq bin-op 'BINARY-+)
'INTP-+
'INTP-*)
bin-op))
term)))))
term))
term))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(encapsulate
()
(local
(encapsulate
()
(local
(defthm niq-bounds
(implies (and (integerp i)
(<= 0 i)
(integerp j)
(< 0 j))
(and (<= (nonnegative-integer-quotient i j)
(/ i j))
(< (+ (/ i j) -1)
(nonnegative-integer-quotient i j))))
:rule-classes ((:linear
:trigger-terms ((nonnegative-integer-quotient i j))))))
(local
(defthm floor-bounds-1
(implies (and (rationalp x)
(rationalp y))
(and (< (+ (/ x y) -1)
(floor x y))
(<= (floor x y)
(/ x y))))
:rule-classes ((:generalize)
(:linear :trigger-terms ((floor x y))))))
(local
(defthm floor-bounds-2
(implies (and (rationalp x)
(rationalp y)
(integerp (/ x y)))
(equal (floor x y)
(/ x y)))
:rule-classes ((:generalize)
(:linear :trigger-terms ((floor x y))))))
(local
(defthm floor-bounds-3
(implies (and (rationalp x)
(rationalp y)
(not (integerp (/ x y))))
(< (floor x y)
(/ x y)))
:rule-classes ((:generalize)
(:linear :trigger-terms ((floor x y))))))
(local
(in-theory (disable floor)))
(local
(defun ind-hint (x y n)
(declare (xargs :measure (abs (ifix x))))
(cond ((or (zip x) (zip y) (zp n))
t)
((equal x -1)
t)
(t
(ind-hint (floor x 2) (floor y 2) (+ -1 n))))))
(local
(defthm one
(implies (and (integerp x)
(integerp n)
(< 0 n)
(<= (- (EXPT 2 N)) X))
(equal (< (FLOOR X 2) (- (* 1/2 (EXPT 2 N))))
nil))))
(local
(defthm two-x
(implies (and (< x 4)
(<= -4 x)
(integerp x))
(or (equal x -4)
(equal x -3)
(equal x -2)
(equal x -1)
(equal x 0)
(equal x 1)
(equal x 2)
(equal x 3)))
:rule-classes nil))
(local
(defthm two-y
(implies (and (< y 4)
(<= -4 y)
(integerp y))
(or (equal y -4)
(equal y -3)
(equal y -2)
(equal y -1)
(equal y 0)
(equal y 1)
(equal y 2)
(equal y 3)))
:rule-classes nil))
(local
(defthm foo
(implies (and (integerp x)
(integerp n)
(< 1 n)
(< x (* 1/2 (EXPT 2 N))))
(< (+ 1 (* 2 x)) (expt 2 n)))))
(local
(defthm logand-bounds
(implies (and (integerp x)
(<= (- (expt 2 n)) x)
(< x (expt 2 n))
(integerp y)
(<= (- (expt 2 n)) y)
(< y (expt 2 n))
(integerp n)
(< 1 n))
(and (<= (- (expt 2 n)) (logand x y))
(< (logand x y) (expt 2 n))))
:hints (("Goal" :in-theory (disable floor expt)
:induct (ind-hint x y n)
:do-not '(generalize))
("Subgoal *1/3.18" :use (two-x two-y))
("Subgoal *1/3.17" :use (two-x two-y))
("Subgoal *1/3.16" :use (two-x two-y))
("Subgoal *1/3.15" :use (two-x two-y))
("Subgoal *1/3.14" :use (two-x two-y))
("Subgoal *1/3.13" :use (two-x two-y))
)))
(defthm logand-thm
(implies (and (integerp x)
(<= *min-type-set* x)
(<= x *max-type-set*)
(integerp y)
(<= *min-type-set* y)
(<= y *max-type-set*))
(and (<= *min-type-set* (logand x y))
(<= (logand x y) *max-type-set*)))
:hints (("Goal" :use ((:instance logand-bounds
(n (length *actual-primitive-types*)))))))
))
#|
(local
(encapsulate
()
(local
(include-book
"../../ihs/logops-lemmas"))
(defthm logand-thm
(implies (and (integerp x)
(<= *min-type-set* x)
(<= x *max-type-set*)
(integerp y)
(<= *min-type-set* y)
(<= y *max-type-set*))
(and (<= *min-type-set* (logand x y))
(<= (logand x y) *max-type-set*)))
:hints (("Goal" :use ((:instance signed-byte-p-logops
(size (1+ (length *actual-primitive-types*))
(i x)
(j y)))
:in-theory (disable logand signed-byte-p-logops))))
))|#
(verify-guards intp-+)
(verify-guards intp-*)
(verify-guards leaves)
(local
(defthm pseudo-term-listp-leaves
(implies (and (pseudo-termp x)
(or (equal bin-op 'binary-+)
(equal bin-op 'binary-*)))
(pseudo-term-listp (leaves x bin-op)))))
(verify-guards tree)
(verify-guards big-tree)
(verify-guards bag-leaves)
(local
(defthm pseudo-term-list-listp-bag-leaves
(implies (and (pseudo-term-listp x)
(pseudo-term-list-listp y)
(pseudo-term-list-listp z))
(and (pseudo-term-list-listp
(car (bag-leaves x mfc state y z)))
(pseudo-term-list-listp
(mv-nth 1 (bag-leaves x mfc state y z)))))))
(verify-guards bag-terms)
(local
(defthm pseudo-term-list-listp-bag-terms
(implies (and (type-alistp type-alist)
(or (equal bin-op 'binary-+)
(equal bin-op 'binary-*))
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags))
(and (pseudo-term-list-listp
(car (bag-terms type-alist bin-op
intp-bags non-intp-bags)))
(pseudo-term-list-listp
(mv-nth 1 (bag-terms type-alist bin-op
intp-bags non-intp-bags)))))))
(verify-guards subtract-leaf)
(local
(defthm true-listp-subtract-leaf
(implies (true-listp leaves)
(true-listp (mv-nth 1 (subtract-leaf leaf leaves))))))
;; It is odd that I did not need this hint when I was verifying guards
;; as I introduced the functions.
(verify-guards subtract-bag
:otf-flg t)
(local
(defthm true-listp-subtract-bag
(implies (true-listp leaves)
(true-listp (mv-nth 1 (subtract-bag leaf leaves))))))
(verify-guards collect-bags-intp)
(verify-guards collect-bags-non-intp)
(verify-guards collect-bags)
(local
(encapsulate
()
(local
(defthm pseudo-term-list-listp-collect-bags-intp
(implies (and (true-listp leaves)
(pseudo-term-list-listp intp-bags))
(pseudo-term-list-listp
(mv-nth 1 (collect-bags-intp leaves intp-bags))))))
(local
(defthm pseudo-term-list-listp-collect-bags-non-intp
(implies (and (true-listp leaves)
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags))
(pseudo-term-list-listp
(mv-nth 1 (collect-bags-non-intp leaves intp-bags non-intp-bags))))))
(defthm pseudo-term-list-listp-collect-bags
(implies (and (true-listp leaves)
(pseudo-term-list-listp intp-bags)
(pseudo-term-list-listp non-intp-bags)
(or (equal bin-op 'binary-+)
(equal bin-op 'binary-*)))
(pseudo-term-list-listp
(mv-nth 1 (collect-bags leaves intp-bags non-intp-bags bin-op)))))
))
(local
(defthm pseudo-term-list-listp-implies-true-list-listp
(implies (pseudo-term-list-listp x)
(true-list-listp x))))
(verify-guards meta-integerp
:hints (("Goal" :in-theory (disable bag-leaves
bag-terms
collect-bags))))
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(encapsulate
()
(local
(defun tree-2 (leaves bin-op)
(cond ((endp leaves)
(if (eq bin-op 'BINARY-+)
''0
''1))
(t
(list bin-op (car leaves) (tree-2 (cdr leaves) bin-op))))))
(local
(defthm trees
(implies (or (eq bin-op 'BINARY-+)
(eq bin-op 'BINARY-*))
(equal (intp-eva (tree leaves bin-op) a)
(intp-eva (tree-2 leaves bin-op) a)))))
(local
(in-theory (disable tree)))
(local
(defun big-tree-2 (bags big-bin-op bin-op)
(cond ((endp bags)
(if (eq bin-op 'BINARY-+)
''0
''1))
(t
(list big-bin-op
(tree (car bags) bin-op)
(big-tree-2 (cdr bags) big-bin-op bin-op))))))
(local
(defthm big-tree-big-tree-2
(and
(equal (intp-eva (big-tree bags 'INTP-+ 'BINARY-+) a)
(intp-eva (big-tree-2 bags 'BINARY-+ 'BINARY-+) a))
(equal (intp-eva (big-tree bags 'INTP-* 'BINARY-*) a)
(intp-eva (big-tree-2 bags 'BINARY-* 'BINARY-*) a)))))
(local
(in-theory (disable big-tree)))
(local
(defthm tree-2-leaves
(implies (and (or (eq bin-op 'BINARY-+)
(eq bin-op 'BINARY-*))
(eq (fn-symb term) bin-op))
(equal (intp-eva (tree-2 (leaves term bin-op) bin-op) a)
(intp-eva term a)))
:hints (("Subgoal 2" :induct t)
("Subgoal 1" :induct t))))
(local
(defthm acl2-numberp-tree-2
(implies (or (eq bin-op 'BINARY-+)
(eq bin-op 'BINARY-*))
(acl2-numberp (intp-eva (tree-2 x bin-op) a)))
:rule-classes :type-prescription))
(local
(defthm subtract-leaf-good-+
(mv-let (flag new-leaves)
(subtract-leaf leaf leaves)
(implies flag
(equal (+ (intp-eva leaf a)
(intp-eva (tree-2 new-leaves 'BINARY-+) a))
(intp-eva (tree-2 leaves 'BINARY-+) a))))))
(local
(defthm subtract-leaf-good-*
(mv-let (flag new-leaves)
(subtract-leaf leaf leaves)
(implies flag
(equal (* (intp-eva leaf a)
(intp-eva (tree-2 new-leaves 'BINARY-*) a))
(intp-eva (tree-2 leaves 'BINARY-*) a))))))
(local
(defthm subtract-bag-good-+
(mv-let (flag new-leaves)
(subtract-bag bag leaves)
(implies flag
(equal (+ (intp-eva (tree-2 bag 'BINARY-+) a)
(intp-eva (tree-2 new-leaves 'BINARY-+) a))
(intp-eva (tree-2 leaves 'BINARY-+) a))))
:hints (("Subgoal *1/3"
:use
((:instance subtract-leaf-good-+
(leaf (CAR BAG))
(leaves (MV-NTH 1 (SUBTRACT-BAG (CDR BAG) LEAVES)))))
:in-theory (disable subtract-leaf-good-+ tree)))))
(local
(defthm subtract-bag-good-*
(mv-let (flag new-leaves)
(subtract-bag bag leaves)
(implies flag
(equal (* (intp-eva (tree-2 bag 'BINARY-*) a)
(intp-eva (tree-2 new-leaves 'BINARY-*) a))
(intp-eva (tree-2 leaves 'BINARY-*) a))))
:hints (("Subgoal *1/3"
:use
((:instance subtract-leaf-good-*
(leaf (CAR BAG))
(leaves (MV-NTH 1 (SUBTRACT-BAG (CDR BAG) LEAVES)))))
:in-theory (disable subtract-leaf-good-* tree)))))
(local
(defthm collect-bags-intp-good-+
(mv-let (flag bags)
(collect-bags-intp leaves intp-bags)
(implies (and flag
(consp leaves))
(equal (intp-eva (big-tree-2 bags 'BINARY-+ 'BINARY-+) a)
(intp-eva (tree-2 leaves 'BINARY-+) a))))
:hints (("Subgoal *1/4'5'" :use ((:instance subtract-bag-good-+
(bag INTP-BAGS1)))
:in-theory (disable subtract-bag-good-+)))))
(local
(defthm collect-bags-intp-good-*
(mv-let (flag bags)
(collect-bags-intp leaves intp-bags)
(implies (and flag
(consp leaves))
(equal (intp-eva (big-tree-2 bags 'BINARY-* 'BINARY-*) a)
(intp-eva (tree-2 leaves 'BINARY-*) a))))
:hints (("Subgoal *1/4'5'" :use ((:instance subtract-bag-good-*
(bag INTP-BAGS1)))
:in-theory (disable subtract-bag-good-*)))))
(local
(defthm collect-bags-good
(mv-let (flag bags)
(collect-bags leaves intp-bags non-intp-bags bin-op)
(implies (and flag
(member-eq bin-op '(BINARY-+ BINARY-*))
(consp leaves))
(equal (intp-eva (big-tree-2 bags bin-op bin-op) a)
(intp-eva (tree-2 leaves bin-op) a))))))
(local
(defthm big-tree-term
(mv-let (flag bags)
(collect-bags (leaves term bin-op)
intp-bags non-intp-bags bin-op)
(implies (and flag
(or (and (eq intp-bin-op 'INTP-+)
(eq bin-op 'BINARY-+))
(and (eq intp-bin-op 'INTP-*)
(eq bin-op 'BINARY-*)))
(eq (fn-symb term) bin-op))
(equal (intp-eva (big-tree bags intp-bin-op bin-op) a)
(intp-eva term a))))
:hints (("Goal" :in-theory (disable leaves collect-bags tree-2)))))
(local
(in-theory (disable leaves bag-leaves bag-terms collect-bags big-tree
intp-+ intp-*)))
; We export only this.
(defthm meta-integerp-correct
(equal (intp-eva term a)
(intp-eva (meta-integerp term mfc state) a))
:rule-classes ((:meta :trigger-fns (INTEGERP))))
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-theory (disable leaves tree big-tree bag-leaves bag-terms
subtract-leaf subtract-bag
collect-bags-intp collect-bags-non-intp
collect-bags meta-integerp))
(in-theory (disable intp-+ intp-*))
|